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Abstract.  This paper proposes a method to build reduced order observers for linear time invariant systems 
modelled by bond graph.  The method is based on the Luenberger’s algebraic method for the design of reduced 
order observers.  The calculation of the observer gain is based on the pole placement technique for linear systems 
modelled by bond graph.  One example with two outputs is developed where one of the measurements is 
dependent on all state variables. 
 
I. Introduction 
Effective control and monitoring of a process requires reliable and continuous real-time information on the state 
variables of the process. In practice, however, continuous, on-line state measurements are rarely available. State 
estimators (observers), which are deterministic or stochastic, and static or dynamic, have as purpose to 
reconstruct the inaccessible but important state variables from other easily available measurements.  The Kalman 
filter and the Luenberger observer were the first ones to be introduced in the 1970s.  The present work concerns 
deterministic linear time invariant systems modelled by bond graphs and because of that, the observers are built 
based on the Luenberger’s method. 
The principal advantage of implementing a reduced order observer is that it will estimate only those state 
variables which cannot be directly measured, thus, the order of the model of the observer will be lower than the 
order of a complete order observer, and therefore the computational cost to estimate these variables is also lower. 
Karnopp (1979) proposed a method for bond graph models to build both complete order observers and reduced 
order observers for linear systems.  In his work, the method used bond graph basically for the architecture of the 
observer.  The calculus of the gain of the observer is made with the classical algebraic methods.   
In this paper, the method proposed is a procedure to build the reduced order observers directly from the bond 
graph model.  It can be used in both cases, when the output depends on all state variables and when the output is 
related to one state variable; in the second case the procedure is simpler. 
The use of bond graphs allows employing techniques of structural analysis to determine the observability of a 
model, which is a necessary condition for the construction of Luenberger’s observers.  In this paper, the 
verification of structural observability of the bond graph model is made with the technique proposed by Sueur 
and Dauphin-Tanguy (1991).   
The Luenberger’s method includes matrix manipulations which can imply the calculation of matrix inverses.  
The main objective of this paper is to give a graphical method that can be applied on a bond graph model directly 
to build the observers without the generation and manipulation of the state and output equations of the system.  
The calculation of the matrices will be made directly from the bond graph model and using the graphical 
advantages of the bond graphs, the determination of the invertibility of some matrices will be made from a 
structural point of view. 
Rahmani et al.(1994) proposed a method to calculate the gain of a controller gain by pole placement directly 
from the bond graph model. In the present work an extension of this method is used to calculate the observer’s 
gain.  Because of that, it is possible to calculate the gain with the knowledge of the causal cycles families in the 
bond graph of the observer.  In this case the characteristic polynomial of the reduced observer ( )s(P )abAKbbA( -

) 
is selected and then the calculus of K is based on the polynomial coefficients. 
As an application, one example with two outputs is studied here, where one of the measurements depends on all 
state variables. 
The paper is organized as follows:  section II shows the bond graph implementation of reduced order observers.  
Section III shows the principles to design the observer starting from a bond graph model.  Section IV shows one 
example. Finally Section V shows the conclusions of this work. 
 
II.  Bond Graph Approach 
Given a linear time invariant system, and considering that its bond graph model is equivalent to: 

Cxy
BuAxx

=

+=
      (1) 

with A ˛ ´n · n, B ˛ ´n · p, C ˛ ´m · n, y regroups the outputs of the system. 
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That means that in the bond graph model there are nor causal loops between R-elements neither derivative 
causalities that could generate an implicit state equation.  From this bond graph model, the proposed procedure 
to build the reduced order observers is shown in the next subsection. 
 
II. 1  Proposition of a procedure to build the reduced order observers 
 
Step 1.  General conditions to build the reduced order observer 
There exist two conditions related to the system to be verified before the construction of the Luenberger’s 
observer: 

(a) Only the information related to the non-redundant outputs should be considered.  This means that: 
m = number of non-redundant outputs of the system. 

(b) The system has to be observable. 
To verify the condition (a) in the bond graph model, it is possible to use the following property about the struct-
rank[C] shown by Sueur and Dauphin-Tanguy (1991): 
Property 1.  The struct-rank[C] is equal to the number of detectors in a bond graph model that can be dualized 
without creating causality conflicts and accepting the change of causality of the dynamical elements in integral 
causality.                           � 
 
With this property, it is possible to identify the redundant outputs that can exists, then these outputs can be 
neglected and by consequence, the number of outputs that remain is equal to the struct-rank[C]: 

struct-rank[C] = m 
To verify the condition (b) the concept of structural observability can be properly used.   The structural 
observability of the bond graph model can be verified with the technique proposed by Sueur and Dauphin-
Tanguy (1991).  They have shown that if all the dynamical elements in integral causality are causally connected 
with a detector and all the I-C elements in integral causality are in derivative causality when a derivative 
assignment is performed over the initial bond graph, then the system is structurally state observable by the 
detectors. 
Step 2.  Division of the state vector 
The Luenberger’s method for building reduced order observers consists in dividing the state variables of the 
model into measurable variables and non-measurable variables.  The measurable variables are the state variables 
that can be directly measured from a sensor or can be calculated directly from the measurement of the sensor.  
With this classification, the state equation of the system can be written as a function of the measurable (xa˛ ´m) 
and non-measurable (xb˛ ´n -m) variables:  
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Afterwards, with a linear transformation, T: 
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the state equation is written as a function of the output and the non-measurable state: 
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where: 
( ) 1-+= ababaaaaa CACACA  
( )baabbbabaab CAACACA -+=  

1-= ababa CAA                             (5) 

bababbbb CCAAA 1--=  

bbaaa BCBCB +=  

bb BB =  
With this representation the inverse of the Ca matrix is needed.  Because of that, after the selection of xa, the 
following condition: rank(Ca) = m must be verified to guarantee the existence of Ca

-1. 
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The rank of the C matrix can give information about the inversibility of Ca.  Taking only the outputs in the 
detectors that can be dualized without any causality conflict, Property 1 implies that there exists an invertible 
submatrix of C with dimensions m x m, called Ca, corresponding to a selection of components xa.  Using this 
reasoning, the dimension of vector xa always has to be equal to the struct-rank[C]: 

dim(xa) = struct-rank[C] = m 
The bicausality concept can be appropriately used to select the xa vector guaranteeing the existence of Ca

-1.  The 
bicausality allows fixing or imposing at the same time a variable and its conjugate as bicausal bonds decouple 
the effort and flow causalities.  In the context of the inversion problem, imposing the output variable without 
modifying the energy structure (or constraint equations) of the system can be carried out with an SS element 
having a flow source /effort source causality (Ngwonpo et al., 1996). 
By Property 1 it is possible to determine struct-rank[C] by means of the dualization of detectors.  When this 
procedure is made, the conjugate variable is equal to zero, because the detector is supposed to be ideal (no power 
dissipated or stored).  Then, to obtain information about Ca

-1, the detectors can be substituted by SS elements 
leading to a null power flow on that bond.   From this analysis, Theorem 1 can be introduced. 
Theorem 1.  The inverse of the Ca submatrix exists (or the struct-rank[Ca] = m),  if the following operations can 
be made in the bond graph model without introducing any causality conflict: 

(i) All detectors are substituted by SS elements as shown in Figure 1. 
(ii) The dynamical elements associated with xa change its integral causality into a bicausality as it is 

shown in Figure 2. 
(iii) The dynamical elements associated with xb stay in integral causality.   

De

                                    

SS y

 

Df

                                          

SS y

 
Figure 1.  Bicausality of the SS elements. 
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Figure 2.  Bicausality of the elements associated with xa. 

                  � 
Proof.  Consider the junction structure equation of the initial bond graph model yields: 

œ
œ
œ
œ

ß

ø

Œ
Œ
Œ
Œ

º

Ø

œ
œ
œ
œ
œ

ß

ø

Œ
Œ
Œ
Œ
Œ

º

Ø

=

œ
œ
œ
œ

ß

ø

Œ
Œ
Œ
Œ

º

Ø

u
D
Z
Z

SSS
SSSS
SSSS
SSSS

y
D
x
x

out

b

a

ba

ba

bbbbba

aaabaa

in

b

a

0333131

24232121

14131111

14131111

    (6) 

To perform a bicausality assignment in the storage elements and to change the detectors by SS elements is 
equivalent to inverse some terms in (6); then a new output structure vector [ ]tt*

in
t
b

t
a DxZ is built as it is shown 

in equation (7): 
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If (7) is solvable, that is if (I – M10 L*) is invertible, where I is an identity matrix of appropriate dimensions and 
L* is such that *

in
**

out DLD = , it follows, with Za = Fa xa and Zb = Fb xb,  

ba xMyMx 21 +=      (8) 
On the other hand, supposing the output equation in equation (2): 
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To calculate xa from equation (2) the condition struct-rank[Ca] = m has to be satisfied, then 
b

11  xCCyCx baaa
-- -=      (10) 

Obviously, there are two possible ways to invert the relation (16), directly with the output submatrix Ca, or using 
the bicausality assignment.  The same equation have to be obtained, so equation (8) has to be equal to equation 
(10), meaning that the struct-rank[Ca] = m and the inverse of Ca exists.                        
 

e = y f = 0 
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Once the selection of xa is made such as the condition of rank(Ca) = m is verified, then the calculation of Ca and 
Cb is directly derived from the initial bond graph model by calculating the gain of the causal path of length one 
(1) from the I or C-elements associated with the time derivative of xa and xb to the output y. 
Step 3.  Calculation of Ca

-1 directly from a bond graph model 
From Theorem 1, it is possible to deduce the following theorem that allows calculating directly Ca

-1 from a bond 
graph model. 
Theorem 2.  After applying the three conditions of Theorem 1, it is possible to calculate Ca

-1 directly from the 
new bond graph with bicausalities as: 

Ca
-1 = Fa

-1 Ma      (11) 
where Ma is the gain matrix between the output y and the complementary state variables Za, calculated through 
the calculation of the gain of the causal path of length one (1) from y to Za and Fia

-1 is a diagonal positive definite 
matrix as: 
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� 
Proof.  If the three conditions of Theorem 1 are satisfied, then from the bond graph with bicausality assignment, 
the complementary variables Za can be calculated knowing y.  This means that is possible to calculate the gain 
matrix (Ma) between the output y and the complementary state variables through the calculation of the gain of 
the causal path of length one from y to Za. 
By definition:       Za = Fa xa 
where Fa is a diagonal positive definite matrix  (each element, I, C, is a one port element):   
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Then as xa = Fa
-1 Za , finally Ca

-1 can be calculated as: 
Ca

-1 = Fa
-1 Ma       

 
Before explaining steps 4, 5 and 6 of the method, the following two definitions are required. 
 
Definition 1.  The modulated flow source associated with an I-element, denoted MSfI, is a flow source that 
imposes a flow on the connected junction equal to: 

I
f 1

= b       (13) 

where b is the module in the source and I is the inductance value of the I-element associated.  
dMSfI

0  
Figure 3. Modulated flow source associated with an I-element    � 

Definition 2.  The modulated effort source associated with a C-element, denoted MSeC, is an effort source 
imposing an effort on the connected junction equal to: 

C
e 1

= b       (14) 

where b is the module in the source and C is the capacitance value of the associated C-element. 
dMSeC

1  
Figure 4. Modulated effort source associated with a C-element    � 

 
The observer’s bond graph model is the same than the system model with the pertinent changes described in the 
steps 4, 5 and 6. 
 
 

b 

b 
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Step 4.  Addition of the term Ky. 
In the dynamical elements associated with bx̂ , the term Ky is added to calculate the state: 

Kyẑx̂b +=       (15) 
In the case where bx̂ is a momentum of an I-element, this operation is equivalent to change in the observer the I-
element of the system’s model, by the bond graph shown in Figure 5. 

-KI

0

1

yMSfI

 
Figure 5. Bond Graph model to add Ky  

Then, 

ò== dt 2 ẑẑp̂ Ky
I

p̂
I

f̂ 11
21 +=Þ     (16) 

In the case where bx̂ is a displacement in a C-element, this operation is equivalent to change in the observer the 
C-element of the system’s model, by the bond graph shown in Figure 6. 

1

0

MSe
C -K yC

 
Figure 6. Bond Graph model to add Ky  

Then, 

Ky
C

q̂
C

êẑẑq̂ 11dt 212 +=Þ== ò     (17) 

 
Step 5.  Change of the dynamical elements associated with xa . 
The dynamical elements in the observer associated with xa (I-elements or C-elements) change their dynamical 
equation as follows: 

)x̂Cy(Cx̂ baa b
1  -= -      (18) 

thus:  aC x̂
C

ê 1
=  or aI x̂

I
f̂ 1

=  

Then they are not dynamical elements, because: 

ò„ dtx̂x̂ aa       (19) 
They are algebraic elements, therefore, in the observer’s bond graph, C-elements change to modulated effort 
sources MSeC and I-elements change to modulated flow sources MSfI.  By means of this change of elements the 
order reduction occurs. 
 
Step 6.  Addition of the term ff. 
In this step, the calculation of a term f is required.  This term f is equal to: 

[ ]    ba j+j-=f ˆCˆCK ba      (20) 
where, aĵ and bĵ are flows when the state variables xa and xb are associated with a C-element (or efforts when xa 
and xb  are associated with an I-element). 
Then, the term f is also a flow when the state variable xb is associated with a C-element (or an effort when xb is 
associated with an I-element). Afterwards the addition of f is made with a modulated source as it is shown in 
Figure 7. 

2 3 

1 

2 3 

1 
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Figure 7. Addition of  the term f 

The aĵ variable is the flow in the MSeC associated with xa (if xa is a displacement in a C-element) or the effort in 
the MSfI associated with xa (if xa is a momentum in an I-element) as it is shown in Figure 7.   
The bĵ variable is the effort in the observer’s bond graph before the addition of f  (if xb is a momentum in an I-
element) or the flow in the observer’s bond graph before the addition of f (if xb is a displacement in a C-element) 
as it is shown in Figure 7. 
 
From an algebraic point of view, the graphical operations shown in steps 4, 5 and 6 are equivalent to these of 
Luenberger’s method for reduced order observers in linear system (Luenberger, 1966).  The state equation for 
the estimated of xb is: 

( )babbabbbbbbab x̂ A  xAK uBx̂ A  y Ax̂ -+++=     (21) 
with K ˛ ´(n-m) · m. 
Thus, the dimension of the observer is equal to (n – m), where n is the total number of state variables and m is 
the number of non-redundant outputs of the system.  
As xb is non-measurable, in equation (21) the term bab xA  must be substituted by an expression derived from 
equation (4), which is a function of y and u as it is shown in equation (22): 

uByAyxA aaabab --=       (22) 
Afterwards, to avoid the time derivation of the output, the estimated state is calculated by means of an auxiliary 
variable, ẑ : 

Kyx̂ẑ b -=       (23) 
With this variable and an algebraic manipulation, the state equation for the estimated states is: 

) uBKy)ẑ (A yAK( uBKy)ẑ(A yAẑ aabaabbbba +++-+++=    (24) 
Equation (24) can be written as: 

f++++= uB)Kyẑ(AyAẑ bbbba        (25) 
where: )  uBKy)ẑ (A yAK( aabaa +++-=f [ ]    ba j+j-= ˆCˆCK ba                           (26) 
and the terms aĵ and bĵ correspond to: 

 uBKy)ẑ(Ax̂Aˆ aabaaa +++=j   a      (27) 
 uBKy)ẑ(Ax̂Aˆ bbabab +++=j   a      (28) 

Finally, the proposed procedure to build the reduced order observers from a bond graph model can be 
summarized as follows: 

Step 1. Selection of the non-redundant outputs and verification of the structural observability of the model. 
Step 2.   Selection of xa, verification of rank(Ca) = m and calculation of Ca and Cb. 
Step 3.   Calculation of Ca

-1.  
Step 4.  Addition of the term Ky (as in equation (15)). 
Step 5.  Change of the dynamical elements associated with xa. 
Step 6.  Addition of the term f (as in equation (26)). 

The observer obtained with this procedure gives the following dynamics for the estimation error, e = bb x̂x - : 
e)AKA(e abbb -=      (29) 

Luenberger (1966) has shown that if the system in equation (1) is observable, the pair )A,A( abbb is also 
observable, therefore, the eigenvalues of )AKA( abbb - can be arbitrary selected to define the error dynamics.  
The next section explains how to use the pole placement technique for linear systems modelled by bond graph to 
calculate the observer’s gain. 
 

bĵ  

f 

aĵ
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III.  Observer design 
The observer design is based on the pole placement techniques proposed by Rahmani et al. (1994).  In this case 
the characteristic polynomial of the reduced observer ( )s(P )abAKbbA( - ) is selected and then the calculation of K is 
based on the polynomial coefficients.  This calculus is possible considering the information signals associated 
with K and applying the proposed Theorem 3: 
Theorem 3.  The value of each coefficient of the characteristic polynomial )s(P )abAKbbA( - , is equal to the total 
gain of the ith-order families of causal cycles in the bond graph model: 

)s(P )abAKbbA( - = sn + a1 sn-1 + … + an-1 s + an 
The gain of each involved family of causal cycles must be multiplied by (-1)d if the family is constituted by d 
disjoint causal cycles.                       � 
Thus, the causal analysis to calculate K is made only with the family of causal cycles in the observer’s bond 
graph. 
 
 
IV.  Example 
Model with two outputs.  In this case an electrical network is studied.  The outputs are the current in the capacitor 
and the current in the resistance R2.   

I2

R1

i
y2

i
y1

R2
Se

I1

C

 
Figure 8.  Example 2.  Electrical network 

The bond graph model is: 

:

:01 y2Df

R

I

1

y1 Df

RI

1

Se

C  
Figure 9. Bond graph model of the example. 

Then applying the procedure II.1 for building the reduced order observer: 
Step 1.  After applying Property 1, it is possible to determine that y1 and y2 are non-redundant outputs.  The 
structural analysis (Sueur and Dauphin-Tanguy, 1991) for this model reveals that the system is observable by the 
detectors Df’s. 
Step 2.  For this system, the momentum in the I-elements are selected as measurable state variables, then by 
Theorem 1 the new bond graph shown in Figure 10 is generated: 

y2SS
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1

y1 SS

RI

1

1 0Se

C  
Figure 10. Bond graph with bicausality to calculate Ca

-1 
Figure 10 shows that there are no causality conflicts, then:  struct-rank[Ca] = 2 = m 
Finally, the values of Ca and Cb derived from Figure 9 are: 
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Step 3.  This calculus is made directly from the bond graph model with bicausality (Figure 10). 

From Figure 10, the gain matrix between y and Za is:  Ma = œ
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Then the inverse of Ca matrix is: 
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Step 4.  Taking the bond graph model of the system in Figure 9, for the observer the addition of the term Ky  
(Ky = K1 y1 + K2 y2) is made as it is shown in Figure 11. 

y2y1 K1 K2

MSeC

R

I

1

RI

1

1 0Se

C

 
Figure 11. Addition of the term Ky in the observer's model. 

Step 5.  Figure 12 shows the substitution of the dynamical elements associated with xa. 

-I2 y2MSfI2

10

R2

MSfI1 -I1 y1

y2

1

R1

1Se

MSeC

-K1 -K2
y1

1

y2

C

 
Figure 12. Change of the dynamical elements associated with xa 

Step 6.  Addition of the term f: 
With this operation, the observer’s bond graph is complete as it is shown in Figure 13. 
Observer design 
Applying the method of Rahmani et al. (1994) in the observer model (Figure 13), the families of causal cycles 
shown in Table 1 are found. 

Table 1. Families of causal cycles in the observer 
Family of causal cycle Gain (d = 1) 

(a)  (C‹fiR1) : 10-9-8-7-5-12-5-7-8-9-10 ( ) ( )CR/G )a( 1
1 11 --=  

(b)  (C‹fiR1) : 10-9-8-19-20-23-18-11-9-10 ( ) ( )( )2
11

1  1 CR/KG )b( --=  
(c)  (C‹fiMSf) :10-9-8-7-6-16-17-22-23-18-11-9-10 ( ) ( )CI/KG )c( 11

11-=  
(d)  (C‹fiR1) : 10-9-8-7-5-12-13-14-15-3-2-4-7-8-9-10 ( ) ( )CR/G )d(  11 1

1-=  
(e)  (C‹fiMSf) :10-9-8-7-4-2-21-23-18-11-9-10 ( ) ( )CI/KG )e(  1 21

1-=  
(f)  (C‹fiMSf) :10-9-8-7-6-16-17-18-11-9-10 ( ) ( )CI/KG )f(  1 22

1 --=  
(g)  (C‹fiMSf) :10-9-8-7-5-12-13-14-15-3-2-4-7-19-20-23-18-11-9-10 ( ) ( )( )2

11
1  1 CR/KG )g( -=  

Selecting a1 as the desired coefficient in the characteristic polynomial, )s(P )AKA( abbb - : 

1a+=
-

s)s(P )AKA( abbb
 

The calculus of K is directly derived from a1, because: 
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Selecting an arbitrary value for K1 )K( 1 , K2 is calculated directly from equation (30) as follows: 
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Simulations 
Simulations have been made in 20-Sim software version 2.3 (Controllab, 1998).  The simulations show the state 
dynamics (Figure 14) and the estimation error dynamic (Figure 15).  The values of the parameters in this case 
are: Se = 10 V, I1 = 2 H, I2 = 2 H, C = 3 mF, R1 = 1.5 W, R2 = 1.5 W, a1 = 30, K1 = 1 and the initial conditions 
are:  xa1(0) = xa2(0) = 1, xb(0) = 1 and ẑ (0) = 0.4.  Then, using equation (31), K2 is equal to 2.18. 
For the implementation, the values of the parameters of the observer with respect to the system have a variation 
of –10%. 
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Figure 13. Bond graph model of the observer 
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Figure 14.  Non-measurable state (xb) and estimated state ( )bx̂ vs. time 
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Figure 15.  Estimation error ( )bb x̂x -
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The steady state estimation error in Figure 15 has a value of 0.02 approximately, which represents 60% of the real 
value of xb.  This result shows that although the Luenberger observers (both complete and reduced order observers) 
are relatively simple in their implementation and design, this type of observers, however, has a drawback that can 
make it impractical for a particular system: they depend heavily on the precise setting of the parameters and the 
precise measurement of the output vector.  Any disturbance (noise) in the measurement, parameter differences, or 
internal noises can make the observer unusable (Morgan, 2001).  Additionally, Schereir (1997) has shown that the 
state estimation error does not always converge to zero if a Luenberger observer is applied to reconstruct the states in 
linear uncertain systems.   
 
V. Conclusions 
A bond graph method to design reduced order observers has been shown.  As in the algebraic methods, the building of 
the observers depends on the output matrix C and the inverse of the Ca submatrix.  In this paper has been shown how 
to determine the inversibility of the Ca submatrix (from a structural point of view) and how to calculate the inverse of 
the Ca submatrix directly from the bond graph model using the bicausality concept.  This result leads to a new method 
to build reduced order observers for LTI systems modelled by bond graphs based on the bicausality concept, which 
will not needs the calculation of Ca

-1, as it is shown in Pichardo-Almarza et al. (2003).  The work presented in this 
paper represents a control tool for people who develop bond graph models, since is possible to build a reduced order 
observer directly from a bond graph model where the matrix calculation can be directly derived from the observer’s 
graph (including the observer’s gain) avoiding the algebraic manipulation of matrices. 
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Nomenclature 
A : state matrix u : input 
B : input matrix x : state variable 
C : output matrix , capacitance x̂  : estimated state variable 
e : effort y : output 
ê  : estimated effort ẑ  : estimated auxiliary state variable 
f : flow  Z : complementary state variable 
f̂  : estimated flow Subscripts 
G : gain of causal cycle a : measurable 
I : inductance, identity matrix b : non-measurable 
K : observer’s gain C : associated with C-element 
m : number of system’s outputs I : associated with I-element 
M : gain matrix Se : associated with an effort source 
n : number of system’s state variables Greek characters 
p : momentum a : desired coefficient in the characteristic polynomial 
p̂  : estimated momentum b : module of the modulated sources 
q : displacement j : flow or effort associated with calculus of  ẑ  
q̂  : estimated displacement  f : flow or effort associated with calculus of  ẑ  
R : resistance    
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