
CONSTRUCTION AND CORRECTNESS ANALYSIS OF A MODEL
TRANSFORMATION FROM ACTIVITY DIAGRAMS TO PETRI NETS

Hartmut Ehrig, Karsten Ehrig, Claudia Ermel, Julia Padberg
Institut für Softwaretechnik und Theoretische Informatik

Technische Universität Berlin, Germany
email:{ehrig,karstene,lieske,padberg}@cs.tu-berlin.de

Abstract. With the growing importance of model-driven development, the ability of transforming
models into well-defined semantic domains becomes a key to automated analysis and verification in
the software development process. In this paper we use the concept of typed attributed graph trans-
formation to construct a model transformation from a simple version of activity diagrams to Petri
nets. Moreover our approach allows a correctness analysis which shows that this model transformation
has functional behavior and is syntactically correct. This is the basis to use well-known analysis and
verification techniques of Petri nets also for activity diagrams. The model transformation has been
implemented in the Tiger environment developed at TU Berlin.

1. Introduction

Although visual modeling languages (VLs) are becoming increasingly popular in software and systems
engineering, their formal underpinning is often not adequate. The Unified Modeling Language (UML)
[20], for instance, offers various diagram types for all kinds of modeling tasks for different software
engineering development phases. Tool support is offered for the syntactical definition of such diagrams,
in form of visual editors, diagram parsers and diagram layouters. But the semantics of the defined
diagrams is often ambigous and allows contradicting interpretations of one model. This problem can be
solved by constructing a model transformation of the corresponding visual language into a well-known
formal semantical domain, like Petri nets [16]. Model transformations thus enable the model designer
to perform verification and consistency checks on the translated model [12], to simulate the model
behavior, and to generate code.

Precise model transformation descriptions relate the abstract syntax elements of the source language
to the elements of the target language. There are two competing approaches to define the abstract
syntax of visual languages. One involves graph graph grammars [2] which extend grammar concepts
from textual languages to diagrams. The other approach, called metamodeling, is based on MOF [14],
and uses UML class diagrams to model a visual languages abstract syntax. While class diagrams appear
to be more intuitive than graph grammars, they are also less expressive. Therefore, metamodeling also
uses context conditions written in the Object Constraint Language (OCL) [13] that help to overcome
the weaker expressive power. The advantage of metamodeling is that UML users, who probably have
basic UML knowledge, do not need to learn a new external notation to be able to deal with syntax
definitions. But, however intuitive the metamodeling technique is, using it to define the UML is still
limited to describing abstract syntax; the problems of diagram representations (concrete syntax) and
of defining a formal semantics remain.

Automatically executable model transformations specified by means of graph transformation rules
[12] have proven to be an adequate approach for visual languages. The graphical notation of trans-
formation rules supports an intuitive understanding and the rule-based nature allows the flexibility
to exchange and modify rules when the requirements for the mappings change. Especially for model
transformations of UML behavioral diagrams (e.g. state diagrams) to Petri nets, there exist approaches
based on graph transformation [3, 21] with the aim of model validation or verification. Model transfor-
mation based on graph transformation allows in principle checking functional properties formally, e.g.
showing that the model transformation process terminates [6], and that the computed target model is
unique [11]. In our paper [5] we have given an overview of formal concepts for model transformation
based on typed attributed graph transformation. In this paper we construct a model transformation
from a simple version of activity diagrams into Petri nets. The correctness analysis of this construction

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

Petrinets: Current Research Topics and their Application in Traffic Safety and Automation Engineering 3 - 1

shows that this model transformation has functional behavior and is syntactically correct using graph
transformation techniques.

Since activity diagrams in general have only an informal semantics this model transformation allows
providing at least simple activity diagrams with a formal semantics via the corresponding Petri net.
Moreover, it is the basis to use well-known analysis and verification techniques of Petri nets also for
activity diagrams. For this purpose it is essential that the model transformation has functional behavior,
and is syntactically correct, i.e. for each activity diagram in the source language we obtain in a finite
number of steps in a unique well-defined Petri net. An additional advantage of our approach is that tool
support for model transformation by graph transformation is provided by the Tiger environment [19]
for the generation of visual modeling tools in Eclipse [4]. To execute the model transformation rules
and to check functional properties of model transformations, Tiger relies on the graph transformation
engine AGG [18, 1].

The paper is structured as follows: Section 2 provides a short introduction of model transformations
based on graph transformation. In Section 3 we give the construction for our model transformation
by graph transformation where simple UML activity digrams are transformed to Petri nets. In Sec-
tion 4 we show that our model transformation has functional behavior and is syntactically correct.
Finally, we summarize the main points of our approach and outline some future work concerning model
transformation to Petri nets in Section 5.

2. Model Transformation by Graph Transformation

For the application of graph transformation techniques to visual language modeling, typed attributed
graph transformation systems [8, 7] have been proven to be an adequate formalism. A visual language
is modeled basically by an attributed type graph ATGV L which captures the definition of the under-
lying visual alphabet, i.e. the symbols and relations which are available. The concept of type graphs
corresponds to the use of class diagrams in metamodeling. Visual sentences or diagrams of the VL are
given by attributed graphs typed over the type graph.

Visual sentences can be manipulated by graph transformation rules. Roughly spoken a typed
attributed graph transformation rule p = (L→ R) consists of a pair of typed attributed graphs L and
R (its left-hand and right-hand sides). It fixes a set of variables X and is attributed over the term
algebra TΣ(X), meaning that the graphs in the rule may have as attributes values obtained from terms
expressed over a signature Σ and variables in X. A typed attributed graph transformation system
GTS = (ATG, P) consists of a type graph ATG and a set of typed attributed graph transformation
rules P typed over ATG. A direct graph transformation written G

p,m
=⇒ H, means that the graph G is

transformed into the graph H by applying rule p ∈ P at the match m. Fig. 1 illustrates the application
of a rule insertArc at the occurrence marked by a dashed circle in graph G, resulting in the new graph
H which differs from G in the newly inserted arc according to R between the two nodes of the types
Place and Transition in the occurrence of L in G. In this example, the graph G represents the abstract
syntax (without layout information) of a Petri net. The numbers in front of the node inscriptions define

the different mappings L
p−→ R, and L

m−→ G (the match of the rule in G), R
m∗

−→ H and G
r∗−→ H.

Roughly spoken, the application of rule p to graph G deletes the image m(L) from G and replaces it
by a copy of the right-hand side m∗(R).

L R
3:Transition2:Place 2:Place 3:Transition4:ArcPT

s t

2:Place 3:Transition

ArcPT
s t

G

Place

2:Place 3:Transition

ArcPT
s tPlace

4:ArcPT
s

t

H

insArcPT

m

Figure 1: Application of Rule insertArc to Graph G

Note that a rule may only be applied if the so-called gluing condition is satisfied, i.e. the deletion
step must not leave dangling edges, and for two objects which are identified by the match, the rule

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

Petrinets: Current Research Topics and their Application in Traffic Safety and Automation Engineering 3 - 2

must not preserve one of them and delete the other one. A rule p may be extended by a set of negative
application conditions (NACs) [10, 7]. A NAC allows the rule application only if some context specified
in an additional NAC-graph N does not occur in the current graph G.

A graph transformation G0
∗=⇒ Gn = G0

p1,m1=⇒ ...
pn,mn=⇒ Gn in GTS is a sequence of direct graph

transformations such that all rules pi are from P . Briefly, we also write for G
p,m
=⇒ H just G

p
=⇒ H.

For a detailed formal introduction to the topic of typed attributed graph transformation, the reader
is referred to [7, 8].

In order to further restrict the visual sentences of a VL to valid visual models, a syntax graph gram-
mar GG is defined. It consists of a start graph and a set of language-generating graph transformation
rules that describe editing operations leading to the construction of valid visual models only. The
rule insertArc in Fig. 1 is an example for a syntax rule from the syntax grammar defining the VL of
Petri nets. A complete VL specification V Lspec = (ATGV L, GG) is given by a VL alphabet ATGV L

together with a syntax grammar GG. Please note that in metamodeling, the restriction of the set of
possible metamodel instances to valid models is done in a declarative way by using OCL constraints.

Not only visual language specification but also model transformations between visual languages can
be constructed by graph transformation rules. For this purpose the abstract syntax graph of a source
model is transformed by applying transformation rules resulting in the abstract syntax graph of the
target model.

The abstract syntax graphs of the source models can be specified by all (or a subset of) instance
graphs over a type graph ATGS . Correspondingly, the abstract syntax graphs of the target models are
specified by all (or a subset of) instance graphs over a type graph ATGT . A model transformation based
on graph transformation is defined by an attributed graph transformation system GTS = (ATG, P)
consisting of an attributed type graph ATG and a set of model transformation rules P typed over
ATG, where both type graphs ATGS and ATGT have to be subgraphs of type graph ATG (see Fig. 2).
The model transformation starts with graph AGS typed over ATGS . As ATGS is a subgraph of ATG,
AGS is also typed over ATG. During the model transformation process the intermediate graphs are all
typed over ATG. Please note that this type graph may contain not only ATGS and ATGT , but also
additional types and relations which are needed for the transformation process.

After application of the model transformation rules P the resulting graph AGn is typed over ATG,
but not yet over the type graph ATGT of the target language. In order to delete all items in AGn

which are not typed over ATGT we can either provide corresponding deletion rules or apply a restriction
construction, which deletes all these items in one step. In this paper we use the restriction construction.
The model transformation process is visualized in Fig. 2, where the data types for node and edge
attributes are preserved during the process.

ATGS
� � incS // ATG ATGT

? _
incToo

AGS

typeAGS

OO

p1 +3 ... pn +3 AGn

typeAGn

OO

AGT

typeAGT

OO

oo

Figure 2: Typing in the Model Transformation Process

The model transformation MT : V LS → V LT is executed in this way: for each AGS ∈ V LS first
the rules P of the typed attributed graph transformation system GTS = (ATG, P) are applied leading
to a graph AGn typed over ATG and then AGn is restricted to the type graph ATGT resulting in
AGT .

For general correctness requirements of model transformations based on graph transformation we
refer to [5], for our model transformation from activity diagrams to Petri nets they will be discussed
and analysed in Section 4.

3. Construction of a Model Transformation from Activity Diagrams to Petri Nets

In this section we present the construction for a model transformation between a simple version of UML
Activity Diagrams given as the source language and Petri Nets given as the target language.

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

Petrinets: Current Research Topics and their Application in Traffic Safety and Automation Engineering 3 - 3

3.1 The Source and Target Languages

The source language alphabet for simple activity diagrams contains two kinds of symbol types, activities
and next-relations. Next-relations begin and end at activities. Activities can be of different kinds, i.e.
simple activities, start and end nodes as well as decision nodes. Simple activities are usually inscribed by
their names. Moreover, next-relations may have inscriptions which are used to formulate conditions for
decisions. The activity kind, the name and the conditions are given as attributes of the corresponding
symbol types. The type graph of the activity diagram language is shown in the left-hand side of Fig. 3,
where the numbers at the edge ends define multiplicities.

Figure 3: Model Transformation Type Graph ATG

Fig. 4 shows a sample source activity diagram for the model transformation, typed over the activity
diagram type graph, both in its concrete and abstract syntax. The diagram describes the activities for
the dispatching of a train. It is a slightly simplified version of the activity diagram given in [17].

Figure 4: Activity Diagram for the Train Dispatcher: Concrete and Abstract Syntax

The first activity of the dispatcher is to choose a train, otherwise the whole dispatching is finished.
Then after computing the feasable tracks, the dispatcher chooses one. If there is no feasable track, the
train is delayed at the current location. Otherwise there is a check for the blockage of the line. If the

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

Petrinets: Current Research Topics and their Application in Traffic Safety and Automation Engineering 3 - 4

line is blocked, the train is delayed at the current location as well. Else the train proceeds to the chosen
location. After the system state has been updated, the dispatching process may start again.

The syntax rules for simple activity diagrams decide important aspects of the visual language, e.g.
the number of start and end activities which are allowed in one diagram. Our variant of simple activity
diagrams allows only one start and one end activity. This is realized in the syntax grammar (see Fig. 5)
by defining an activity diagram as start graph which consists of exactly one start and one end activity,
connected by a next-relation. As none of the syntax rules adds or deletes start or end activities, their
number will always be fixed to one each. The syntax rules shown in Fig. 5 allow the insertion of simple
activities or decisions. There the cases are treated that a decision either leads to two simple states
or to one simple state and to the final state. Moreover, two simple activities can be joined, and an
activity can be relinked by a next-relation to another activity. The NAC of rule JoinActivities ensures
that two branches of one decision cannot be merged. Please note that we can apply a rule only if
the transformation does not leave dangling edges. Hence, rule JoinActivities is applicable only if the
activity that is deleted has exactly one predecessor and one successor activity.

Activity
kind=start

Activity
kind=end

Next
inscription=““

begin

end

Start Graph

2:Next

begin

2:Next

begin

begin

Next
inscription=““

Activity
kind=“simple“
name=Aname

end

L

R

(k == simple) || (k == start)

1:Activity
kind=k

1:Activity
kind=k

InsertSimpleActivity
(Aname)

1:Activity
kind=“simple“

3:Activity
kind=end

2:Next

begin

end

1:Activity
kind=“simple“

Activity
kind=“decision“

2:Nextbegin

end

3:Activity
kind=“end“

Activity
kind=“simple“
name=Aname

Next
inscription=inscrS

Next
inscription=inscrF

Next
inscription=““

begin begin

end end

endbegin

InsDecisionF (Aname,inscrS,inscrF)

L R

1:Activity
kind=simple

3:Activity
kind=end

2:Next

begin

end

1:Activity
kind=simple

Activity
kind=“decision“

2:Nextbegin

Activity
kind=“simple“

name=Aname2

Activity
kind=“simple“

name=Aname1

Next
inscription=inscr1

Next
inscription=inscr2

Next
inscription=““

begin begin

end end

end

begin

InsDecisionS
(Aname1, Aname2,

inscr1,inscr2)

L

R

Next
inscription=““

3:Activity
kind=“end“

begin

end

1:Activity
kind=“simple“

Activity
kind=“simple“

3:Next
end

4:Next
end

2:Next end Nextend
3:Activity

kind=“end“

begin begin

1:Activity
kind=“simple“

3:Next
end

4:Next

end

2:Next end
3:Activity
kind=end

begin

JoinActivities

L R

1:Activity
kind=simple

2:Activity
kind=simple

2:Next
end

4:Next
end

3:Activity
kind=end

begin

CycleL

Activity
kind=decisionbegin begin

1:Activity
kind=simple

2:Activity
kind=simple

2:Next end

4:Nextend
3:Activity
kind=end

begin
R

end

Figure 5: Syntax Grammar for Simple Activity Diagrams

The activity diagram for the train dispatcher has been created by applying the syntax rules Insert-
SimpleActivity(“Choose Train”), InsDecisionF(“Get Set of Tracks”, “[train chosen]”,“[no train cho-
sen]”), InsertSimpleActivity(“Choose Track”), InsDecisionS(“Delay Train”,“Check for Blockage”,“[no
track found]”, “[track found]”), InsDecisionS(“Delay2”,“Train Goes to Track”,“[line blocked]”, “[line
not blocked]”), JoinActivities (which is applied to the simple activities Delay Train and Delay2),
InsSimpleActivity(“Update System State”), InsSimpleActivity(“Up2”), (after activity Train Goes to
Track), JoinActivities (applied to Update System State and Up2), and, finally, Cycle (applied to Up-
date System State and InsertSimpleActivity(“Choose Train”).

The alphabet for the Petri net target language contains the symbol types Place and Transition for
the Petri net nodes, ArcPT for Petri net arcs from a place to a transition and ArcTP for arcs from
a transition to a place. The arcs are connected to the respective source and target nodes by links of
type arcPTsource, arcPTtarget, arcTPsource and arcTPtarget. Attributes are used for names of places
and transitions and for the arc inscriptions. The type graph of the Petri net language is shown in the
right-hand side of Fig. 3.

Petri net places model passive system parts (e.g., buffers and files), whereas transitions describe
process activities. Thus, our model transformation maps activities to transitions and next-relations to
places in between. The places can hold at most one token each, thus the token just shows how far

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

Petrinets: Current Research Topics and their Application in Traffic Safety and Automation Engineering 3 - 5

the process has reached. Petri nets of this special kind are called elementary or condition-event nets.
Decision activities are translated to two transitions, one for each possible decision branch. To each
of these transitions, an additional predomain place is assigned. The marking of this place models the
evaluation of the corresponding guard to “true”.

Fig. 6 shows the result of the model transformation transforming the activity diagram in Fig. 4 to
a Petri net in the concrete syntax (the left-hand side) and in its abstract syntax (the right-hand side).

Figure 6: Petri Net for the Train Dispatcher: Concrete and Abstract Syntax

The model transformation type graph ATG (the complete graph shown in Fig. 3) is defined by
the union of the source and target language alphabets plus two reference nodes. The adjacent arcs of
these nodes connect the corresponding symbol types of both alphabets, i.e. activities to transitions and
next-relations to places.

3.2 The Model Transformation Rules

The model transformation rules are defined by a graph transformation system typed over ATG in
Fig. 3. Starting with the start graph in Fig. 4, the consecutive application of the model transformation
rules results in the abstract syntax graph of the target diagram.

The following screenshots of the model transformation rules in Fig. 7 contain three graphs each (a
negative application condition NAC, the left-hand side LHS and the right-hand side RHS of the rule).
The NAC is present for each model transformation rule to ensure that Petri net elements are generated
only once for each element of the activity diagram. The model transformation rules are structured in
two layers for controlled rule application. Layer 0 contains the rules which create nodes: createStart,
createSimpleAct, createEnd, createEndPlace and createDecision; the remaining rules createEndArc, and
createArc insert arcs between nodes are in layer 1. Starting with layer 0, rules of the current layer are
applied as long as possible. After the termination of all rules in the current layer the transformation
continues with the next layer.

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

Petrinets: Current Research Topics and their Application in Traffic Safety and Automation Engineering 3 - 6

Figure 7: Model Transformation Rules to transform Activity Diagrams to Petri Nets

The first rule createStart of layer 0 translates the start activity into a place named “Start” connected
to a transition. Simple and end activities are translated by the rules createSimpleAct and createEnd

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

Petrinets: Current Research Topics and their Application in Traffic Safety and Automation Engineering 3 - 7

to a Place and a Transition connected via an ArcPT. In addition, the final Place corresponding to
the end activity is created by the rule createEndPlace. The rule createDecision translates a decision
activity into the corresponding Petri subnet, containing two input Places to be used for controlling the
decision application e.g. during simulation. Finally, layer 1 inserts the corresponding ArcTPs via the
rules createEndArc and createArc. The rule createArc contains two additional NACs (NAC2,NAC3)
depicted in Fig. 7 which ensure that the corresponding ArcTP may only be inserted once between the
corresponding Place and Transition of the Petri decision subnet.

To delete all source and reference items, we use a restriction construction, resulting in a target graph
typed over the target language.

4. Correctness Analysis of the Model Transformation

As pointed out in the introduction we want to show that our model transformation MT : V LS → V LT

constructed in Section 3 is correct in the following sense:
The model transformation construction terminates, is confluent and syntactically correct. Moreover,

we discuss briefly semantical correctness.

4.1 Termination

In [6] we have presented termination criteria for layered graph transformation systems, which have been
extended in [7] to layered typed attributed graph transformation systems. These criteria have been
verified for our model transformation in Section 3 using the termination checker in AGG.

4.2 Confluence

Confluence of model transformation means that the rules in each layer are confluent. In order to
show confluence it is sufficient to have termination and local confluence, i.e. for each pair of direct
transformations H1

p1,m1⇐= G
p2,m2=⇒ H2 there exists a graph X and a pair of transformations H1

∗=⇒
X

∗⇐= H2. Termination and local confluence implies functional behavior of the model transformation,
i.e. for each AGS ∈ V LS there is a unique result AGT s.t. MT (AGS) = AGT . For the model
transformation rules in Fig. 7 we are able to show that for each layer there are no essential critical
pairs. This means that for each pair of direct transformations H1

p1,m1⇐= G
p2,m2=⇒ H2 we have either

G
p1,m1=⇒ H1 = G

p2,m2=⇒ H2 or the pair is parallel independent, such that the Local-Church Rosser Theorem
implies local confluence. We have to admit, however, that a correctness proof for the calculation of
critical pairs for rulse with NACs in AGG is still missing. If there would be critical pairs one would
have to show strict confluence of these critical pairs in order to obtain local confluence (see [6, 7]). This
result, however, has been shown up to now only for rules without NACs.

4.3 Syntactical Correctness

It remains to show that the model transformation is syntactically correct, i.e. for each AGS ∈ V LS we
have MT (AGS) = AGT ∈ V LT . Together with termination and confluence this implies that MT is
a (total) function MT : V LS → V LT . By restriction construction AGT is typed already over AGTT .
But not all graphs G typed over AGTT are Petri nets. We need to show in addition the constraint that
there is at most one arc from each place to each transition and from each transition to each place. This
can be concluded from the fact that in AGS ∈ V LS there is at most one begin edge from an activity
to a next node, and at most one end edge from a next to an activity node and – due to the NACs –
each of the rules in Fig. 7 can be applied at most once for the same pair of activity and next nodes.

4.4 Semantical Correctness

For our source and target language V LS and V LT we have given no explicit semantics up to now.
But for the target language V LT of Petri nets there is a well-defined formal semantics given by the
token game and the corresponding marking graph. This allows to define for each activity diagram
AGS ∈ V LS as semantics the marking graph of AGT = MT (AGS). Moreover, it would make sense
to extend the model transformation by constructing a suitable initial marking for AGT = MT (AGS)
s.t. the semantics might be given by the reachability graph. In both case we have trivial semantical
correctness of the model transformation by construction.

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

Petrinets: Current Research Topics and their Application in Traffic Safety and Automation Engineering 3 - 8

On the other hand an explicit operational semantics for activity diagrams could be given by a
simulation graph grammar based on the abstract syntax graph of activity diagrams. Similarily the
token game of Petri nets can be expressed by a simulation graph grammar. In this case semantical
correctness of the model transformation would mean that for each simulation step in AGS there is a
corresponding simulation step in AGT . For basic ideas concerning semantical correctness criteria we
refer to our paper [5].

5. Conclusion

In this paper we have shown how to construct a model transformation from activity diagrams to Petri
nets using typed attributed graph transformation. The source language, a simple version of UML
activity diagrams, is defined by a generating attributed graph grammar typed over ATGS , the target
language of Petri nets by an attributed type graph ATGT with constraints and the model transformation
by an attributed graph transformation system typed over an attributed type graph ATG which includes
ATGS and ATGT . Moreover, we have verified that our model transformation has functional behavior
and is syntactically correct. In our papers [5, 9] we have given already an overview concerning formal
concepts for model transformations based on typed attributed graph transformation and how to use
the AGG and Tiger environment to support the implementation of model transformation. These
techniques have been applied for our model transformation in this paper.

There are several aspects how to extend and use this kind of model transformations. First of all
we could consider more general activity diagrams in the sense of UML 2.0 by extending the generating
graph grammar and the source attributed type graph ATGS . Secondly we may generate Petri nets
with initial marking corresponding to the begin of an activity and the choice for decisions, where the
choice is triggered by the environment. The choice of Petri nets as target language allows the definition
of the semantics of the source language via the model transformation and the semantics of the target
language. In a similar way we can use well-known analysis and verification techniques for Petri nets to
analyse and verify activity diagrams or other semiformal source languages which usually lack explicit
analysis and verification techniques. So, in principle it is possible to use one of the many Petri net tools
(see [15]) for invariant or deadlock analysis, model checking or code generation among others.

References

[1] AGG Homepage. http://tfs.cs.tu-berlin.de/agg.

[2] R. Bardohl, G. Taentzer, M. Minas, and A. Schürr. Application of Graph Transformation to
Visual Languages. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, Handbook
of Graph Grammars and Computing by Graph Transformation, Volume 2: Applications, Languages
and Tools. World Scientific, 1999.

[3] J. de Lara and H. Vangheluwe. Computer Aided Multi-Paradigm Modelling to Process Petri-Nets
and Statecharts. In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Proc. 1st
Int. Conf. on Graph Transformation (ICGT 2002), volume 2505 of LNCS, pages 239–253. Springer,
2002.

[4] Eclipse Consortium. Eclipse – Version 2.1.3, 2004. http://www.eclipse.org.

[5] H. Ehrig and K. Ehrig. Overview of Formal Concepts for Model Transformations based on Typed
Attributed Graph Transformation. In Proc. International Workshop on Graph and Model Trans-
formation (GraMoT’05), ENTCS, Tallinn, Estonia, September 2005. Elsevier Science.

[6] H. Ehrig, K. Ehrig, J. de Lara, G. Taentzer, D. Varró, and S. Varró-Gyapay. Termination criteria
for model transformation. In M. Wermelinger and T. Margaria-Steffen, editors, Proc. Fundamental
Approaches to Software Engineering (FASE), volume 2984 of LNCS, pages 214–228. Springer, 2005.

[7] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Transformation.
EATCS Monographs in Theoretical Computer Science. Springer, 2006. to appear.

[8] H. Ehrig, U. Prange, and G. Taentzer. Fundamental theory for typed attributed graph transfor-
mation. In F. Parisi-Presicce, P. Bottoni, and G. Engels, editors, Proc. 2nd Int. Conference on
Graph Transformation (ICGT’04), Rome, Italy, volume 3256 of LNCS. Springer, 2004.

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

Petrinets: Current Research Topics and their Application in Traffic Safety and Automation Engineering 3 - 9

[9] K. Ehrig, C. Ermel, and S. Hänsgen. Towards Model Transformation in Generated Eclipse Editor
Plug-Ins. In Proc. International Workshop on Graph and Model Transformation (GraMoT’05),
ENTCS, Tallinn, Estonia, September 2005. Elsevier Science.

[10] A. Habel, R. Heckel, and G. Taentzer. Graph Grammars with Negative Application Conditions.
Special issue of Fundamenta Informaticae, 26(3,4):287–313, 1996.

[11] R. Heckel, J. Küster, and G. Taentzer. Confluence of Typed Attributed Graph Transformation
with Constraints. In A. Corradini, H. Ehrig, H.-J. Kreowski, and Rozenberg. G., editors, Proc. of
1st Int. Conference on Graph Transformation, volume 2505 of LNCS. Springer, 2002.

[12] R. Heckel, J. Küster, and G. Taentzer. Towards Automatic Translation of UML Models into
Semantic Domains . In H.-J. Kreowski, editor, Proc. of APPLIGRAPH Workshop on Applied
Graph Transformation (AGT 2002), pages 11 – 22, 2002.

[13] Object Management Group. UML 2.0 OCL Specification, 2003. http://www.omg.org/docs/ptc/
03-10-14.pdf.

[14] Object Management Group. Meta-Object Facility (MOF), Version 1.4, 2005. http://www.omg.
org/technology/documents/formal/mof.htm.

[15] Petri Nets World. Petri Net Tools and Software, 2005. http://www.informatik.uni-hamburg.
de/TGI/PetriNets/tools/.

[16] W. Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoretical Computer Science. Springer
Verlag, 1985.

[17] M. Rondon and F. Gomide. Line block analysis in railway dispatch and simulation systems. In
E. Schnieder and U. Becker, editors, Proc. 9th IFAC Symposium on Transportation Systems, pages
405–409, 2000.

[18] G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Validation of Soft-
ware. In J. Pfaltz, M. Nagl, and B. Boehlen, editors, Application of Graph Transformations with
Industrial Relevance (AGTIVE’03), volume 3062 of LNCS, pages 446 – 456. Springer, 2004.

[19] Tiger Project Team, Technical University of Berlin. Tiger: Generating Visual Environments in
Eclipse, 2005. http://www.tfs.cs.tu-berlin.de/tigerprj.

[20] Unified Modeling Language: Superstructure – Version 2.0, 2004. Revised Final Adopted Specifi-
cation, ptc/04-10-02, http://www.omg.org/cgi-bin/doc?ptc/2004-10-02.

[21] D. Varró, G. Varró, and A. Pataricza. Designing the Automatic Transformation of Visual Lan-
guages. Journal Science of Computer Programming, 44(2):205–227, 2002.

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

Petrinets: Current Research Topics and their Application in Traffic Safety and Automation Engineering 3 - 10

