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Abstract. In this contribution a model for the spatiotemporal dynamics of the thermal fusing process in
electro photographic printing is derived. The model is a dynamical system consisting of two hyperbolic
partial differential equations (PDEs) for the temperature and moisture content of the paper web. In
the following the Method of Characteristics and the geometrical interpretation of a first order PDE is
employed as a vital tool to simulate different control strategies with high accuracy and determine the
state of the paper web during launching of the printing machine and transient steps in the process.

1 Introduction
Xerographic images are composed of numerous toner particles deposited on well defined locations on paper by
control of adhesive forces. When the toner is first transferred from the photo conductor to paper, it adheres to the
paper fibers because of electrostatic and dispersion forces [5, 11]. In this condition the image is easily rubbed off
by the slightest contact with another surface, so the image must be fixed permanently to the paper substrate. In
the process at hand the toner is fused to the paper and the energy required for this thermal activated process is
transfered to the surface by radiation. Due to events taking place further upstream, the fusing process cannot be
operated continuous, in fact the way of processing is semi-batch: A certain amount of paper is carried through the
domain at a constant pace, before the process stops. During the break, already fused paper elements are drawn
back into the machine. At the end of the break, the paper web is accelerated in the direction of processing and
finally the velocity returns to a constant pace and the process operates at steady state until the next break is required
[5].

The contribution is separated into two parts: i) The deviation of a process model and ii) the presentation of a
method for simulation, which is tailored for nonlinear, time variant transport processes such as the thermal fusing
process in electro photographic printing.

First the modeling procedure is taken into consideration. A process model is required as a basis for simulation,
identification and evaluation of different control strategies. A model will be derived from first principles, here the
conservation of energy and the conservation of mass. Particular attention is given to the different mechanisms of
heat transfer and mass transfer dominating the process, especially the evaporation of water, which is found in the
capillaries of the paper web, and the radiant intensity of the emitting surfaces, which depends on the spatial variable
[1, 6]. Once a model has been derived the steady state solution will be studied and a set-point or control objective
formulated. Matters are complicated by the fact that the parameters are not lumped, but distributed in the system’s
domain. The resulting model consists of two hyperbolic partial differential equations (PDEs). From the control
engineers point of view, the process is a distributed parameter system with the action of the manipulated variables
not taking effect on the boundary conditions, but being distributed in the domain. Furthermore the coefficient of
the spatial differential operator, namely the process velocity, depends on time. This fact poses difficulties for the
design of a controller as well as for simulation of the process: The deviation from the steady state process velocity
is of an extend, s. t. a linearization can not longer be justified.

In the second part of the paper a method for simulation of the nonlinear transport equations is presented, which is
capable of dealing with time varying coefficients in the main part of the PDEs. Dynamical systems described by
hyperbolic PDEs have some characteristic properties which are desired to be preserved in simulation of the process.
First, their impulse response settles in a finite time. Secondly the eigenvalues of the spatial modes of the spatial
differential operator cluster at minus infinity, which essentially means that each mode contributes an equal amount
of energy to the impulse response [2]: Reducing the order of the system by neglecting fast modes is impossible.
This is the reason why simulation methods, that have become the industrial standard, like Discretization on Finite
Elements, Finite Differences or Finite Volumes do not predict the evolution of the system satisfactorily: Lumping
of the parameters leads to a finite dimensional system whose impulse response settles in infinite time and whose
poles are distinguishable from each other. Thus the lumped parameter system has slow and fast parts that may be
neglected. Since the process velocity can vary in sign, large difficulties are encountered even if one wants to apply
Discretization on Finite Volumes, a lumping technique suitable for transport processes: At some point in time
the boundary condition on a different part of the domain must be provided. To overcome the difficulties arising
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with discretization and preserve the characteristic dynamics of the system, the Method of Characteristics and the
geometrical interpretation of a first order PDE is applied to simulate the plant output and the distribution of the
state variables in the domain [3]. It will be shown, that this method preserves the characteristic dynamics of the
system and does require less numerical effort than classical lumping techniques. To illustrate the effectiveness of
the simulation method, the current control configuration of the plant is simulated and as a part of the conclusions,
based on the prediction of the model, possible improvements are discussed.

2 Conservation of Mass and Energy

Figure 1: The electro photographic printing process. From left to right: Cooling of the paper web, fusing of the toner and
deposition of the particles. The paper web is displayed as a red band being guided and transported through the process
by rolls. The steady state direction of processing is from right to left.

In the following thermodynamical aspects of the fusing process are taken into consideration. The process is
schematically displayed in figure 1. The quality of the fused image is determined by the adhesive forces gen-
erated between paper and particles and the gloss of the image. Both are physical quantities, which depend on the
temperature of the paper web. Experience shows, that the quality of the fused image is satisfying, if each (differ-
ential) paper element leaves the fusing apparatus with a desired outlet temperature. Since paper is a hygroscopic
matter, it contains water, which is evaporated during the fusing process. The energy required to evaporate water,
which is found in the capillaries of the paper web, must be tranfered to the web by convective and radiant heat
transfer. This process cannot be avoided and the evaporation of water thus becomes a sink of energy and mass. In
order to obtain equations describing the fusing process, the first law of thermodynamics is applied to a differential
control volume found at an arbitrary location in the fusing apparatus. The thickness of the web dP is much smaller
than its length and with, thus conduction of heat in this direction can be neglected. Conservation of energy applied
to the control volume yields:

ρP · cP ·
∂T
∂ t

= λP ·

(
∂ 2T

∂ z2
1

+
∂ 2T

∂ z2
2

)
− v(t) ·ρP · cP ·

∂T
∂ z1

−
2 ·α
dP

· (T −T∞(t,z1,z2))+

12

∑
i=1

2 · ε
dP

· fV F,i(z1,z2,u) ·
(
T 4

E,i −T 4)− 2 ·β ·ρP

dp
· (X −X∗(T )) ·ΔHEvap (1)

The first term on the RHS of the above equation describes conductive heat transfer in accordance with Fouriert’s
Law and the second one denotes the amount of heat being transported throgh the domain with velocity v(t). Since
the Peclet-Number Pe = vs ·L ·ρP ·cP ·λ−1, with the steady state process velocity vs, is much larger than 1, Pe � 1,
conduction can be neglected. The third therm on the RHS denotes convective heat exchange with the environmental
temperature T∞(t,z1,z2) ≈ T∞(z1),

T∞(z1) =

⎧⎨⎩ T0 , z < 0
Tenv , 0 ≤ z ≤ L

T0 , z > L
(2)

in different subdomains. Inside the fusing appatus the environmental temperature is equal to Tenv; before this step
in the printing process and inside the the cooling T∞(z1) = T0. The amount of heat exchanged depends on α , the
transfer coefficient. It is assumed to depend on the process velocity, as derived in [1, 6]. The amount of radiant
energy being exchanged with emitting surfaces having the temperature TE,i is described by the fourth term on the
RHS. fV F,i(z1,z2,u) is the viewfactor of the differential element. It can be derived from the relative orientation of
both the emitter surface i and the location of the differential paper element [7]. The emitters are arranged as shown
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in figure 2 at a distance H above and below the web. The view factor is given by the following intergral:

fV F,i(z1,z2,u) =

∫ ∫

SEmitter,i(u)

(
H

H2 +(z1 − zE,1)
2 +(z2 − zE,2)

2

)2

dzE,1 dzE,2 (3)

SEmitter,i(u) is the surface of the emitter i. A closed form of the solution does not exist and the integral must
be evaluated by numerical quadrature. The emitting surfaces can be covered by a curtain, which implies, that,
depending on how far the curtain is opened, their viewfactor takes different values. u is the length of the emitting
surfaces, that is uncovered (see figure 2). ε is the emission coefficient and is assumed to be constant for all emitting
surfaces. ε is determined using the following formula:

ε = σ ·
εP · εE

1− (1− εE) · (1− εP)
(4)

which is derived by tracing a ray that is sequently absorbed and reflected at the paper and emitter surface [7].
εP and εE are the emission coefficients of the paper surface and the emitter respectively. Note that the emission
coefficient εP depends on the image to be printed: Different colours and most of all the particle population density
on the web have large effects on this coefficient. Note that the viewfactor is equal to zero everywhere outside the
fusing apparatus. The viewfactors are bell-shaped surfaces and can be interpreted as the density of energy arriving
at the surface of the paper web as a function of the spatial variables z1, z2 and the position of the curtain u(t).

u ∈ [umin , umax]
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Figure 2: Configuration of emitters and paper surface inside the fusing apparatus. The location of the sensor is found at
the end of the apparatus and the at the center of the paper web, z1,out = L and z2,out = WPaper/2. When u = umin = 0, the
emitters are completely covered by the curtain and exchange of radiant energy with the emitting surfaces is impossible.
When u = umax, the emitters are completely exposed.

The last term of the RHS of the PDE describes how much energy is consumed by the evaporation of water.
The mount of water evaporated is proportional to the difference between the current moisture content X and the
equilibrium moisture content X∗(T ), which depends on the temperature. Instead of moles, in industrial drying it
is usual to use the load X which has units of [kg] water per [kg] paper [9]. The equilibrium moisture content is
approximated as follows [8]:

X∗(T ) = X0 · exp(−A · (T −T0)) (5)

The energy consumed by evaporation of water is simply the product of the amount of water evaporated and the
enthalpy of evaporation ΔHEvap [9]. A mass balance applied to the differential control volume results in the
following PDE for the moisture content of the paper web:

∂X
∂ t

= D ·

(
∂ 2X

∂ z2
1

+
∂ 2X

∂ z2
2

)
− v(t) ·

∂X
∂ z1

−
2 ·β
dp

· (X −X∗(T )) (6)

The first term on the RHS of the above PDE denotes diffusive transport of moisture inside the web and the second
one denotes transport of moisture due to processing of the paper web with velocity v(t). The last term on the
RHS of the above equation describes, how much moisture is discharged or taken up due to the difference between
equilibrium moisture content X∗ and moisture content X at the position z1, z2 and point in time t. The mass flow
is proportional to a transfer coefficient β . Since the Bodenstein-Number Bo = vs ·L ·D−1 is much larger than 1,
Bo � 1, diffusion of water can be neglected. Choosing z := z1, x1 := T , x2 := X , u0 := u, ui := TE,i and d := T∞(z1)
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and after neglecting diffusive heat and mass transfer, one finally arrives at the following nonlinear, time variant
system of first order PDEs:

∂x1

∂ t
+ v(t) ·

∂x1

∂ z
= α · (d(z)− x1)+

12

∑
i=1

ε · fV F,i(z,z2,outu0) ·
(
u4

i − x4
1
)
−β · (x2 −X∗(x1)) ·

ΔHEvap

cP

∂x2

∂ t
+ v(t) ·

∂x2

∂ z
= −β · (x2 −X∗(x1)) (7)

z ∈ R, t ∈ [ 0 , ∞ ) denotes the spatial variable and time, x =
[

x1 x2
]
∈ H

[
R , R2

]
denotes the state vector

functions; H is an infinite dimensional Hilbert space of 2-dimensional vector functions defined on R. Note that
the process parameters α , ε , β have been rewritten for the sake of convenience. The viewfactor is evaluated with
z1 = z and the output location z2 = z2,out = WPaper/2. At z =−∞ the temperature and moisture content of the paper
web is equal to T0 and X0 respectively. The initial distribution of temperature and moisture content is equal to

x1(t = 0,z,z2,out) = g1(z) x2(t = 0,z,z2,out) = g2(z) (8)

The plant output is given by

y(t) = x1(t,z = L,z2 = z2,out) (9)

Remark. By neglecting diffusive heat and mass transfer the second order system of partial differential equations
has been reduced to a first order system, in which z2 is a paramter appearing in the viewfactor only. One is primarily
interested in the distribution of temperature in the direction of processing at the sensor location, because that
particular temperature is fed back to the control algorithm. Thus one arrives at a hyperbolic distributed parameter
system with the states x1, x2 being distributed in one space dimension. The second spatial variable z2 is only a
parameter, that may be varied. As a consequence, in the model, no heat is exchanged between neighbouring points,
only transport in the z1 = z-direction occurs. In the following z2 is dropped and x(t,z,z2) := x(t,z), y(t) = x1(t,z =
L).

3 Method of Characteristics
The Method of Characteristics is a solution method for first order PDEs which is built on the geometric interpreta-
tion of the underlying equations [3]. For purpose of illustration consider the following scalar PDE with boundary
and initial conditions

∂t · x+ v(t) ·∂z · x− f (x,z, t) = 0 x(t = 0,z) = g(z) , x(t,z = 0) = xb(t) (10)

z ∈ Ω ⊆ R =
[

0 L
]
, t ∈ [ 0 , ∞ ) and x ∈ H [Ω , R]. The PDE can be rewritten as follows:

[
1 v(t) f (x,z, t)

]
·

⎡⎣ ∂t · x
∂z · x
−1

⎤⎦= 0 (11)

These two vectors are orthogonal to each other since their scalar product is equal to zero. The solution of the PDE
can be interpreted as a surface in the space spanned by the independent variable x and the independent variables
t and z. The solution is x = x(t,z). Now consider the function F(x, t,z) = x(t,z)− x = 0. The gradient of this

function is ∇ ·F =
[

∂t ∂z ∂x
]T

·F =
[

∂t · x ∂z · x −1
]T

. Using this result, one finds, that the following
must be true[

1 v(t) f (x,z, t)
]
·∇ ·F = 0 (12)

Since the gradient of F is normal to the graph of F in each point in the solution surface, from the equation above
one concludes that the vector

[
1 v f (x,z, t)

]
must be tangent to F . Now one can search for curves called the

Characteristic Curves C =
[

t(s) z(s) x(s)
]
, parametrized by s∈ I ⊆R, whose tangent in each point coincides

with the vector
[

1 v(t) f (x,z, t)
]
. The tangent of the curve must thus be equal to

dt
ds

= 1
dz
ds

= v(t)
dx
ds

= f (x, t,z) (13)

Since ds = dt, the Characteristic Curves can be directly parametrized by time t. A point in the solution surface
x = x(t,z) can be found by integrating the set of ordinary differential equations (ODEs) above with appropriate
initial conditions, which are z(t = 0) = z0 and x(t = 0) = g(z0). The thermal fusing process is described by a set
of two coupled PDEs, both having the same main part. The characteristic ODEs associated with that set of PDEs
are

dt
ds

= 1
dz
ds

= v(t)
dx
ds

= f(x,z, t) (14)
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The projection of the Characteristic Curves into the
[

t z
]
-plane are the solutions to the first two of the above set

of ODEs and can be interpreted as the solution of the equation of motion for a differential element. As an example,
the trajectories of a certain number of the ∞ many points traveling through the domain of interest in the thermal
fusing process are display in figure 3. The fact that the state of each point can be tracked by integrating the char-
acteristic ODEs with appropriate initial conditions implies that each point evolves in time completely decoupled
from neighboring points. This is the case when pure transport through the domain occurs. The time required for
the impulse response to settle is equal to the time required for that one point traveling through the domain which
can be found at z = 0, when t = t0, the point in time when the impulse is applied. This property is reflected by
the Method of Characteristics. By Discretization of the transport equations on Finite Elements, Volumes or Differ-
ences a connectivity between neighboring points is introduced, which is not present in the underlying equations.
Hence, the characteristic dynamics of hyperbolic dynamical systems are lost due to lumping of the parameters.

4 Characteristics Based Simulation of Hyperbolic Plants
Using the proposed method, the output of the plant as well as the distribution of the state variables in the domain
will be simulated. In the following it is assumed, that the course of the process velocity is known a priori. Then
the equation of motion of a single point can be solved:

z(t = t0 +Δt) = z(t0)+

t0+Δt∫

t0

v(τ) dτ (15)

Here t0 is a point time for which the distribution of the state variables is known: x(t = t0,z) = g(z) and Δt is
a time step chosen much smaller than the residence time of a differential element in the domain of interest. In
simulation, the inputs of the plant are held constant over the time period Δt. In order to determine the value of
the state variables at the output location z = L and the point in time t = t0 +Δt, one has to integrate the remaining
characteristic ODEs with the appropriate initial conditions:

x(t = t0 +Δt,z = L) = g(z(t = t0))+

t0+Δt∫

t0

f(x,z(τ),τ) dτ (16)

z(t = t0) is determined by setting z(t = t0 + Δt) equal to L and then solving for z(t0) in equation (15). The distri-
bution of the state variables x(t = t0 +Δt,z = L−dz), x(t = t0 +Δt,z = L−2 ·dz), x(t = t0 +Δt,z = L−3 ·dz), ...
is determined by integrating the characteristic ODEs with initial conditions g(z(t = t0)−dz), g(z(t = t0)−2 ·dz),
g(z(t = t0)−3 ·dz), ... separately. Since all the points evolve completely uncoupled from each other, this can be
performed with high accuracy. In practice, one is not able to integrate all of the ∞ many sets of ODEs correspond-
ing to the ∞ many points, that can be found in the domain at the point in time t0. Thus one is restricted to solve for
a finite number of N points in the domain. In sequence the distribution of the state variables at the point in time
t = t0 + Δt can be interpolated using cubic splines or a linear interpolation scheme. Once the interpolation object
is created from the state variables at time instant t0 + Δt the simulation can proceed with time instant t0 + 2 ·Δt.
Now one has to update g(z) := x(t0 +Δt,z) using the only recently created interpolation object. Note that when the
process velocity is constant, one can always choose a time step Δt and a spacing s. t. interpolation is not necessary
and thus the accuracy of the simulation is completely unaffected by the grid. In contrast, when Discretization on
Finite Differences, Elements or Volumes is applied, the spacing has to be chosen small enough in order to fulfill
accuracy requirements and numerical stability of the solution [4]. The main drawback of the classical lumping
techniques lies in the fact, that these methods can not be used to simulate transient steps in the printing process.
At a certain point in time, the sign of the process velocity v(t) switches and every point moves in the negative
direction of the spatial variable, as one can see in figure 3. When the classical lumping techniques are used, at
that point in time the boundary condition on the other end of the domain of interest (z = L) must be supplied. By
tracking a finite number of points along their Characteristic Curves one easily overcomes these difficulties.
Remark. In the model for the thermal fusing process, the initial condition g(z) is defined for z ∈ R, the points ar-
rive at −∞ with constant temperature and moisture content. In the numerical treatment the point at which constant
temperature and moisture content is found is chosen to be located at some finite distance upstream. The distance
is chosen to be a multiple of the length L of the domain of interest. The state of that point and its position remains
untouched ∀t. Similar, the points leave at +∞, which in the numerical treatment is approximated by a multiple of
the length L downstream.

5 Simulation of the Thermal Fusing Process
In the following the proposed method for simulation of nonlinear, time variant transport processes is applied to
the thermal fusing process, which is described by the set of PDEs (7) subject to the initial conditions (8) and
boundary conditions imposed at z = −∞ as described above. Initially, the system is assumed to be at steady state;
the process velocity is equal to v(t) = vs. The steady state distributions of temperature x1,s(z) and moisture content
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x2,s(z) are determined by setting the partial derivatives w.r.t time in the set of equations (7) equal to zero and
solving the resulting set of ODEs. The temperature of the emitting surfaces ui(t) = ui,s , i = 1, ...,12 is chosen,
s.t. the plant output y(t) = ys is equal to r. The profiles are displayed in figure 3. The process velocity over the
time interval

[
0 tc

]
takes the course as displayed in figure 3. In the printing process the course is repeated

periodically: The cycle has a period equal to tc. When the process velocity decays to zero and paper is pulled back,
the curtain covers the hot emitting surfaces and prevents the paper web from being incinerated. The temperature of
the emitting surfaces is left constant and equal to ui,s , i = 1, ...,12 during this transient step in the printing process.
The timing of the curtain effects the distribution of temperature and moisture content in the domain Ω×

[
0 tc

]
.

The course of the plant input u0(t), which describes the position of the curtain is shown in figure 3. In figure 4
the distribution of temperature in the domain Ω×

[
0 tc

]
is displayed for the nominal system (constant process

parameters ε = ε∗, β = β ∗, α = α∗). One can see, that paper elements, that have already been cooled, eventually
are pulled back into the fusing apparatus. This causes the outlet temperature to decrease. Before the emitting
surfaces are completely covered by the curtain (u0 = umin), radiant energy is continuously transfered. Thus, paper
elements found at the beginning of the apparatus receive additional thermal energy. Toward the end of the printing
cycle the paper is accelerated into the direction of processing and the process returns to the steady state again (see
figures 3 and 4).

The control objective for the process is to maintain a desired outlet temperature Td = r, when the velocity is
equal to vs. This implies, that the steady state outlet temperature is controlled by manipulating the temperature of
the emitting surfaces ui , i = 1, ...,12. From the projection of the Characteristic Curves into the

[
t z

]
-plane,

displayed in figure 3, it becomes clear, that at tc , 2 · tc , · · · , k · tc the steady state outlet temperature is measured at
z = L. At these points in time, all the disturbances, resulting from the past break in processing, have completely
settled in the domain of interest Ω ⊆ R (see figures 3). In the following two control laws, proportional (P) and
proportional/integral (PI), are simulated assuming ideal actuators TE,i = ui(t) , i = 1, ...,12. Since the objective is
to maintain constant steady state outlet temperature, the sampling time for the control algorithm is equal to tc. The
steady state outlet temperature is measured, compared to r and proportional to the error e(k · tc) = r− x1(k · tc,L)
the emitter temperature is manipulated:

ui(k · tc) = KP · e(k · tc) , i = 1, · · · ,12 (17)

holds for the proportional controller and

ui(k · tc) = KP · e(k · tc)+KI ·

k·tc∫

0

e(τ) dτ , i = 1, · · · ,12 (18)

holds for the controller with integral action. Note that the integral is converted into a sum for implementation. KP
and KI are tuning parameters.

Disturbances of the process can be regarded as fluctuations in the process parameters, most of all the mass transfer
coefficient β and the emission ε as defined in the system of equations (7). β depends on the quality of the paper
web and ε is to a large extent affected by the population density of the toner on the surface of the web and the toner
itself: Black toner absorbs more radiant energy than yellow toner. In the following the reaction of the closed loop
to a step change in ε is studied. At t = 3 · tc the coefficient ε is raised by fifteen percent. This scenario describes
a drastic change in population density of toner on the surface of the paper web. As a consequence, the surface
absorbs more radiant energy and a lower emitter temperature ui(t) is required to maintain a steady state outlet
temperature y(k · tc) = r. The reaction of the closed loop to the disturbance is shown in figure 3 for both control
laws given by equations (17) and (18). In the figure it can be noticed that the pure proportional controller does
have a steady state offset while the controller with integral action manages to adjust the emitter temperature, s.t.
the error decays to zero. In both cases the response of the closed loop is rather sluggish: It takes many printing
cycles for the response to settle.

6 Conclusions
In this contribution a model for the spatiotemporal dynamics of the thermal fusing process in electro photographic
printing has been derived. The process is a non linear, time variant transport process, described by two first
order partial differential equations. The Method of Characteristics and the geometrical interpretation of a first
order PDE is applied to simulate the plant output and the distribution of the state variables in the domain of
interest. The simulation can be performed with high accuracy and little numerical effort. Difficulties associated
with spatial discretization are avoided by tracking a finite number of points and their states (temperature and
moisture content) along the Characteristic Curves, which are dictated by the course of the process velocity. The
simulation allows the process engineer to study and improve the distribution of temperature in the domain of
interest during transient operation of the process. The response of the closed loop to a step change in one of
the important process parameters has been studied. Although optimal tuning of the tuning parameters of the
proportional/integral controller may improve the response, it is expected, that the response of the closed loop can
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Figure 3: Upper Left: Course of process velocity. Upper Right: Projection of the Characteristic Curves in the thermal
fusing process into the domain of interest. The trajectories shown above can be interpreted as the solution of the equation
of motion for some of the ∞ many points traveling through the domain of interest. Center left: Steady state distribution
of temperature and moisture content. Center right: The course of the plant input u0(t), which describes the position of
the curtain. Lower left: Course of the temperature of the emitters TE,i = ui(t) , i = 1, ...,12. Lower right: Course of the
error; a change in the process parameter ε occurs at t = 3 · tc, ε is increased by fifteen percent. As a consequence, the
paper web absorbs more radiant energy and leaves the domain of interest with a larger temperature than desired.
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along that curve. The initial conditions for the Characteristic ODEs (14) are: t(s = 0) = 0, z(s = 0) = 0.3 · L and
x(s = 0) = g(0.3 ·L). Eventually the curve arrives at the sensor location z = L and the temperature x1 at that particular
point on the Characteristic Curve is equal to the plant output at that point in time.

be significantly enhanced by online parameter estimation (estimation of β , ε and α) and feedforward control of
the emitter temperature [10]: Based on the current estimation of the parameters, the emitter temperature, which is
required for the steady state output y(k · tc) to be equal to r, can be taken from a look-up table and fed forward to
the control algorithm.
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Property Comment Unit

A Constant of the equilibrium moisture content K−1

cP Heat capacity of paper J · kg−1 ·K−1

D Diffusion coefficient of water m2 · s−1

dP Thickness of paper web m
e Error K
H Distance above paper web m
KI Constant of the control algorithm s−1

KP Constant of the control algorithm −
L Lenght of apparatus m

LEmitter Length of emitter m
ΔL1 Spacing m
ΔL2 Spacing m

r Set point or control objective K
s Parameter of Characteristic Curve −

Td Desired outlet temperature K
Tenv Environmental temperature in the appartus K
TP Temperature of paper K
T0 Temperature of paper before the apparatus K
T∞ Environmental temperature K
t Time s
tc Processing time s

u0 = u Plant input: Curtain position m
ui i = 1 , · · · , 12, Plant input: Emitter temperature K
v Process velocity m · s−1

vs Steady state process velocity m · s−1

WEmitter Width of emitter m
WPaper Width of paper m

ΔW Spacing m
X0 Nominal moisture content of paper −
X Moisture content −
x1 State variable: Temperature K
x2 State variable: Moisture content −
y Plant output K
z1 Spatial variable m
z2 Spatial variable m

zE,1 Spatial variable m
zE,2 Spatial variable m
α Coefficient for convectice heat exchange (in Eq. (7)) s−1

β Coefficient for mass transfer (in Eq. (7)) s−1

ε Coefficient for radiant heat exchange (in Eq. (7)) s−1 ·K−3

εE Emission of emitter −
εP Emission of paper −
λP Thermal conductivity of paper W ·m−1 ·K−1

ρP Density of paper kg ·m−3

σ Stefan Bolzmann Number W ·m−2 ·K−4

Table 1: List of symbols. For reasons of concealment, numerical values of the physcial properties can be provided upon
approval by OCE Printing Systems and after correspondence with the author.
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