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Abstract. Our final goal of this study is to develop a bicycle riding support system. To develop the
such system, because difficulties to ride bicycle are caused by its non linearity, it is important to consist
of a strict nonlinear model of a bicycle. In this paper using the Projection Method and making out some
appropriate constraint conditions, a way to derive a nonlinear bicycle model on the three-dimansional
space is proposed. Some numerical simultions show the validity of the model.

1 Introduction

The automobile is one of the most familiar vehicle. But, in the recent years, the automobile has a lot of
problems such as the greenhouse gases caused by automobiles, the cost of fuel up and so on. In this situation,
riding a bicycle attracts attentions again as a no-emission vehicle. The bicycle also has many advantages such as
keeping and increasing rider’s health, relief of traffic congestion and energy efficiency. However, since the bicycle
is an unstable system, a certain amount of skill is needed to perform stable riding. Especially, when the speed is
low, its instability is increased. Therefore, riding support systems are needed for elderly people who can’t treadle
by an appropriate force at statring time, so the speed of the bicycle is low. Riding support systems are also needed
for beginners for the same reason like as the elderly people. Many study on two-wheeled vehicles such as bicycles
and electric motorbikes have been done[1][2]. Saguchi[3] has realized stable running on straight-line and curve
motions using a model which is considered the skid of the wheels. Satou[4] has realized stabilizing a bicycle to
control a handle and center of gravity(COG) by an attached cart-mass system. In these conventional studies, since
only stabilizing at the upright position is considered, linear models that are linearized near the operating point is
used. Especially, there is no literature using a model that is considered strict nonlinearity of the bicycle on the
three-dimensional space, so it is difficult to consider stabilizing a bicycle when its speed is low. Therefore, our
final goal of this study is to develop a stable bicycle riding support system using a strict nonlinear model of a
bicycle.

In this paper, to consist of a strict nonlinear bicycle model, the Projection Method[5] is used. Each part of a
wheel, a handle and a frame are modeled as subsystems, and these are connected by appropriate constraint forces
that are not easy to derive. Validity of the model is shown using numerical simulations.

2 Modeling of a bicycle on the three-dimensional space

To derive a model of a bicycle, we assume that the equation of the motion of the wheel on the two-dimensional
plane has already derived by the Projection Method. Fixing the two wheels and the handle by appropriate constraint
conditions that are not easy to derive, the equation of the motion of the bicycle is derived by the Projection Method.

The model of the bicycle is shown in Figure 1 and Figure 2. Parameters of the bicycle is shown in Table 1.
2.1 The generalized coordinates, the generalized velocities and the transform matrix
The generalized coordinates x, and the generalized velocities v, are defined as follows:
Xa = [OF ¢ Wr Ok Or YR O Ou VWn Xy Yu zu
Orkm OrMm WEM  XFM YEM  ZFM }T,
Vg = [ R Wy WO W Oy WOF WR O OH VxH VyH VzH

T
OvrMm Oy OzFM VxEM - VyFM VzFM]
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Figure 1: A bicycle model and its coordinate systems Figure 2: A bicycle model and its coordinate systems
and parameters on 3D-space. and parameters on the lateral plane.
Table 1: The parameter definition
Mass of the front wheel mr[kg] 1.5
Radius of the front wheel rr[m] 0.33
Mass of the rear wheel mpglkg] 1.5
Radius of the rear wheel rr[m] 0.33
Wheelbase Ip[m] 1.07
Mass of the handle my[kg] 1.0
Length of the front fork [p[m] 0.55
Angle of the front fork Op[m] 20.0
Offset of the front wheel rp[m] 0.06
Mass of the frame mrylkg] 16.0
Length from the rear wheel to the frame [p[m] 1.07
Height of the frame [y[m] 0.5
Inertia moment of the front wheel about xr, zp axis || L.r [kg- mz] 0.04
Inertia moment of the front wheel about yg axis Lr kg- mz] 0.08
Inertia moment of the rear wheel about xz, zp axis Lg [kg- mz} 0.04
Inertia moment of the rear wheel about yg axis Lg kg-m? 0.08
Inertia moment of the handle about xy, zp axis Loy [kg-m?] 0.01
Inertia moment of the handle about yy axis Ly [kg-m?] 0.01
Inertia moment of the frame about xgys, zpps axis Loy [kg-m?] 0.81
Inertia moment of the frame about yz), axis Ly [kg- m? 1.62
Transformation matrix between x, and v, was represented as
ro 0 0 1o 0 0 00 0 0
0 0 0 0 1 —tanby 0 00 0 0
0 0 0 0 0 (cosbr)! 0 00 0 0
10 0 0 0 0 0 00 0 0
0 0 0 0 1 0 —tan6p 0 0 0 0
0 0 0 0 0 0 (cosBr)™" 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 —tan6; 0 0 0 0 0 1 0 0
4| 0 0 (osBy)TT 0 0 0 0 00 0 0
‘710 o0 0 0 0 0 0 0 0 cosgy —(cosOysingy)
0 0 0 0 0 0 0 0 0 singy cos @y cos Oy
0 0 0 0 0 0 0 00 0 sin 6y
0 0 0 0 0 0 0 00 0 0
0 0 0 0 0 0 0 00 0 0
0 0 0 0 0 0 0 00 0 0
0 0 0 0 0 0 0 00 0 0
0 0 0 0 0 0 0 00 0 0
Lo o0 0 0 0 0 0 00 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
sin ¢y sin Oy 0 0 0 0 0 0
—(cos¢ysinfy) 0 0 0 0 0 0
cos 6y 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 —tan6ey 0 0 0
0 0 0 (cosBpy)”! 0 0 0
0 0 0 cosPryr  —(cos Oparsin Prar) sin @y in O s
0 0 0 0 Sin -y €08 O €OS O pr —(cos ¢rarsin Oppr)
0 0 0 0 344 sin Oy, cos Oy J
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2.2 The generalized mass matrix and the generalized forces matrix

The dynamical system without any constraint can be derived using generalized coordinates. The equation of
motion about the wheel is represented as

(Lv+ mwrwz)d)xw =gm,ry, Sin By, + (L, + mwrwz)wywwzw — Ly tan 6, 0.,,°,
(Iyw +mwrw2)(byw = mwrwzwxwwzwa (1
Ixzw Ci)zw =Wz ( _Iyw (Dyw + lxzw tan ew wzw) .

The equation of motion about the handle and the frame are derived by Newton-Euler Method.

Loy Oy =027 (— Lz tan Oy - + Ly y7)
Ly =0
[sz d)ZH =WH ([sz tan 6H o + ]yH a)yH )
My VH :mH(vyH — tan OHVZ[-]) (0522
mpVyy = —my (gsin Oy — vy Oy + Vi 0217)
mpVzp = — mp(gcos Oy + vy oy — tan Oy vy @-py)
Lezp M @xcr vt =0:p v (—Lizrptan Op ar@-par + Lr mOyr )
Lry@yry =0

2

Lo M @op v =Ocr v (Lezr prtan Oy @2p a4 Lo v @yr )
mpemVer M =mpy(Vyry — tan Opyvzpar) O-F
mpymVyrym = — mpa(g8in O v — Vap MO v + VeF MO-F 1)
mppvarym = — mpp(gC0s O+ Vyr v Oyr v — tan Op yver v @-F )

Therefore, the generalized mass matrix M, and the generalized forces matrix 4, of the bicycle without any con-
straint is represented as

. 2 2 2 2
M, =diag(I.gr +mprr”, Lr +mgrg”, Ly, Lep +mprp”, Lp +mprp”,

Lzr Lary Lers Ly, mu, my, my, Loy, Ley, Leru, mewv, mey, mey),

gmprgsin O + (Lg + mprr?) O,r 0. — Li:g tan O >
—mRrR* ORO-R
Ocr (Lezpr tan Oy 27 — Ly 0yp7)
gmprg sin O + (IyF + mFI”FZ)(DyF w.r — I ,ptan Op (1)2172
—MFprE~ QO O:F
O.r (—1,F Wy + I,-p tan O 0.r)
0:r(—Lr0yR + Lz tan Or-R)
-1 (—Lzp tan Oy -7 + Ly Oypr)
0
mpy (VyH —tan GHvzy) [0%%
—mp(gSin Oy — Vo Ocpy + Vi Ozpr)
—my (gCOS O + vy Oxfr — tan QHVxH(UzH)
O-F v (—Lezrprtan Op y@-p v + Lr v Oyrag)
0
O v (Lzrvtan O v @:p vy — Lr v @yr )
mpp(Vyrm — tan Op yvop ) O-p
—mpp(gSinOp pr — Vap MOp M 4 ViF MO2F M)
—mpr(gcos Or v + VyF M OyF v — tan Op yVxr v @-F 1)

2.3 The constraint matrix
The constraint conditions between the front wheel and the rear wheel are held as follows:

* The relation between the arc by the front wheel and the arc by the rear wheel is

rrYF cos(QF — QOr) = rrRYR. 3)
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* The relation between the arc by the front wheel and the track by the rear wheel is

re Y sin(¢p — @r) = lpQr.

« The relation between inclination of the front wheel and the rear wheel is

FROxR €08 O =rF Wyr c0S OF cos(Pr — Pr).

The constraint conditions between the front wheel and the handle are held as follows:

 The positional constraint that the handle is connected to the front wheel is

7
x(GH)Ry(‘VH)a 0 | +xr
Iy

xy = R ()R

wherexp = [xr  yr  zr| T'is the vector of COG of the front wheel and, xj; — (Xt yu
of COG of the handle.The rotation matrix R-(¢r), Rc(6), R, (W) are represented as

“)

)

(6)

T.
zyy| " is the vector

[cos¢y —singy O]

R.(¢y) = |singy cos¢y Of, (7
| 0 0 1]
(1o 0 ]

0 cosOy —sinfy|, 8)
_0 sinBy  cos Oy ]
[ cosyy 0 sinyy

R(yw)=| 0 1 0 ©)
| —sinyy 0 cosyy

» The relation between the angle of inclination of the front wheel and the angle of inclination of the handle,

and the relation between the steering angle of the front wheel and the steering angle of the handle are

Or = 6y,
Or = ¢

* The relation between the front fork angle and the handle angle is

Vi = — 0.
The constraint conditions between the rear wheel and the frame are held as follows:
» The positional constraint that the frame is connected to the rear wheel is

Iy
xrm = R(Orm) R (Or M) Ry (WrM) | O
ly—rr

+XR,

(10)
)

(12)

(13)

where xp = [xR VR ZR] r is the vector of COG of the rear wheel and, xpy; = [xFM VEM ZFM] T is the

vector of COG of the frame. The rotation matrix R.(¢rar), Rc(6rum), R, (Wruy) are represented as

[cosryy —singry O]
R.(¢pm) = |sindrys  cosdry 0], (14)
| O 0 1]
[1 0 0
0 cosBOpy —sinBpy (15)
_O sinOgy,  cosOpuy ]
[ coswry 0 sinyry
R(ye)=| O 1 0 (16)
| —sinyry 0 cosYry

The relation between the angle of inclination of the rear wheel and the angle of inclination of the frame, and
the relation between the steering angle of the rear wheel and the steering angle of the frame are

Or = OFu,

Or = Orum-

346

amn
(18)



Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

* The relation of the pitch angle of the frame is

Using these constraints and the tangent velocity ¢ = [(oxR WyR a)zH] , the constraint matrix of the system is
represented as

Co= [Cal CaZ] ) (20)

where the matrix C,; that is multiplied by the tangent velocity of C, is represented as

[ 0 R 0 7
0 0 0
—rgcos Og 0 0
0 0 053
0 0 043
0 0 — sin O (ry, cos Wi — Iy sin yyy)
0 0
Cy = 0 0 cos Oy
0 0 —tan Oy
R cos O sin g rR COS O 0
—rrcosOpcosdp  rrsingp 0
—rgsin Og 0 0
1 0 0
0 0 0
i 0 0 0 |
and the matrix C, that is multiplied by vectors that consist of the other part of the tangent velocity is represented
by
i 0 o5 A6 o7 0 0 0 0
0 05 [0 07 0 0 0 0
034 0 0 0 0 0 0 0
O4q 045 0 0 o4 049 0410 0411
O54 Os5 0 0 058 Os9 Osi0 0511
s 0 0 0 068  Og9 0 0,11
-1 0 0 0 1 0 0 0
Cp = 0 0 —cos O 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 cos O 0 0 0 0
L 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0Ol4.12 0 0 0 0 0 0
0512 0 0 0 0 0 0
0,12 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 010,13 010,14 10,15 010,16 10,17 010,18
0 1,13 011,14 11,15 1,16 11,17 01,18
0 012,13 02,14 012,15 0 012,17 02,18
0 — 0 0 0 0
0 0 0 —cos Op s 0 0 0
0 0 1 —tan Op ), 0 0 0
where

033 =¢0s Oy (sin @7 (r, cos Wi — I sin Wiy ) + cos @y sin O (1, cos Wy + ry sinyyy ) )

— (sin Oy sin @g7 (7, cos Wy — I sin W) + cos @ (1 cos Wy + rysin yyy ) ) tan O,
04,3 =08 O (cos @ (I, sin Wr — 1, €08 Wy ) + sin O sin @7 (7, cos W + 1y sin gy ) )

— (cos @ sin Oy (1, sin Wy — 1y, cos Wiy ) + sin @7 (1, cos Wiy + 7y sin Wy ) ) tan O
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05 =—rrcos(Pr — dr),
oy 6 =rF cos(@r — @r) tan O + rr sec O sin(Pr — Pr) Yr,
oy 7 =—rrtanOg —rp sec O sin(Pr — Pr) Yr,

05 =—rpsin(¢r(t) — ¢r),

0 6 =rF sin(@r — Pr) tan OF — rr cos(Pr — Pr) sec O Y,

0,7 =sec Og(lp +rp cos op — PrYF ),

03,4 =rF cos O cos(¢r — Pr),

04 4 =FF COS O sin (])F,

0l 5 =1 COS O,

04,3 =c0s O sin @y (I cos Wy + 1y sin yy),

04,9 =sin Oy sin @ (ry, cos Wy — Iy sin Yyr) + cos @ (1 cos Y + rp sin Yy ),
04,10 = — COS Oy,
04,11 =COS 9H sin ¢H7

0412 = — sin QH sin¢H,
05 4 = — 1 cOs O cos O,
055 =rF sin@r,
05 8 = — €08 O c08 Ppy (1, €08 Wiy + 1y sin Yy ),

05,9 =08 @ sin O (1 sin Wy — 1, €08 Wy ) + sin @ (1, cos Yy + rp sin Yy ),
0510 = — sin @y,

05 11 = — c0s Oy cos ¢y,
045,12 = €08 Py sin Oy,
04 = —rpsinbp,
Opg =— sin GH(Zh COS Yy + Fpsin l[/}L[)7
06,9 =08 O (1, cos Wy — [ sinyyy ),
066’11 = —sin 9[-1,
0,12 = — cos O,

010,13 =08 O prsin Qg (1 — rr) coS Wrar — I sin Wr ),

010,14 =08 P (1 — rR) COS Wr),
— Ly sin Yrpr — sin Opprsin @pas (1 cos W + (I —1R) SinYrpy),

010,15 =08 OF 17 (cos @rprsin Oy (17 — rr) cos Wrpr — 1 sin Yryy),
—sin@rasr(lrcos Wryr+ (I — rr) sin Wrar) ) — (cos Opar((Ly — rr) €OS Wras,
— I sin Yryy) — sin Opprsin @p (1 cos YWrpr+ (I — rr) sin Wray) ) tan Oy,

010,16 = — COS P,

010,17 = €08 Op 7 Sin Py,

010,18 = — sin Op 7 Sin Gy,

01,13 =COS Or oS ¢FM((VR — l/) cos Wrps+ [ sin WFM),

01,14 =sin @ppr (1 — rr) cos Wras — I sin Wrpg) 4 €08 Pppysin Oy,
(IrcosWrap+ (Iy —rr)sinyryy),

011,15 =08 Op p(sin Oparsin p (1 — rr) cos Wras — I sin Wray),
+c0s Orar(lrcos Wrar+ (L —rr) sin Wray) ) — (sin o (L — rr) €OS Wrnr,
— I sinyryy) +cos Pparsin Op (1 cos Wras + (I — rr) sin Wrag) ) tan Oy,

011,16 = — Sin Qra,

041,17 = — €0S O )1 COS Py,

011,18 = €08 Qs 8in Oy,

01213 =sin QFM((I’R — lf) COS Y+ /- sin II/FM),

012,14 = —COS QFM(I,A COS Wrar+ (Zf — I’R) sin l//FM),
02,15 =SinOpplycos Wra+[p — rrsin Yy,

042,17 = —sin Oy,

012,18 = — €08 Oy
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2.4 The orthogonal complement matrix to the constraint matrix

The generalized velocity v, is devided into tangent velocity ¢ and the other 9. Because C,v, =0,
— qal _ ~ . .
Cava = [Cal CaZ] |:‘~}:| = Calq + Cazv =0.

Therefore,
~ P
v=—Cpn Ciq.

Hence, the orthogonal complement matrix D,, satisfies C,D, = 0 and C,v, = 0 is represented by

1
Da = |:Ca21Ca1:| - (21)

2.5 Dynamical system with constraints

Dynamical system of the constrained system with the constraint reaction forces C. 4 are derived as follows:
Mgy =ha+CIA, (22)
where A is the Lagrange’s multipliers. Eliminating A from (22), the motion equation of the bicycle is derived as

DIM,D.j+ DI M,D,g=DIh,.

3 Model verification

The nonlinear model that is derived in the previous section is verified to compare with behaviors of the real
system and numerical simulations using it. The initial velocity of the rear wheel is 0.0 [rad/s]. Trajectories of the
steering angle ¢, and the inclination angle of the frame 6rj, are shown in Figure 3. In the results, initial velocity of
the rear wheel is set to 0.0 [rad/s] and initial inclination of the frame is set to 0 [deg]. From Figure 3, It is shown
that the steering angle and the inclination angle of the real system and these of the nonlinear model are not same.
Because it is difficult to set the initial steering angle of the real system at ¢, = 0, in fact, the initial steering angle
is 0.4 [deg|. Therefore, we simulate two cases. One is the initial steering angle is set to 0.4 [deg], and the other one
is the initial steering angle is set to 30 [deg]. The results are shown in Figure 4 and Figure 5.

30

30

Real_frame_angle Real_Handle_ang

Simulation_frame_angle e Simulation_Handle_ang e

Angle[deg]
Angle[deg]

Time[sec] Time[sec]

Figure 3: Trajectories of the steering angle ¢;, and the inclination angle of the frame 6, when the initial inclination of
the frame is set to 0 [deg].
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Figure 4: Trajectories of the steering angle ¢y, and the inclination angle of the frame 65 ), when the initial inclination of
the frame is set to 0.4 [deg].
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Time|[sec] Time[sec]

Figure 5: Trajectories of the steering angle ¢, and the inclination angle of the frame 0y, when the initial inclination of
the frame is set to 30 [deg].
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Figure 6: The trajectorys of the inclination angle of the frame for the proposed nonlinear model and the linear model.

From Figure 4, the handle rotates towards the angle which the frame is inclined when the frame is inclined. From
Figure 5, the handle rotates towards the angle which the frame is not inclined when the frame is inclined. From
Figure 4, and Figure 5, the behaviors of the proposed nonlinear model is similar to the real system indies.

To show the validity of the proposed nonlinear model, it is compared with the linear model by the simulation.
The trajectries of the inclination angle of the frame for both models is shown in Figure 6. From Figure 6, it is
clearly shown that the inclination angle of the linear model is deffer from the angle of the nonlinear model after
Oy = 30 [deg], so the conventional linear models is not so useful to consider stablizing the bicycle in the wide
inclination angles. Therefore, the nonlinear model is very important to develop a stable bicycle riding support
system and analyze the stability of the bicycle under various situations.
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4 Conclusion and future work

In this paper using the Projection Method and making out some appropriate constraint conditions, a way to
derive a nonlinear bicycle model on the three-dimansional space is proposed. To show the validity of the nonlinear
bicycle model, some numerical simulations are done. The simulation results also show differences between the
nonlinear model and the conventional linear models that is very important to develop a stable bicycle riding support
system and analyze the stability of the bicycle under various situations. To develop a more accurate nonlinear
model, it is conncected a saddle, pedals and crank mechanisms to the proposed model using the Projection Method
and some appropriate constraint conditions for the new attached parts, is a future work. The accurate nonlinear
model helps to consider human inputs and to develop a stable bicycle riding support system.
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