

Proceedings of the 1995 EUROSIM Conference, EUROSIM '95, Vienna, Austria, 11-15 September 1995

Edited by

Felix Breitenecker Irmgard Husinsky Technical University Vienna Vienna , Austria

1995 ELSEVIER Amsterdam • Lausanne • New York • Oxford • Shannon • Tokyo ELSEVIER SCIENCE PUBLISHERS B.V. Sara Burgerhartstraat 25 P.O. Box 211, 1000 AE Amsterdam, The Netherlands

ISBN: 0 444 82241 0

© 1995 Elsevier Science Publishers B.V. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher, Elsevier Science Publishers B.V., Copyright & Permissions Department, P.O. Box 521, 1000 AM Amsterdam, The Netherlands.

Special regulations for readers in the U.S.A. – This publication has been registered with the Copyright Clearance Center Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923. Information can be obtained from the CCC about conditions under which photocopies of parts of this publication may be made in the U.S.A. All other copyright questions, including photocopying outside of the U.S.A., should be referred to the copyright owner, Elsevier Science Publishers B.V., unless otherwise specified.

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or orherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

This book is printed on acid-free paper.

Printed in The Netherlands.

Foreword

Developments over the last years show that beside the classical tools theory and experiment simulation becomes more and more the third major tool for problem solving in application and research. Nowadays simulation is found in nearly every application area, research activities result in new methodologies and tools for simulation, and more and more simulation software, simulators, and simulation systems are offered on the market.

The *EUROSIM Congress*, the European Simulation Congress, an international event normally held every three years, aims to be a common forum for presenting European and international recent results and applications in simulation, and to stimulate the exchange of ideas and experiences among scientists and engineers active in simulation.

EUROSIM is the Federation of the European Simulation Societies, acting as a European forum for Simulation Societies and promoting the advancement of system simulation in industry, research, and education.

All these intentions are reflected in the 5th European Simulation Congress *EUROSIM 95*, the 2nd Congress after the formal foundation of EUROSIM. These Proceedings contain eight invited papers and 212 contributed papers which were selected by the International Programme Committee from 459 abstracts received.

The eight invited lectures give an overall picture of developments and trends in simulation methodology and application. The contributed papers show a balanced mixture of new simulation methodologies, languages, tools, architecture, and applications.

It is interesting to compare the titles of papers presented at previous European Simulation Congresses with those in the present volume. Even a brief glance through the four volumes of Proceedings shows that in this twelve year period considerable, remarkable, and sometimes astonishing advances have been made in a number of different areas. For example, developments in parallelism and distributed processing are now not only being seen in simulation applications but are also frequently used. Object-oriented methods are being implemented now, and artificial intelligence and knowledge-based tools appear to be an established part of system modelling and simulation methodology. The availability of improved graphic algorithms and tools is also leading to some very interesting and innovative research and application in terms of man-machine interface and of animation and visualisation, both for discrete-event and continuous-system simulation.

New developments in terms of mathematical modelling and simulation techniques as well as in terms of general methodology are of little significance unless they are stimulated by the requirements of the real world in terms of industry, business, agriculture and the sciences. We are very pleased, therefore, that application papers are so well represented. This also applies to papers on parallel and distributed simulation, where beside graphics the fastest development can be observed.

We are also pleased that the idea of "Special Interest Sessions" could be realized. These sessions deal with recent developments in areas where methodology and application are considered together. The results of the closing discussion at the end of these sessions are summarized in manuscripts which will be edited and published in abbreviated form in *EUROSIM - Simulation News Europe* (SNE), the newsletter of the EUROSIM member societies. Some of these papers will be prepared for publication in EUROSIM's scientific journal *SIMULATION PRACTICE AND THEORY*. A separate role is played by the Industry Session on "Model Exchange and Software Independent Modeling" where people mainly from industry report on this topic without necessarily having to publish a paper in the Proceedings.

Due to the big respond to the Call for Papers the Scientific Programme is also extended by a Poster Session and by a session on "Software Tools and Products". Abstracts and papers from these Sessions may be found in a special Congress Issue of *EUROSIM Simulation News Europe*.

The lay-out of these Proceedings do not correspond exactly with the Congress sessions as given in the Final Programme, although the papers are broadly divided according to sessions. The Congress Programme also contains presentations of late papers (printed in the Late Paper Volume), additional contributions to the Industry Session on "Model Exchange", and to the Session on "Software Tools and Products" (printed in a special Congress Issue).

The European Simulation Congress *EUROSIM* 95, held in Vienna (Austria) at the Technical University of Vienna from September 11 through September 15, 1995, is organized by *ASIM* (Arbeitsgemeinschaft Simulation), the German speaking Simulation Society, in co-operation with the other member societies of EUROSIM: *AES* (Asociación Española de Simulación), *CSSS*

vi

(Czech & Slovak Simulation Society), *DBSS* (Dutch Benelux Simulation Society), *FRANCOSIM* (Société Francophone de Simulation), *HSTAG* (Hungarian Simulation Tools and Application Group), *ISCS* (Italian Society for Computer Simulation), *SIMS* (Simulation Society of Scandinavia), *SLOSIM* (Slovene Society for Simulation and Modelling), *UKSS* (United Kingdom Simulation Society).

The moral co-sponsorship of CASS (Chinese Association for System Simulation), CROSSIM (Croatian Society for Simulation Modelling), *IFAC* Advisory Board Austria, *IMACS* (International Association for Mathematics and Computers in Simulation), *JSST* (Japanese Society for Simulation Technology), *LSS* (Latvian Simulation Society), *OCG* (Austrian Computer Society), *PSCS* (Polish Society for Computer Simulation), *SIE* Esprit Working Group "Simulation in Europe" supports this congress.

A successful conference is always due to the efforts of the many people involved. To this purpose, particular acknowledgement goes to the members of the Scientific Committee for their contributions in the paper selection process, to the members of the Local Organizing Committee, and more especially to the head of this committee, to Mr. Manfred Salzmann.

Felix Breitenecker

Irmgard Husinsky

Technical University of Vienna

viii

Scientific Committee

F. Breitenecker (Austria), Chairman

H. Adelsberger (D) M. Alexik (SQ) W. Ameling (D) S. Balsamo (I) I. Bausch-Gall (D) S.W. Brok (NL) F.E. Cellier (USA) V. Ceric (HR) L. Dekker (NL) J. Dongarra (USA) V. De Nitto (I) H. Ecker (A) G. Feichtinger (A) P. Fishwick (USA) J.M. Giron-Sierra (E) H.J. Halin (CH) N. Houbak (DK) R. Huntsinger (USA) I. Husinsky (A) T. Iversen (N) A. Jávor (H) K. Juslin (FIN) G. Kampe (D) E. Kerckhoffs (NL) W. Kleinert (A) P. Kopacek (A) M. Kotva (CZ) W. Kreutzer (NZ)

M. Lebrun (F) F. Lorenz (B) F. Maceri (I) D. Maclay (GB) H. Mang (A) Y. Merkuryev (LV) Z. Minglian (VRC) I. Molnar (H) D.P.F. Möller (D) D. Murray-Smith (GB) F.J. Pasveer (NL) R. Pooley (U.K.) W. Purgathofer (A) P. Schäfer (D) T. Schriber (USA) A. Seila (USA) W. Smit (NL) F. Stanciulescu (RO) A. Sydow (D) H. Szczerbicka (D) S. Takaba (J) I. Troch (A) G.C. Vansteenkiste (B) W. Weisz (A) J. Wilkinson (GB) R. Zobel (GB) B. Zupancic (SLO)

Organization Committee

Felix Breitenecker, Dept. Simulation Techniques, Institute for Technical Mathematics, Technical University of Vienna

Irmgard Husinsky, Dept. for High Performance Computing, Computing Services, Technical University of Vienna

Local Organizers are the Dept. Simulation Techniques of the Technical University of Vienna and the Dept. for High Performance Computing of the Computing Services of the Technical University of Vienna, and the "ARGE Simulation News".

Local Organizing Committee

M. Salzmann;

K. Breitenecker, B. Gabler, M. Holzinger, C. Kiss, M. Klug, N. Kraus, M. Lingl, I. Mannsberger, S. Wassertheurer, J. Schuch, G. Schuster, H. Strauß, W. Zeller

Table of Contents

- -

-

Foreword	v
Committees	viii
Invited Lectures	
Biomolecular Simulation Steinhauser O.	1
How Discrete-Event Simulation Software Works Schriber T.J.	17
Modelling for Parallel Simulation: Possibilities and Pitfalls <i>Sloot P.M.A.</i>	29
Metabolic Modelling: Past, Present, and Future <i>Carson E.R., Hovorka R.</i>	45
Animation and Visualization - Current Status and Trends Gervautz M., Schmalstieg D.	55
Fuzzy Systems in Modelling and Simulation Möller D.P.F.	65
Advances in Simulation Model Validation: Theory, Software and Applications <i>Murray-Smith D.J.</i>	75
Symbolic Computation Software Systems: The Current State of Technology Buchberger B.	85
Special Lectures	
True Simulation of Real Parallel Processes is Impossible. A Proof by the Five Dining Philosophers Fuss H.	95
Simulation Methodology	
Composite Constructs for Object-Oriented Modeling Elmqvist H., Brück D.	99
A Modelling Tool to Guide Computational Causality Assignment through Physical Causality Analysis Ramos J.J., Piera M.A., Serra I.	105
A Functional Approach for Modelling and Simulation Messina N., Boéri F., Demartini J.	111
A Method for Translating Automatically Statechart Models into VHDL Code <i>Maillot Y., Wendling S.</i>	117

ix

Automatic Generation of Simulation Models Increases the Use of Simulation Klußmann J., Krauth J., Vöge M.	123
A Simulation Method Based on Conditional Events Beltcheva O.M., Georgiev I.K.	129
Map Based Model Generation Lorenz P., Schulze T.	135
A General Graphic Editor for Complex Simulation Models Fritz M., Schulz Ch., Wöllhaf K.	141
An Environment for Graphical, Interactive Modeling and Simulation of Modular, Hierarchical DEVS-Based Systems <i>Praehofer H., Mayr W.</i>	147
Simulation may be Dangerous - Experimentation Practice and the Implications for Simulation Software <i>Hollocks B.W.</i>	153
Maintenance Simulation: Software Issues Luk C.H., Jette M.A.	159
A Template for the Evaluation of Tools for the Simulation of Continuous System <i>Hamam Y., Rocaries F., Carrière A.</i>	165
A Comparison of Simulation Software Packages Hlupic V.	171
Mathematical and Statistical Methods	
Discrete Simulation of Dynamical Boundary Value Problems Rabenstein R.	177
The Multidimensional Projection Method Spiro H.	183
Credibility of the Final Results from Quantitative Stochastic Simulation <i>Ewing G., McNickle D., Pawlikowski K.</i>	189
The Method of Combined Statistical Estimates for Different-Accuracy Simulation Data Treatment Shikhin V.A., Pavluk G.P.	195
Simulation of Smooth Weakly Correlated Processes - Modelling and Application <i>Fellenberg B., vom Scheidt J.</i>	201
Genetic Algorithms in Simulation	
Application of Genetic Algorithm to Nonlinear Dynamic Modelling Ju P., Handschin E., Wei Z.N.	207
Genetic Algorithms in Discrete Event Simulation Salzmann M., Breitenecker F.	213
Building the Fitness Function of a Genetic Algorithm Through Straight Simulation: Application to Search for Parameters of a Policing Algorithm in ATM Environment <i>Coli M., Palazzari P.</i>	219

х

Parallel Evolutionary Algorithms for Simulation Optimization Pierreval H., Tautou L., Bzeznik B.	225
Parallel Simulation	
Parallel Qualitative Simulation Platzner M., Rinner B., Weiss R.	231
Massive Parallel Models of Net Dynamic Objects Anoprienko A., Feldmann L., Lapko V., Svyatnyj V., Bräunl T., Reuter A., Zeitz M.	237
Adaptive Model Parallelism Exploitation in Parallel Simulation <i>Ferscha A</i> .	243
A Massively Parallel Simulation Method for Parabolic and Hyperbolic Systems Dekker L., Brok S.W.	249
Parallel Simulation of Complex Technical Processes Schneider F., Wienand F., Rake H.	255
Scalability Analysis of Parallel Finite Element Methods using Performance Simulation van Gemund A.J.C., Lin H.X.	261
A Parallel Algorithm for the Simulation of Energy Networks <i>Weinmann J.</i>	267
A Hybrid Parallel Simulation System for Transputers Ruplitsch M., Steger Ch., Weiβ R.	273
A New Concept for Shared Memory Update in Parallel DSP and Transputer Systems Brenner E., Weiss R.	279
Simulating the Simulator: Deterministic PRAM Simulation on a Mesh Simulator Meyer U., Sibeyn J.F.	285
Distributed Simulation	
Object-Oriented Database Technology Applied to Distributed Simulation Heywood P., MacKechnie G., Pooley R., Thanisch P.	291
A Distributed, Object-Oriented Simulation System based on Hints Böszörményi L., Stopper A.	297
Rollback Overhead Reduction Methods for Time Warp Distributed Simulation Balsamo S., Manconi C.	303
A Distributed Simulation Approach to Manufacturing Control Using Time-Warp Vojdani N.	309
Large-Scale Simulations of Dynamic Open Systems Corbin M.J., Sapaty P.S.	315
Coupling Simulators with the Model Interconnection Concept and PVM Schuster G., Breitenecker F.	321
Object Oriented Realization of a Parallel Discrete Event Simulator Reisinger G., Praehofer H.	327

xi

Object-Oriented Communication for Distributed Discrete Event Simulation <i>Necker T.</i>	333
A Simulation Tool for Distributed Systems Using Test Sequences Castanet R., Chevrier C.	339
Distributed Interactive Simulation	
Distributed and Parallel Simulation in an Interactive Environment Pawletta S., Pawletta T., Drewelow W.	345
Specification Driven Distributed Simulation Using PrT-Nets Srivastava A., Lakhanpal D.K., Jain V., Bhatt P.C.P	351
A Basic Architecture for the Development of a Distributed Interactive Simulator Deegener M., John W., Kühnapfel B., Löhr M., Lux G., Wirth H.	357
Application of FSIMUL-P for Parallel Simulation in a Heterogeneous Computer Environment	263
Deuwig F.	505
Mathematical Modelling and Applications	
Mathematical Modelling of Grain Ventilation Aboltins A.	369
Fuzzy Modeling of Gas Supply Networks von Döllen U., Schlothane M.	373
Systematical Modeling of a Sorting Process with Petri Nets <i>Plött N., Bär W.</i>	379
Impact of Modeling and Integration Scheme on Simulation of MOS-Circuits Günther M., Denk G., Feldmann U.	385
About Models of Robot Manipulators for Decoupled Joint Control Galardini D.G., Gorez R.	391
Modelling Limitations for Helicopter Flight Control System Design <i>Murray-Smith D.J.</i>	397
Realistic Modelling in Aerospace Engineering - A Challenge for Optimal Control <i>Chudej K</i> .	403
From Generic Aircraft Models towards LFTs Based Parametric Uncertainties Descriptions Varga A., Moorman D., Kaesbauer D., Grübel G.	409
Design and Simulation of Logical-Dynamical Systems Büttner R., Ehrlich H., Nitu C., Pretschner A.	415
Condition/Event Systems: a Powerful Paradigm for Timed and Untimed Discrete Models of Technical Systems Engell S., Kowalewski S., Krogh B., Preußig J.	421
On the Inclusion of Models in Generating Control Action for Discrete-Event Systems <i>Franke D</i> .	427
On Object-Oriented Modelling of Abrupt Changes Mattsson S.E.	433

xii

Simulation of Characteristic Delays in Multivariable Control Systems Using WCBSL Gough N.E., Ting I.H., Dimirovski G.M., Iliev O.L.	439
Self-Organizing Modelling of Biotechnological Batch and Fed-Batch Fermentations <i>Bettenhausen K.D., Marenbach P.</i>	445
On Modelling of Boundary Conditions for Fixed-Bed Bioreactors Julien S., Babary J.P., Nihtilä M.T.	451
Mathematical Modelling of a Chemical Semi-Batch Reactor Bogaerts Ph., Cuvelier A., Arte Ph., Hanus R.	457
Object-Oriented Process Modelling Applied to a Reactor Foss B.A., Wasbø S.O., Øgård O.	463
Model Exchange and Software Independent Modeling	
Model Exchange - Illusion or Future Reality ? Hessel E.	469
VHDL-A: Analog and Mixed-Mode Extensions to VHDL Vachoux A., Bergé JM.	475
Is VHDL-A Suitable as Unified Modelling Language ? Moser E.	481
Positioning a Standard Modelling Language Lorenz F.	487
Integrated Design Process Support with VHDL-A Sax E., Tanurhan Y., Müller-Glaser K.D.	493
A Backplane for Mixed-Mode Cosimulation Schmerler S., Tanurhan Y., Müller-Glaser K.D.	499
The DSblock Model Interface for Exchanging Model Components Otter M., Elmqvist H.	505
Simulation of Computer Systems	
Client-Server Networks: Modelling, Simulation, Measurement, and Analytical Solution Richter K., Rudolf St.	511
Performance Analysis of Client Server Data Bases by the Independent Modelling Approach Mirandola R. Jazeolla G. Bruti M.	517
Communication Switching Techniques and Link-Conflict Resolution Strategies: A Comparison Analysis Colajanni M., Dell'Arte A., Ciciani B.	523
Analyzing the Timing Error in Distributed Simulations of Asynchronous Computer Architectures Theodoronoulos G. Woods IV	500
Simulations of Crossbar Switches for Darallel Switcher	529
Grammatikakis M.D., Kraetzl M.	535

xiii

xiv

Simulation Study of Multitasking and Resequencing in a Homogeneous Distributed System <i>Karatza H.D.</i>	541
Simulation of Distributed Simulation with Timed Colored Petri Nets <i>Paulussen R.R., Somers L.J.</i>	547
Simulation of Communication Systems	
Stochastic Modelling of Mobile Distributed Systems Irmscher K.	553
Parallel Simulation of Mobile Communication Networks Using Time Warp Sköld S., Rönngren R., Liljenstam M., Ayani R.	559
Simulation of Fiber Supported Millimeter-Wave Communication Systems <i>Zhang S.L., O'Reilly J.J.</i>	565
Parallel Simulation of Mobile Communication Networks Using a Distributed Workstation Environment <i>Porras J., Harju J., Ikonen J.</i>	571
Attenuation Poles by Tap-Feed in Mobile Communication Filters for Intelligent Simulation and Design <i>Ishii J., Murakami K., Noguchi Y., Wada K.</i>	577
Efficient ATM Network Simulation Schmidt K.	583
A Simple Method for On-Off Sources Multiplexing in ATM Networks Hachicha A., Adimi D., Baptista P.	589
Multimedia Services via FDDI-connected Token Rings: Maximum Bandwidth Capacity Reservation is Avoidable <i>Corsten M., Strelen J.C.</i>	595
Modelling a Vehicle Philosophy with CAN-Bus Mocanu M.	601
Modeling and Simulation of Navigation Systems: An INS Simulation Matlab Toolbox López Orozco J.A., Ruipérez P., de la Cruz J.M., Aranda J.	607
Real-Time Simulation and Hardware-in-the-Loop Simulation	
On Flexible Programming Environments and Support Tools for Full Mission Real-Time Simulation	613
Heterogeneous Simulation for Real-Time Systems Dueñas J.C., León G., Rendón A., de Miguel M.A.	619
Software Test by Hardware-In-The-Loop Simulation <i>Kull H., Kaiser V.</i>	625
Realtime Simulation in Automotive Industry Applications <i>Stahl H.</i>	629

	Simulation in Mechatronics and Computational Mechanics	
	Off-line Mechatronic Simulation Schmitz H., Krohm H.	633
	Two Approaches to Coupled Simulation of Complex Microsystems Klein A., Schroth A., Blochwitz T., Gerlach G.	639
	CAMeL/PVM: An Open, Distibuted CAE Environment for Modelling and Simulating Mechatronic Systems Klingebiel P. Diekmann R. Lefarth II. Fischer M. Seuss J.	645
	Mechatronic Simulation Using Alecsis. Anatomy of the Simulator Mrčarica Ž., Ilić T., Glozić D., Litovski V., Detter H.	651
	Modeling of Mechatronic Systems by Symbolic Computation Schlacher K., Scheidl R.	657
	Computer Aided Analysis and Design of Branched Mechanisms <i>Eisinger C., Sandler B.Z.</i>	663
_	Mixed System Simulation of Electromagnetic Drives Containing Electrical, Magnetic and Mechanical Subsystems <i>Roschke Th.</i>	669
	Some ESL Models for the Friction Forces between the Fixed Booms and Solar Panels of the Hubble Space Telescope <i>Zobel R.N., Zammit J.M.</i>	675
	Transient Movement of Hand-held Drilling Tools Subjected to Severe Loading Conditions Schaer R., Favre-Bulle B.	681
	Simulation of Rotordynamic Systems with ACSL Ecker H., Knight J.D.	687
	Simulation in Robotics	
	A Toolbox for Simulation of Robotic Systems Surdilovic D., Lizama E., Kirchhof J.	693
	Dynamic Simulation of <i>n</i> -R Planar Manipulators Žlajpah L.	699
	Virtual Robot Mechatronics: Interactive Dynamics Simulation Experimenting <i>Finsterwalder R., Schlemmer M., Grübel G.</i>	705
	Interactive Graphic Simulator of Industrial Robots Cafuta P., Curk B., Grčar B.	711
	Discrete Event Simulator of Computer Assisted Robotic Work Cell Rogalinski P.	717
	Simulation in Electrotechnique and Electronics	
	Modelling and Simulation of High-Voltage Transmission Lines <i>Fette M., Voss J., Oprea L., Velicescu C.</i>	723

xv

xvi

Transmission Lines Modelling in the Computer Program for Digital Simulation of Electromagnetic Transients Nikolowski S. Fischer D. Pervarae D.	729
Modelling and Simulation of a Voltage Source Three Phase Active Power Filter	129
Martins A.P., Carvalho A.S., Araújo A.S.	735
Simulation of a Multi-Layer Distributed RC Circuit Using Amorphous Thin Resistive Films Kodama JL. He D., Fuiimoto H., Ishii J.	741
Simulation of Power Systems	
An Object-Oriented Model Database for Thermal Power Plants Nilsson B., Eborn J.	747
A New Numerical-Analytical Hybrid Simulation Method for Thermal Power System Ni W., Sun X., Li Z.	753
Investigation of the Dynamic Behaviour of a High Pressure Hydro Power Plant in the Swiss Alps during the Transition from Interconnected to Isolated Operation <i>Weber H.W.</i>	759
A Practical Approach to Simulation of Electrical Peak Demand Levelling in Industry Pegan M., Bizjak M., Marinšek Z.	765
Simulation of Thermodynamic Processes	
Prediction of Temperature Problems in Electrical Machines using Automatically Generated Real Time Simulation Models <i>Westerkamp C.</i>	771
Simulation of Temperature Fields in Forming Products from Composite Materials Shevchenko A., Tzukanov I., Rokityanska V.	777
Simulation of the Forming Pipeline System in Aluminium Heat Exchangers <i>Roje T.</i>	783
Optimising Pseudo-Derivative Control for an Evaporative Cooling Process White A.S., Ebeling J., Ghandban F.	789
3-dimensional Numerical Modelling of a Room Heating Control System <i>Booth P.E., Oakey P.E.</i>	795
Comparison of a PI(D) and Fuzzy Controlled Central Heating Installation. A Simulation Study Pasveer F.J., Mijnarends H., Wigman M., Tromp J.	801
Simulation in Physics and Chemistry	
Simulation of Multiparticle Production in High-Energy Nuclear Interactions Goneid A., Mostafa M.GH., Wong CY.	807
Numerical Simulation in FTIR-Microspectroscopy Edl-Mizaikoff B., Sengeis M., Kellner R., Theiß W., Grosse P.	813
Simulation of Models and Controllers of Time-Variable Flow Processes Zenger K.	819

Numerical Simulation of Magnetoviscoelastic Properties of Electrorheological Suspensions <i>Simeonova K.M.</i>	825
Using a Computer Simulation Method for Investigating and Clarifying Different Compression Phenomena in Dust Cake Filtration Stöcklmayer Ch., Höflinger W.	831
Symbolic Computation: An Effective Means for Generating Complex Simulation Models in Polymer Extrusion <i>Jahnich M., Dörrscheidt F.</i>	837
Traditional and Modern Methods in pH Control of an Ammonia Scrubber - A Simulation Study Ylén JP., Jutila P.	843
Simulation in Process Engineering	
Flexible Symbolic-Numerical Equational-Based Dynamic Process Modeling Lisounkin A., Mühlhäußer R.	849
Multipurpose Modelling in the Evaluation of Laboratory Pilot Plant Atanasijević-Kunc M., Karba R., Zupančič B.	855
Modelling the Minerals Diversity: A Challenge for Ore Processing Simulation Brochot S., Durance MV., Fourniguet G., Guillaneau JC., Villeneuve J.	861
A Multi-Purpose Tool for Dynamic Simulation of Paper and Board Mills <i>Tuuri S., Niemenmaa A., Laukkanen I., Lappalainen J., Juslin K.</i>	867
Modeling and Simulation of an Iron Ore Sinterstrand Augustin M., Arbeithuber C., Jörgl H.P.	873
Asynchronous Serial Communication Applied to Metallurgical Process Modelling for Real-Time Monitoring Kolenko T., Glogovac B., Jaklič A., Mikec D.	879
Development and Application of AGC Simulator on Continuous Tandem Cold Rolling Mills Kwak J.H., Lee W.H., Park C.J., Lee G.T.	885
Simulation of Environmental Systems	
Environmental Modeling and Simulation - some Features of Experiments Grützner R.	891
Parallel and Distributed Simulation of Atmospheric Pollutant Dispersion <i>Kaltenbach J., Schmidt F.</i>	897
Modelling and Simulation of Forest Stands Growth Corriga G., Sanna S., Usai E., Usai G.	903
Simulation of the Adsorption and the Flow Pattern in an Activated Carbon Adsorber Loiskandl W., Rassinger M., Schäfer E., Weingartner A.	909
Dynamic Simulation of Wastewater Treatment - The Process of Nitrification Vogelpohl A., Sievers M., Möller D.P.F., Bracio B.R., Jungblut J.	915
A Concept to Simulate Tectonical Plate Movement <i>Rödder I.</i>	921

xvii

xviii

Simulation in Biology and Medicine

Nine Uneasy Compromises in Biomedical Simulation Morgenstern U.	927
Extended Physiological Models for the Simulation of the Glucose-Metabolism in IDDM Höfig B., Kistner A., Seibold A., Böhm B.	933
Simulation and Steady-State Optimization of Integrated Biochemical Systems: Theory and Applications in Biotechnology <i>Voit E.O., Torres N.V.</i>	939
Simulation Model of the Coronary Artery Flow Dynamics and its Applicability in the Area of Coronary Surgery <i>Quatember B., Veit F.</i>	945
A Modelling and Simulation Environment for Cell Kinetic Studies Werner O., Baur H.J., Meinzer H.P.	951
Computer Simulations Enlighten the Old Controversy in Speech Perception: Tonotopic versus Temporal Coding <i>Lutter P., Rattay F., Mark H.E.</i>	957
A Simulation and Optimization Environment for Models in Computational Neurobiology Zupan B., Halter J.A.	963
Simulation of Chromosome Interlocking in Meiotic Pairing Dorninger D., Karigl G., Loidl J.	969
Simulating Biological Systems with Graph Based Cellular Automata Hartmann P.	975
Stabilization of an Uncertain Competing Species System Leitmann G., Lee C.S.	981
Structure of Transient Regimes in the System of Tundra Community Models Dmitrieva I.V., Belotelov N.V., Sarancha D.A.	987
The Use of Simulation in Evaluating Specialized and Integrated Agricultural Enterprises Albay F.Z., Gempesaw C.M., Tilmon H.D., Elterich G.J.	993
A Stochastic Model with Spatial Constraints: Simulation of <i>Caulerpa Taxifolia</i> Development in the North-Mediterranean Sea Hill D., Coquillard P., de Vaugelas J., Meinez A.	999
System Dynamics Continuous Modelling of the Ecological Subsystem of the "Kastela Bay" Munitic A.	1005
Simulation of Logistic and Manufacturing Systems	
Design of a Simulation Model Automatically from a Given Database and its Simulation R Colsman R., Ortiz A., Poler R., Ros L., Cruz F.	uns 1011
An Advanced Simulation Environment for Modular Manufacturing Systems Yan XT.	1017
Intelligent Simulation System for Production Scheduling Benic D.	1023

A Combined Continuous-Time/Discrete-Event Approach to Modelling and Simulation of Manufacturing Machines <i>van Beek D.A., Rooda J.E., Gordijn S.H.F.</i>	1029
Modelling of Tool Resharpening Facilities for Simulation Applications <i>Petuelli G., Müller U.</i>	1035
Using Statistical Methods to Improve Prediction in Simulation-Based Scheduling <i>Heitmann K.</i>	1041
Determining Job-Scheduling Priorities through Simulation <i>Toussaint A.</i>	1047
Automatic Model Generation for Rule-Based Strategy Evaluation <i>Kraus N., Leitner J.</i>	1053
Integrated Cell Design: Computer Simulation in Planning of Manufacturing Systems <i>Kronreif G., Perme T., Kopacek P.</i>	1059
Computer-Simulation Based Optimisation of Logistics Applied to Europe's Most Complex and Largest Transportation System in Healthcare (AKH-Vienna) <i>Hammerschmidt W.</i>	1065
Evaluating Traffic Effects of a Route Guidance System by Dynamic Simulation <i>Chen Q., Stauss HJ.</i>	1071
Integrated Simulation Modelling Approach for Hierarchical and Multicriteria Control Model Bakalem M., Dindeleux R., Habchi G., Haurat A.	1077
Using a Simulation Model to Test the Functionality of a Decision Support System which signs the Interface between a Logistic Centre and other Company Systems <i>Unthank G., Fletcher E.J.</i>	De- 1083
Simulation in Economics and Administration	
New Product Development: When Discrete Simulation is Preferable to System Dynamic <i>Ståhl I.</i>	s 1089
A Simulation Model for the Dynamic Comparison of R&D Innovation Process Structure <i>Gastaldi M., Levialdi N.</i>	s 1095
An Integrated Model for Public Budget Simulation <i>Bröthaler J.</i>	1101
Simulations of Optimal Macroeconomic Policies for Austria with a Varying Rate of Discount <i>Neck R., Karbuz S.</i>	1107
Simulation for Project Administration Von Schoultz F., Törn A.	1113
Fuzzy Systems in Simulation	
On Structure Identification in Fuzzy Modeling Haas R.	1119

-

xix

Tuning of Fuzzy Controllers: Application of the Relay Method Santos M., Dormido S., de la Cruz J.M., López Orozco J.A.	1131
Model Based Design of a Fuzzy Temperature Control for a Steam Generator Frank M., Herbrik R.	1137
Fuzzy Rule Based Control of a Neutron Diffractometer Benitez-Read J.S., Ayala-Pérez G.F.	1143
Neural Nets in Modelling and Simulation	
Self-Organization of Models - Present State Müller JA.	1149
A Workbench for Neural Control in a Simulation Environment Jarmulak J., Kerckhoffs E.J.H., Rothkrantz L.J.M.	1155
Qualitative Limitations Incurred in the Implementation Process of Artificial Feedback Neural Networks	1161
Michel A.N., Wang K., Liu D., Te H.	1101
Control of Manufacturing Systems Using Neural Networks Haouani M., Ferney M., Zerhouni N., Elmoudni A.	1163
Petri Nets in Modelling and Simulation	
Petri Nets for Discrete Event Simulation: Would a Standard Extension be Beneficial ? Čerić V.	1169
Simulation Model Structures with Mobile and Static Intelligent Entities Jávor A.	1175
On the Modelling and Simulation of Variable Speed Continuous Petri Nets by Design/CPN	1101
Ait-Yahia A., Zerhouni N., Elmoudni A., Ferney M.	1181
Extended Coloured Petri Nets and its Application in Mixed-mode System Modelling Yang Y.Y., Linkens D.A.	1187
Simulation of Production Systems with the Help of Batches Petri Nets Audry N., Prunet F.	1193
Simulation and Artificial Intelligence	
How AI & Simulation Benefit Each Other Wildberger A.M.	1199
Learning Rules for Modelling Dynamic Systems Behavior <i>Keller H.B.</i>	1205
Development & Benchmarking of Pultrusion Process Models: Including Artificial Neural Network, Rule Based and Mathematical Wright D.T., Williams D.J.	1211
Modelling and Simulation of Hybrid Computational Intelligence Systems <i>Thurner E., Yurtsever K.</i>	1217
An Intelligent Support of Airport/Airspace Simulation Babka O.	1223

хх

XRaptor: A Synthetic Multi-Agent Environment for Evaluation of Adaptive Control Mechanisms Mössinger P., Polani D., Spalt R., Uthmann Th.	1229
Multi-Agent Systems Based Distributed Intelligent Simulation - A Case Study Belo O., Neves J.	1235
Artificial Life in Artificial Worlds Ortega F., Jerez J., Vico F.J., Gonzalez M., Conde I.M.	1241
Knowledge-Based Simulation	
Simulation of a Vision Steering System for Road Vehicles Al-Dabass D., Goodwin Ch., Sivayoganathan K.	1247
Forecast of Road Temperatures for Ice Warning Systems by Simulation of the Road Stat Hertl S., Schaffar G.	e 1253
Knowledge-Based Emulation-Simulation for Flexible-Automation Manufacturing Michelini R.C., Acaccia G.M., Callegari M., Molfino R.M., Razzoli R.	1259
Modeling and Simulation of Intelligent Control in Process Engineering Hamaidi L., Bourseau P., Muratet G., Couretas J., Zeigler B.P.	1265
Knowledge-Based Simulation in Multiattribute Decision Making Resteanu C., Filip FG., Ionescu C., Somodi M.	1271
Modelling and Simulation in Education and Training	
Simulation and Animation Models as Didactic Tools Stoffa V.	1277
Teaching of Simulation Model Design Using MPE-Methodology Klima V., Kavička A.	1281
Object-Oriented Simulation with Oberon Qiu X., Schaufelberger W., Glattfelder A.H.	1287
DIC_XIM, a Simulation Game for Teaching the Application of Decision Sciences in Physical Distribution Management Muller-Malek H., Vanmaele H., Baertsoen G.	1293
Teachware for Modelling: An Air Conditioning Pilot Plant Case Study Mušič G., Matko D.	1299
Dynamic Energy-Simulation in Architectural Education. Teachware for Bioclimatic Architectural Design <i>Tuschinski M.G.</i>	1305
A Virtual IC Factory in an Undergraduate Semiconductor Device Fabrication Laboratory Asenov A., Stanley C.R.	, 1311
Simulation in Neural Nets - Demonstrators and Courseware Šnorek M., Skrbek M.	1317
Simulation Game "PROST - Simulation of Production Control" Matyas K., Schachner T.	1323

xxi

xxii

GAPTUTOR - A Simulation-based Tutorial Introduction to Methods for the Analysis of Neuronal Interactions	
Murray-Smith D.J., Murray-Smith E., Rosenberg J.R., Junge D.	1329
Simulation of a Rotary Dryer with Multimedia Yliniemi L., Leiviskä K.	1335
Using Coloured Petri Nets in Modelling the Knowledge Assessment Process. An Example Involving Simulations on the Sharing of Resources	
Vlad C.I., Tertisco M.	1341
Using Agent Based Simulations for Training Williams R.J.	1347
Author Index	1353