6 ARGESIM Report AR 9

Proceedings of the

EUROSIM’98

Simulation Congress

EDITED BY

Kaj Juslin

for

The Federation of European Simulation Societies

ALL RIGHTS RESERVED OF THE SUBMITTED PAPERS

HOSTED BY
Helsinki University of Technology
Espoo, Finland, April 14-15, 1998

ISBN print 978-3-901608-03-2
ISBN ebook 978-3-901608-87-2 DOI: 10.11128/arep.09

Title: Proceedings EUROSIM'98 Simulation Congress
Subtitle: EUROSIM Congress 1998, April 14-25, 1998
Editor: Kaj Juslin

Series: ARGESIM Reports

Series Editor: Felix Breitenecker

Volume: ARGESIM Report AR 9

ISBN print 978-3-901608-03-2, 1998

ISBN ebook 978-3-901608-87-2, 2021

DOI 10.11128/arep.09

Preface

EUROSIM™8 is the third conference of the Federation of European Simulation Societies. It brings
together people from different organisations, interest groups and regional societies each third year
to promote the advancement of modelling and simulation in industry, research, education, and

development.

The EUROSIM’98 Simulation Congress is organised by SIMS - Scandinavian Simulation Society
in co-operation with the other EUROSIM member societies: AES - Asociacién Espaifiola de
Simulacién, ASIM - Arbeitsgemeinshaft Simulation, CROSSIM - Croatian Society for Simulation
Modelling, CSSS - Czech & Slovak Simulation Society, DBSS - Dutch Benelux Simulation
Society, FRANCOSIM - Société Francophone de Simulation, HSS - Hungarian Simulation Society,
ISCS - Italian Society for Computer Simulation, SLOSIM - Slovene Society for Simulation and
Modelling, UKSIM - United Kingdom Simulation Society.

Other Sponsoring Societies are: CASS - Chinese Association for System Simulation, JSST -
Japanese Society for Simulation Technology, LSS - Latvian Simulation Society, PSCS - Polish
Society for Computer Simulation, ROMSIM - Romanian Society for Modelling and Simulation,
SCS - Society for Computer Simulation.

The local Scientific Committee at Helsinki University of Technology is formed by: Prof. Sirkka-
Liisa Jamsd-Jounela (Chair), Laboratory of Process Control and Automation; Prof. Raimo P.
Himaildinen, Systems Analysis Laboratory, Prof. Heikki Koivo, Control Engineering Laboratory,
Prof. Carl-Johan Fagelholm, Laboratory of Energy Engineering and Environmental Protection, Dr.
Riitta Smeds, Laboratory of Business Process Modelling, The International Scientific Advisory
Committee is formed by the board members of EUROSIM. General congress chair has been ,

MONILA has made the printing. AREA Congress Team has been engaged in the practical
arrangements and LORDHOTEL for the Congress dinner.

The emphasis of the congress has been to provide a forum for just on time research presentations.
The collection of papers was made by e-mail. The last paper updates arrived only one week before
the congress. This proceedings document in three paperback volumes of totally 630 pages of
contributed papers is intended as working material, during and after the congress. Selected papers
are proposed for reviewing and enhancements aiming at inclusion in special issues of the
Simulation Practice and Theory journal published by Elsevier Science Publishers B.V.

My sincere thanks to everybody involved to make the congress a fruitful and rewarding experience.

Kaj Juslin
General Congress Chair

Contents

Bl INTRODUCTION

LeFeévre, Jacques &
Weller, P.

Habibi, J.,
Alpdemir, M.N. &
Zobel, R.N.

Adamski, D. &
Hiller, M.

B2 HPCN 1

Dekker, L. &
Brok, S.W.

Huttunen, Pentti,
Porras, Jar,
Ikonen, Jouni &
Sipild, Kari

Ikonen, Jouni,
Porras, Jan &
Harju, Jarmo

B3 HPCN 2

Liska, Miroslav,
Meohart, Peter &
Safaoik, Jioi

Lin, H. X.;
Vollebregt, EAH &
Yang, T.

Pipis, Andreas,
Theodoropoulos,
Georgios K.,
Stefanidakis, Michael &
Lioupis, Dimitris

B4 HPCN 3
Lemmens, Kees
Gregorio, S.D.,

Rongo,R. &
Spataro, W.

Jansen, Henk &
Dunsbergen, D.W.

Genetic Optimisation of Fuzzy Policies in Models of Managed
Systems

Implementation of Functional Simulation and Animated
Visualisation on Heterogeneous Parallel Architectures

CORBA in Simulation Tasks

An MPP Simulation Method for Inhomogeneous Distributed
Parameter Systems

Using Cray T3E for the Parallel Simulation of Cellular Radio
Coverage Calculation

Analysing Distributed Simulation

Simulating Details on Demand Using Variable-Resolution
Modelling

Trade-Offs Between Parallelism and Convergence Rate of Parallel

Solvers

Efficient Modelling and Simulation of a Virtually Shared Memory

Architecture

A Heuristic for the Analysis of Particle Simulation Problems

Fluid-Dynamics Simulation of Complex Geological Phenomena

by Cellular Automata Methods

Prediction of Spatially Correlated Coastal Erosion and
Morphodynamic Evolution Processes

14

20

27

33

39

66

77

85

BS

D2

D3

D4

Chin, S.B.;
Duncombe, J.T. &
Wang, F.

The Use of CFD Simulation in the Design of Continuous Casting
Tundishes and Moulds

WEB BASED SIMULATION

Hyo6tyniemi, Heikki &

Nissinen Ari

Karhela, Tommi A.,
Kuikka, Seppo M. &
Paljakka, Matti A.

Alfonseca, Manuel,
Carro, Rosa,

de Lara, Juan &
Pulido, Estrella

PULP & PAPER

Berndtson, Jouko,
Shakespeare, John,
Huhtelin, Taisto &
Koivo, Heikki

Laukkanen, Ismo,
Lappalainen, Jari &
Juslin, Kaj

Danielsson, Karin &
Funkquist, Jonas

Viitamiki, Paavo

SIMULATORS
Rouault, G.
Pieroux, D. &
Van Houte, U.

Brue, Laurent &
Fallon, Benoit

Laakso, Pasi

Miettinen, Jaakko &
Hinninen, Markku

New Simulation Tools: Towards Mastering Explosion of
Information

Application of Web Browser and Software Component
Technologies in Operator User Interfaces in Process Simulation:
A Case Study on Dynamic Simulation of Rotary Lime Kiln

Education in Ecology at the Internet with an
Object-Oriented Simulation Language

Simulation of Scanning Papermachine Measurements

Simulation of Stock and White Water System Dynamics of a
Modem Paper Mill - a Case Study

Dewatering of a Deformable Porous Media:
A Simulation Study for the Press Nip of a Paper Machine

Static Simulation of Steam Pressure in Paper Machine Grade
Changes

ALICES: an Advanced Object-Oriented Software Workshop for
Simulators

Validation of Accident Transients in Training Simulators
Tracking Simulator Model of Nuclear Power Plant

Thermal Hydraulic Model Capability in the APROS Code
Environment

OOM (Object Oriented Modelling)

Mattson, Sven Erik &

Elmgqyvist, Hilding

Ramos, Juan Josg,
Piera, Miquel A. &
Serra, Ignasi

An Overview of the Modelling Language Modelica

A Free Context Physics Knowledge Representation Suitable for
Object-Oriented Modelling Tools

94

103

111

118

124

130

139

145

150

156

164

173

182

187

D5

E2

E3

Luque, Daniel,\
Piera, Miquel Angel &
Serra, Ignasi

Franke, Riidiger

COMMUNICATION

Steuer, Michal &
Snorek, Miroslav

Jarvensivu, Mika
Snorek, Miroslav

Ylostalo, Terhi &
Hyé6tyniemu, Heikki

HYBRID SYSTEMS 1

Mosterman, Pieter J.,
Broenink, Jan F. &
Biswas, Gauttam

Ringh, Magnus &
Littmarck, Svante

Cerv, H.,
Monse, M.,
Miiller, V. &
Schulze, S.

Krzic, G.,

Zupancic, B. &

Music, G.

HYBRID SYSTEMS 2

Fritz, Martin &
Engell, Sebastian

Stanciulescu, Florin
Fabian, G.,

van Beck, D.A. &
Rooda, J.E.

Hussu, Alojz

A Process Industry Pseudo-Bond Graph Tool to Avoid
Algebraic Loops and Derivative Causalities Arisen From
Model Coupling

Modelling and Optimal Design of a Central Solar Heating Plant
with Heat Storage in the Ground Using Modelica

Simulation of Radio-waves Propagation Using Neural Networks

Empirical Lime Kiln Process Modelling with Neural Networks
A Generalised Fingerprint Case Study

Maps of Process Dynamics

Model Semantics and Simulation of Time Scale Abstractions in
Collision Models

FEMLAB - a MATLAB-Based Environment for Multi-physics
Modelling and Simulation

Simulation-Aided Design of Electromechanical Systems as
Shown by the Example of Rolling Mill Drives

Comparison of Some Popular Continuous Systems Modelling and
Simulation Tools for Hybrid Systems

Recipe-Driven Batch Processes: An Application of Hybrid
Systems Modelling and Simulation

Hybrid Simulation of Control Engineering Systems and its
Applications in Large Complex Environmental Systems

Semantics of Model Composition in Hybrid Languages

Entering Bond-Graphs as Graphs

193

199

205

213
221

225

230

238

243

250

255
261

269

277

E5

B6

B7

OPTIMISATION

Alexik, Mikulas

Raivio, Tuomas,
Virtanen, Kai,
Ehtamo, Harri &
Himildinen, Taimo P.

Himiliinen, Raimo P &
Maintysaari, Juha

Virtanen, Kai,
Raivio, Tuomas &
Himdldinen, Raimo P.

Stanojevic, Petar,
Kodzopelic, Jugoslav,
Miskovic, Vasilije &
Maksic, Radovan

HYPERMEDIA

Oksanen, Jaakko

Wiloka, D,
Zolg, M. &
Winkelholz, Carsten

Lindfors, J.,
Yliniemi, L. &
Leiviskd K.

Gomes, S.,
Koukam, A. &
Sagot, J.C.
INTELLIGENCE

Juuso, Esko

Bruzzone, A.G. &
Giribone, P.
Paris, J.L.,

Pierreval, H. & Tautou, L.

UNIT OPERATIONS 1

Pokki, Juha-Pekka,
Hurme, Markku &
Aittamaa, Juhani

Simulation of Route Time Table Optimal Division for Town
Transport Vehicles

Microcomputer Simulation of Optimal Flight Paths

Interactive Spreadsheet Modelling of Regulation Strategies for a
Lake-River System

A Decision Analytic Approach to Flight Simulation

Real Multilevel Maintenance System Process Simulation in the
Function of Cost/Benefit Analysis of Investment in Equipment
and Staff Training for Diagnostic

Hypermedia and Simulation in Process Control Systems

CYBERBIKE - Virtual Reality and Multimedia in Road Safety
Education

Combined Hypermedia and Simulation in Learning of Process
Automation

A Modelling and Simulation Approach to Ergonomic Design of
Automotive Cockpits

Robust Dynamic Simulation with Linguistic Equations in
Intelligent Control Design

Robust and Central Composite Design as Collaborative
Techniques for Production Planning Using Simulation
Computational Intelligence in Simulation Optimisation: a
Distributed Tool Using PVM and its Application in
Manufacturing

Development of Emergency Relief Simulator for Near Critical
Fluids

280

288

290

292

294

298

309

314

319

324

332

340

347

B8

B9

D6

Jakobsson, Kaj,
Pyhilahti, Antti,
Aittamaa, Juhani,
Banik, Peter &
Koskinen, Matti

Mavrommatis &
Konstattinos Th.

Casella, Francesco,
Leva, Alberto &
Maffezzoni, Claudio

UNIT OPERATIONS 2

Cziprian, Zoltan,
Jamsia-Jounela,
Sirkka-Liisa &
Munoz, Pedro

Kanninen, Ville

Kanervo, Jaana,
Backman, Leif,

Jamsi-Jounela, Sirkka-

Liisa & Krause, Outi

Pitkild, Jyrki,
Xia, Jiliang,
Vaarno, Jussi &
Jokilaakso Ari

COMMUNICATION

Lalis, Ivan,
Menhart, Peter &
Safarik, Jiri

Ozegovic, Julije &
Mornar, Mario

Zanchi, Igor;
Blazevic, Zoran &
Marinovic, Ivan

Zanchi, Igor;

Marinovic, Ivan &
Blazevic, Zoran

ENTERPRISE
Smeds, Riitta J.
Cricelli, Livio,

Gastaldi, Massimo &
Levialdi, Nathan

A Steady State Rate-Based Reactive Distillation Model

A Dynamical Systems Model of Combustion Kinetics in Indus
trial Furnaces

Dynamic Simulation of a Condensation Plate Column by
Dynamic Decoupling

Modelling and Simulation of Heap Leaching Processes

Simulation of the Cumulative Capacity of
Ceramic Rotating Disk Filters

Transient Kinetic Modelling of Adsorption

Simulation of Two Phase Flow in a Water Model Ladle with
Central Gas Injection

Reducing Communication Overhead in Distributed Simulation
Using Statistical Approach

The ATM Virtual Channels Simulation for Packet Network
Simulator
A Comparison of the Models for the Path Loss Prediction in

Suburban Environment

Assessment of Method Selection for Calculation of Multiple
Diffraction Losses by Application of "Knife Edge" Model

SimLab: Enterprise Simulation in Virtual Reality

Measuring Factories Performance Using Data Envelopment
Analysis

356

360

368

375

381

389

395

398

406

412

417

422

424

D7

D8

D9

E6

Teich, J.,
Wallenius, H. &
Wallenius, J.
Burlat, P.,
Campagne, J.P. &
Neubert, G.
PRODUCTION

Mososo, P. &
Ulrich, H.

Lulay, W.E. &
Reinhart, G.

Crostack, Horst-Artur,

Becker, Markus &
Saal, Michael

Lehtonen, Juha Matti

ENGINEERING

Scholliers, Johan &
Peussa, Pertti

Balazs, Matthias &
Spieck, Martin

Jalkanen, Juha-Pekka &
Vilisuo, Martti

Keller, Thomas,
Wenk, Hans-Peter &
Scheiben, Erich

ASSEMBLY

Heilala, J. &
Montonen, J.

Reinhart, Gunther &
Rossgoderer, Ulrich

Liu, Xiaoyi &
Walter, Joachim

Lind, Mikael
CONTROL

Zenger, Kai &
Orava, Jussi

Zolotuchin, Yevgeny &
Okol'nihnikov

WWW-Based Support Tools for Business Negotiation and
Communication Simulations

Modelling Organisational Maps: A New Challenge for Simulation

Complete Modelling of Production for the Design of Planing and
Control

Hierarchical Simulation Models Improve Production-
Accompanying-Simulation

Process Networks Engineering: Control-Loop-Based Modelling

Decentralised Factories

Using Simulation for Evaluation of Re-engineering Actions

Simulation Environment for Autonomous Vehicles

Multibody Simulation of a New Spindle Driven Design

A Simulink block library for steam turbine simulation

Hardware-in-the-Loop Simulations of Rail-Vehicles At Adtranz

Simulation-Based Design of Modular Assembly System - Use of
Simulation Module Library

Spatial Planning of Manual and Automated Workplaces Utilizing
Mathematic Algorithms and Virtual Reality Devices

Simulation and NC-Programming for the Milling of
Aircraft Integral Frames

Modelling a Bellows with a Beam-like Component in ADAMS

Modelling and Analysis of Linear Time-Varying Differential
Systems by Lyapunov-Transformations

Simulation of Control System for Water Treatment

427

430

441

450

458

466

473

476

480

486

493

499

506

513

520

526

E7

ES8

E9

Nihtild, M.T.,
Julien, S.,
Babary, J.P. &
Czeczot, I.

Loncar, Drazen &
Serman, Nikola

KNOWLEDGE

Javor, Andras &
Szucs, Gabor

Funk, P.,
Gerber, C.,
Lind, J. &
Schillo, M.

Atanasijevic-Kunc,
Maja, Karba, Rihard,
Zupancic, Borut &
Belic, Ales

Cunha, Alcino,
Belo, Orlando &
Santos, Alexandre

MECHANISMS
Kreiner, Christian,

Steger, Christian &
Weiss, Reinhold

Zlajpah, Leon

Sumilin, B. &
Zanchi, V.

Cecic, Mojmil;
Papic, Vladan &
Zanchi, Vlasta

SCIENTIFIC ISSUES

Pekkanen, Martti
Pekkanen, Martti

Toivonen, Hannu,
Mannila, Heikki,

Salmenkivi, Marko &

Laakso, Karri-Pekka

Jonins, G. &
Tomsons, Dz.

Simulation of Two Adaptive Control Schemes of a Distributed
Parameter Bio-reactor

Steam Temperature Control in Thermal Power Plant by Means of
Fuzzy Logic - A Simulation Study

Knowledge Presentation in Simulation Models for Environmental
Control

SIF: an Agent-Based Simulation Toolbox using the EMS
Paradigm

The Use of Genetic Algorithms in Modelling the Multivariable
Control Problem

Modelling Intelligent Decision Making on Electronic Mail
Distribution Systems

Model-Based Verification of Real-Time Software for Automatic
Logistic Systems

Hardware-in-the-loop Simulation using the Planar
Manipulators Toolbox

Modelling and Simulation of Linear Quadratic Regulators for
MIMO Air-Conditioning Systems Using a Simulink Software
Package

Simulink Simulation of Hodgkin-Huxley Equation

Model and Theory
Process Modelling, Simulation and Design

Bassist - a Tool for MCMC Simulation of Statistical Models

Simulation-Based Training Using SITA

530

535

540

544

548

553

560

565

573

579

581

585

590

596

C6

Frenkel, S.L.

ADDITIONAL TOPICS

Melas, Viatcheslav

Sinitsyn, I.N.,

Korepanov, Ed.R. &
Shin V.I

Aversa, R.,
Martino, B.D.
Mazzeo, A.,
Mazzocca, N. &
Villano, U.

Sysoev, V.V,
Amrahov, 1.G. &
Movshin, A.O.

Moskvin, Gennady A.

One Model for Simulation-Based Approach to Computer System
Performance Evaluation

On the efficiency of the splitting

Methods, Algorithms and Software Tools for CAE of Stochastic
Control Systems

A Hybrid Approach to Performance Prediction through
Integration of Static Analysis and Simulation

Optimal Design Algorithm for Technological Lines

Perceptual Models of the Artificial Intelligence

599

603

608

613

624

629

GENETIC OPTIMISATION OF FUZZY POLICIES IN MODELS OF
MANAGED SYSTEMS

Jacques LeFevre »%* | P. Weller **

1- LAIL URA CNRS D1440, Ecole Centrale de Lille, BP 48, F59651, Villeneuve d’Ascq, Cedex, France, jlefevre @lails1.ec-lille.fr
2- Sherrington School of Physiology, UMDS — St Thomas’s Campus, London - SE1 7EH - UK, j.lefevie@umds.ac.uk
3- IDEA.SIM LTD, Modelling and Simulation Consultancy, Lowther Hill 7, London, SE23 1PZ, Tel/Fax: 44 (0) 181 690 80 37
4- MIM Centre, City University, Northampton Square, London — EC1V OHB - UK

Introduction

This paper discusses first the structure of the models used today to represent managed systems. We then
present a new modelling method called Transformation System Dynamics (TSD) [1]. It provides a simpler
and more intuitive model description than Forrester System Dynamics {2], which is the currently
predominant method in this field. TSD is based on a kinetic description of the main stores, transformation
processes and control policies of transformation rate (TRCPs) in a system. In the second part, we show
briefly how and why to fuzzify most of these TRCPs. We represent them by neuro-fuzzy networks which
may be designed explicitly, by learning from data or finally by genetic algorithms and genetic programming.

The pros and cons of modelling managed systems with Forrester System Dynamics (FSD)

We live in a world of complex managed systems (private and public enterprises, socio-economic
development, environment and health care...). More and more, either as managers or even simply as
stakeholders, we need to understand how and why these systems behave. These behaviours are dynamic and
caused by the interplay of many factors acting in complex feedback loops and at different time scales. To
understand them, we need to think about long sequences of intertwined causes and effects. We human beings
are not well equipped to deal with such multi-factorial and circular reasoning. Obviously, the use of good
computer models and simulations may be of great value if ... we can develop them.

Obviously, these managed systems are often very complex and ill defined. Building realistic and detailed
models is most of the time impossible and this is not what we want. Our goals are rather to make explicit, to
develop coherently and to test rigorously the mental models used by people when dealing with these systems
in order to test them, to improve them and to discover all their sometimes well hidden consequences. Since
these mental models are much simpler than reality, they are more realistic targets for mathematical
modelling. Obviously, the methods used depend on the goal and level of details of our studies. In this paper,
we are concerned with strategic, long range and global phenomena and policies. At this level, the method
currently favored by most modellers is Forrester System Dynamics (FSD) [2]. It is a lumped approach
focusing on “levels” i.e. characteristic quantities defined by the solution of a differential equation defining
their rate of variation. Some of these levels are “extensive” and analog to tanks or stocks (with a conservation
principle, e.g. money, matter, people, products...) and some are not (e.g. motivation, knowledge, tendency to
buy...). Modelling a system starts by listing its “levels”. A “network of flow processes” links these levels
together emptying and filling the various stocks. These flow processes are analog to uni-molecular chemical
reactions. However, the algorithms f (.) determining the flows may be much more complex than the ones
used in chemical kinetics. We may for instance use Volterra functional, differential operators or even expert

systems. Generally, we have therefore:

f(a, B, Jc1 ,...,xn,ul ,...,um,t) . B (1)
In (1), A and B are stocks and the flow f=-dA/dt = dB/dt is defined explicitly by an algorithm dependent in
general of A, B, other stocks X; ... X, , external variables u,,...u,, and t. Any FSD model is thus given by the
diagram representing of N reactions (Fig.1). Many systems may be usefully studied at this kinetic level.
Moreover FSD is supported by very good packages (e.g. STELLA™, trademark of HPS Inc. Hanover, USA). These
facts explain its success (journals, books, professional societies, commercial and industrial applications).

However we believe that FSD should be much improved in several respects. (1) The restriction to flows with
only one origin and one destination (uni-molecular) often results in messy spaghetti-like flow networks
(continuous lines) showing few similarities with the structure of the real systems, as we perceive them in our
mental models. (2) The control structures (interrupted lines) are also too messy and often too detailed and
thus impede rather than favor understanding. (3) The flows may only be described by classical mathematical
formulations, which are often over-detailed in applications

Stocks . . -

@ Taps where most of our knowledge on the intervening factors is
@ §?,‘f§°s | fuzzy. In the last few years, one of us (JL) has developed a
> Tep control | New graphical modelling method called “Transformation

Systtem Dynamics (TSD)” which eliminates these
problems and includes FSD as a subset.

Fig.1: FSD: a network of generalised reactions describing flows
between stocks (continuous lines). The flow rates are defined by
equations given in the taps and dependent on the variables
linked to the taps by interrupted lines (the flow control structure).

Transformation System Dynamics: A new FSD with Bond Graph-like notations

Our goal is just to introduce TSD’s main concepts on an example (Fig.2) to show that it represents managed
systems by diagrams which may be understood easily. Like in FSD, A TSD model is made of two parts:

- A level and flow network (see Figure 2 for a simple example). It is made of levels (e.g. [Blo], [Rip]) linked
by continuous arrows which denote the flows defined by transformation processes (e.g. <Transfer>, Prod>)
with characters < and > indicating the directions of flows. In contrast with FSD, each process is analog to a
generalized pluri-molecular reaction. It represent processes like Production (materials + resources give
products), Sales (orders + products give money and satisfied customers), Population growth (people + food
give more people), Epidemic development (sick people + healthy people give more sick people), Bio-
reaction (bacteria produce bacteria and products) and many others. Using general notations, we have:
f(A,B,C, D, .x1 s X, u1 s 1)

n n

>pC+qgD+... @

nA+mB+...

This process accepts different amounts (coefficients n, m) of several resources (A,B ...) and transforms them
into products (C,D,...) produced also in different quantities (p, q). The symbols J (junctions) show the
reunion of these inputs (A, B .. in packs having the proper amounts nA and mB of each resource and their
separation (C,D,...) at the exit of the transformation. The transformation rate (number of packs transformed
per unit time is defined by an algorithm f (...) which may be algebraic but also, as we said before, much
more complex including for instance time delays, differential or functional operators and even fuzzy rules or
neural networks. Very often the flow computation may be factored in two parts

F=fe(A By €D) ® f g (X Xy s U s Uy s t) 3)
Where ®is a suitable operator; f. (c for close) gives the dependency on the levels directly linked to the
flow (donors and acceptors) and fy (d for distant) expresses how other variables influence the flow. Like the
flows, the packing coefficients n, m, p, q... may be controlled by similar equations.

- A flow control structure (interrupted lines) sending the values of some variables (mainly stocks) to square
boxes which may be decomposed in hierarchical block diagrams and define the algorithms (2) or (3)
computing the transformation rates. If the flow algorithm is expressed in the non-separated form (2), all the
variables appearing in it must be linked to the square box, which then send its result to the flow process. In
the separated form (3), the box only receives the variables of the distant part and computes f;. The flow
process receives the values of the close variables through a causality process similar to the one existing in
bond graphs and computes f. before to compose f; and f;. In the model of Fig.2, this causality process is not
illustrated and only f; , the distant control structure, has been represented. It is obviously impossible to give
here all the details (see [1]). The reader is invited to study the legend of Fig.2, which is intended to show that
a FSD diagram may be understood easily and provides a natural description of a system. Obviously, the
system illustrated there is a bit naive; realistic models are much bigger but as easy to grasp.

Currently, we have used TSD with more than 150 students (managers, informaticians, engineers, and
biologists) and in many fields (business, production, regional development, ecology, epidemiology, bio-
technology, ...). In each case, TSD provided a simple solution much easier to understand, maintain and
improve than the FSD models. It is implemented as a library TSD-LIB™ in the modelling and simulation
package 20-SIM™. (TSD-LIB: trademark of IDEA.SIM LTD, London, UK; 20-SIM: trademark of ControLLab BV, Enschedde, NL)

Fig.2: A simple TSD model showing 4 sectors of a
company (Human resource management, Production,
Storage and Sales/Services) and a Customer sector. Two
kinds of raw materials enter from sources {I} at the lower
left side. They are joined in a junction J and enter into a
production process Prod> which puts its products into a
warehouse [Sto]. From there, the products are paired in a J
| with orders from a store of backlog orders [Blo] coming
| from the customers. These pairs go into a sales process
| sending its products to the customer sector. This sector is
| unspecified in the figure which only shows that is has a
store of customers [Cust] and three processes: recruitment
of customers from a pool (market), loss to competitors and
placement of orders. The human resource sector has two
stocks [Rip], resources in production and [Ris], resources in
sales. People may be hired to, transferred from and fired from these two stocks by the appropriate processes (e.g. people
hired separate at a junction J and go either toward [Ris] or [Rip]. The rates of the processes are computed by a flow
control structure expressed in separated form (3). The Figure also shows the distant control structures fy (interrupted
lines and control boxes) for each process. For instance, the block P computes the distant part of the production rate from
RIP, the resources in production. Similarly, the block Tr computes the distant part of the staff transfer rate from [Sto],
the current stock of products. For the sake of simplicity the causal structure determining the close control structure (f.)
has not been represented. It transfers to each process the values of its donors and acceptors. These values are then used
with the distant informations from the control boxes to compute the flow rate according to algorithms like (3).

Human Resourcs Management

Representation of internal system controls and management policies in TSD

We have only scratched the surface of TSD and many of its concepts have not been discussed. In other
works, we have made our example more realistic by including for instance a multi-step production with JIT
and explicit money accounting, a detailed view of staff training and employment, a separate consideration of
various product lines, a de-aggregation of the sales/service department and a detailed market model.
However, Fig.2 serves its simple purpose: to suggest that TSD diagrams correspond well to the way we see
our systems. Indeed, we can explain it easily to any manager and at the same time use it as a full model
definition from which 20-SIM automatically generates the simulation code (for both 20-SIM™ and
MATLAB™, (MATLAB, a trademark of MathWorks Inc., Natick, USA). Looking back to the problems mentioned
earlier, our claim is that TSD solves the first two: the flow and control structures are now intuitive, simple
and hierarchic, thus promoting the design of advanced models. In the rest of this paper, we will address the
third problem: the fact that the representation of rates and packing coefficients by classical algebraic formula
is often unrealistic. Control structures have often two different parts: (1) laws determined by the system itself
and which cannot be controlled by us and (2) management actions. We call them respectively “internal
system controls (ISC) ” and “management policies (MP)”. An example of such a composite structure is
given in Fig.3, which gives a possible model of the staff transfer process <Transfer> in Fig.2

As the example shows, in most managed systems, the definition of ISCs and MPs by exact mathematical
formulas seems a bit contrived and artificial. Why this curve and not another slightly different? Why this
formulation or parameters? Why these variables and not others (for instance in our example, Blo and Cust)?

- Obviously, we may test various curves and parameters by stochastic sampling. We might use these tests to
produce robust results. However, even if we do so, the experts of the real system, when asked, will only
produce qualitative verbal rules like “If our stock of products is getting rather small, we had better to
increase the production rate by transferring some staff to production quite fast”. This kind of knowledge is
better suited to fuzzy rules and its use in modelling managed systems is long overdue. It is an important
subject and its implementation in TSD will now be described.

Close Influences (RIS, RIP), transmitted along flows

ls =Max (0, H(athrexpo, RIS)
I = Max (0, H(athrexpo, RIP)

Distant Influence (Sto), computed by box Tr

Fig.3: Determination of <Transfer>, the rate of staff transfer from
Ris to Rip or Rip to Ris (see Fig.2). It depends on three influences.
First we have the two close influences of [Ris] and [Rip]. They are
not shown on Fig.2 but may be visualized as transferred along the
flow lines joining these stores to the process. They are computed
by the expression of lmis and e in Fig.3. H is a Hill function and a,

thr and expo are its parameters. These close influences are under
management control (MPs). The third factor is the distant infiuence
of the stock Sto computed by the block Tr defining the equation of y
shown in the Figure. Maxtr is a gain (maximum transfer rate) and
tabl is a tabular function. It depends on a variable u expressing the
fractional error between the current stock Sto and its desired value
Lk) | DesSto. This distant influence is also an MP. Finally, the fiow rate

is computed by the last equation, supposed t independent of

y= maxir . tabl(u); u = (DesSto-Sto)/DesSto)

Transfer rate, computed in process <Transfer>>

Fuzzy internal system controls (ISC) and management policies in TSD.

A full fuzzification of a TSD model could be obtained by applying the extension principle to its differential
equations and obtaining fuzzy differential equations [3]. We could also use qualitative simulation methods
and restrict ourselves to computing qualitative behaviour [4]. However, this is not what we want. We need to
preserve the crisp quantitative aspects of the flow balances expressed in junctions and in stock equations
(sum of flows;, - sum of flows,, = stock derivative). We want also to be able to couple classical crisp
formulations with fuzzy rules. In fact, the only model parts we want to fuzzify are some flow-computing
rules but their inputs and outputs must stay crisp numbers. This points toward a method which considers the
control structures as independent fuzzy controllers in the Sugeno sense taking its inputs as numerical values
from the stocks and auxiliary variables and delivering control variables as de-fuzzified crisp values. In Fig.4,
we show such a control system for a modified and more general version of the previous example.

Rule Table Graphical representation of a rule | Fig.4: a fuzzy controller implementation of a “common
- (for Blo iarge, 18t row) sense policy” deducing the staff transfer rate (positive
v LYY means toward RIP) and expanding on Fig.3 by using

\'5; values of Blo and Sto. The fuzzy linguistic values are

be) VL (very large), L (Large), Av (average), S (small), 0

s (zero). The table gives the linguistic rules, an example

L- of which is given below. A graphical representation of a

VL- set of four rules describing the first row (Blo = L) of the

87 AV 7(L >(VL Sto| table is given on the right with an illustration of the fuzzy

subsets involved. The four grey patches describing

these rules show roughly the inverted sigmoidal shape
used in Fig.3. They could be obtained by a fuzzy
clustering method from real data showing the actions of
human experts in an interactive simulation game.

Example of rules

L if(Blo is large and Sto is small) then (y Is very large positive)

As long as its number of variables is small or if it is organised hierarchically, a controller like the one above
is much easier to formulate than a multi-variable algebraic function. It may also be explained very easily to
non-mathematicians. Finally it may be learned from real data gathered by observing human experts playing
an interactive simulation game. In our opinion, the inclusion of such Sugeno-like controllers in TSD is a
significant step towards real world applications. We will now describe their realisation by trainable neuro-
fuzzy systems, which allow us to use both symbolic linguistic and sub-symbolic numerical levels.

Neuro-fuzzy implementation of control rules (management determined and internal)

Fig.5 give the elements of a neuro-fuzzy formulation of the controller of Fig.4. It shows that fuzzy
formulations are just parallel implementations of functions similar to those used for the control structures in
Fig.2. They have however two important advantages. Being based on a fuzzy semantics, they are designed,
understood and explained much more easily than algebraic formulas. Moreover, by placing them in a neural
network perspective, we get the possibility to use learning methods and to make them adaptive. This is
important in modelling managed systems where classical methods are so often insufficient.

In Fig.5-a, we show a neuron-like implementation of the rule given at the bottom of Fig.4. It shows that each
rule is just a generalized artificial neuron with three modifications: the usual weighting formulas are replaced
by functions w(x) given by the fuzzy membership functions of the inputs; the summation of activation is
replaced by a fuzzy operator (frequently a AND or a t-norm operator) and the squashing function is replaced
by the inverse of a simplified membership function of the output variable (Sugeno singleton). Each of the
twelve rules of Fig.4 is given by a similar neuron. Since the input fuzzy sets are overlapping, several of these
rules fire with different degrees for each set of values of the inputs. The final output of the controller is then
computed by a paralle] implication method. This is illustrated in Fig.5-b.

A) Classical arfificial neuron B) TSD Fuzzy controller for Distant control factor y of <Transfer>

X Y
2 L =Y | y=ctd)

]

]
oy

Fuzzy neuron used in TSD

Blo —

Sto ———

Fig.5: A) A neuro-fuzzy node for the rule of Fig.4 and its comparison with an artificial neuron. Each of the rules of the
controller of Fig.4 becomes such a fuzzy neuron. B) The whole controller with al parallel Sugeno-like implication.

From Fig.5, we may draw two conclusions: (1) The architecture of classical neuro-fuzzy networks is much
more simple than the one of usual neural networks. This pinpoints toward many generalizations like hidden
units, recurrent networks, associative networks and controllers with pre-processed inputs (averaging,
smoothing, fading memories). (2) As it is well known, the number of rules (i.e. neurons) increase very
rapidly with the number of input variables. It is thus very important to decompose such controllers. For
instance, for the transfer process previously discussed, we could consider independent fuzzy systems for
each of the three influences (close and distant) and even another fuzzy system for the flow law itself.
Obviously, since we have many processes to consider, the number of controllers becomes quite high and fast
design methods are a must. We should also consider that each controller has many aspects to optimise. For
instance, we could consider incomplete systems in which different sets of input variables are connected to
each rule. Then the design of the condition and action predicates becomes an issue. Similarly, the choice of
the membership functions and of the number of fuzzy levels may also be optimised. To obtain good policies
is obviously an important aspect of TSD. In managed systems, it is often the goal of the whole exercise. For
this reason, we will describe now how we use genetic methods to design these controllers.

Genetic design of efficient policies

Besides understanding and education, an important goal of modelling managed systems is to test-drive our

ideas on efficient management. Usually, experimentation and expertise result in a reasonable set of MPs for

the various process rates and packing coefficients. However, much remain to be done:

- The mathematical solutions obtained may be made more efficient by optimising their parameters.

- Fuzzy control systems may be improved by adjusting their number of levels and membership functions.

- More ambitiously, we may also try to find not only different parameters but also completely new solutions
by modifying the structure of the existing equations or fuzzy rules and even inventing new ones.

Usually, users have explored only a very small subset of all these possibilities. They are indeed limited by
the time available and by their own inventiveness. To help them overcome these two limitations, we are now
developing methods and tools based on genetic algorithms and programming [5,6]. After preliminary
experimentation, we have identified the major problems confronting an evolutionary approach to policy
optimisation in TSD:

- Our problems are frequently high dimensional (large genes and population) and the evaluation of a
generation of policies by simulation with several test cases may take a very long time.

- It is difficult to formulate accurately the efficiency functions of our problems. They are often multi-criteria
and frequently all we have is a fuzzy set of evaluation rules.

- Another problem is that very often users may tell us what they like but they are not able to make their
evaluation procedure totally explicit.

To address these problems, we have currently developed our GA applications along the following lines:

Parallel computing: The scale problem has been solved by using a parallel LAN-based GA [7]. We distribute
the generation to be evaluated to the machines in the network which then simulate their test cases in parallel.
The network transfer time is usually negligible. It is currently possible to use very cheap dedicated PCs
stripped of all the unnecessary hardware. This solution may become attractive for instance in a consultancy
activity where many large TSD models and many policies have to be optimised. In the same line, it is
worthwhile to remark that the fuzzification introduced here is certainly very useful from a linguistic point of
view but, once a fuzzy controller is implemented, it computes just an ordinary algebraic function like any
other one. Since most hypotheses on which a TSD model is based may be slightly changed, we still have the
need for testing various hypotheses and looking for robust conclusions. This may be done by stochastic
sampling with chosen probability distribution for parameters. This again involves many simulations and
therefore the need for the dedicated Lan-based parallel implementation described here.

Multi-criteria Optimisation: We have developed a GA using a ranking evaluation of the members of a
population against several criteria and niche formation mechanisms. We use then a Pareto evaluation and the
population evolves by distributing itself along the boundary of the feasibility region.

Hybridization and breeding: Since our users have at best incomplete evaluation functions, we must give
them a way to introduce their own, hopefully consistent biases into the process. We do it by hybridizing the
classical GA with other methods of optimisation (gradient, ad-hoc) and even with an operator which is
simply to introduce user-given modifications in the population. This hybridization is done by providing in
addition to the roulette wheel selecting the members of a family, a second roulette wheel selecting the
operators randomly with constant or adaptive probabilities. Finally, we allow the users to be part of the
evaluation process by introducing their own subjective evaluation as one of the criteria.

Inventing new rules: We are now considering the extension of these methods to genetic programming in
order to work directly at the syntactic level of the policies (like in a Holland’s classifier system).

Conclusion

Taken together, the development of TSD, the fuzzification of its policies and their optimisation by genetic
methods are important extensions to Forrester System Dynamics. Our feeling is that our tool gives us a much
better tool to address real world problems in managed system simulation.

References

[1] LeFevre J.: Application of kinetic bond graphs in corporate and production management systems,
pp. 226 - 232, in “Commande des systémes industriels”, Belfort AFCET - IMACS Symp., 1997.
[2] Coyle R.G.: System dynamics modelling, Chapman and Hall, London, 1996
[3] Klir G. and Yuan B.: Fuzzy sets and fuzzy logic,Prentice Hall, New York, 1995
[4] Faltings B. and Struss P.: Recent advances in qualitative physics, MIT Press, Cambridge USA, 1992
[5] Pedricz W.: Fuzzy evolutionary computation, Kluwer, 1997
[6] Koza J.R.: Genetic programming, Bradford MIT Press, Cambridge Usa, 1994
[7] Weller P.: A Lan-based parallel GA applied to neural network design, MSc Thesis, City U.London, 1994

IMPLEMENTATION OF FUNCTIONAL
SIMULATION AND ANIMATED
VISUALISATION ON HETEROGENEOUS
PARALLEL ARCHITECTURES

J.Habibi. M.N. Alpdemir and R.N.Zobel
Departinent of Computer Science
University of Manchester
Oxford Road Manchester M13 9PL, U.K
Tel: +44 161 275 6210/6189
Fax: +44 161 275 6204
email: habibij@cs.man.ac.uk, alpdemim@cs.man.ac.uk, rzobel@cs.man.ac.uk

ABSTRACT

This paper cousiders the nsc of simmulation and vi-
sualisation in the concept of virtual desigu and
manufacture. with the aims of shorter thme to
market at lower cost and risk. In particular. in-
tegrating of existing tools and the developinent of
an integration structure are emphasised. Specific
aspects addressed include functional simulations
and geometric models, associated with animation
and visualisation and the development of the dis-
tributed simulation. A theoretical design is pro-
posed to integrate simulation modules and exist-
ing visualisation tools in a heterogeneous parallel
commputing network. The alm is to create a dy-
namic interactive system where users can display
and manipulate remote data in a transparent fash-
ion. The use of distributed interactive simulation
is also considered.

This paper expands on the design of functional
simulations employed to support the design pro-
cess to animate the visualisation of the product
functionality by linking them together over the
network and covers the implementation of the
package in detail.

INTRODUCTION

Many simulation tools are being used in a wide
range of applications in both manufacturing and
process industries [2][8]. These tend to be used in
isolation and are frequently not integrated with

other tools used in specification, design, proto-
typing, testing, evaluation and maintenance. The
costs associated with such systems make it criti-
cal to be able to forecast system behavior before
an actual prototype is constructed. Modeling and
simulation techniges allow the complexities of ac-
tual systems to be prototyped in the form of vir-
tual prototypes with significantly more acuuracy
than traditional simulation methods. Although
the simulation times often grow beyond practical
limits, distributed simulation methods have the
potential to reduce these times in a scalable fash-
ion. Further, the essential use of visualisation,
siinulation models and animation for design engi-
neers is also not well integrated.

Visualisation of the appearance and function-
ality of a product as it develops is important for
both the manufacturer and the customer.

Providing an animated visualisation of the func-
tionality of a product in a distributed networked
system is therefore highly desirable. The follow-
ing discussion relates to a new substantial project
aimed at improving the situation, by integrating
a simulation with the animated visualisation over
the network.

As shown in previous work [6] A dot-matrix
printer is used as a vehicle for development of
the concept. It is appropriate because it com-
bines discrete event and continuous simulation el-
ements with functionality which can be visualised
in an animated way at several levels of complexity.
Simulations are based on C++ for discrete event

CORBA in Simulation Tasks

D. Adamski, M. Hiller
Fachgebiet Mechatronik, Fachbereich Maschinenbau
Gerhard-Mercator-Universitit - Gesamthochschule Duisburg
Lotharstr. 1, D-47057 Duisburg
adamski@mechatronik.uni-duisburg.de

Simulation programs are generally implemented for special hardware platforms and operating systems,
but developers of simulation models, who are the users of these programs, often work on different plat-
forms or the tools used are licensed only for special computers. The goal of this paper is to describe an-
other way of implementing simulation software on heterogeneous computer networks. Particular compo-
nents of a simulation program are provided as platform independent services, and only those services
which are necessary for the current simulation task are combined to a program. This is realised with the

help of CORBA.

1 Introduction

Today’s information technology world is a heterogeneous one. With a mixture of mainframes, UNIX workstations and
PCs information is shared over large networks with many different operating systems and network protocols. Further-
more, there is currently no way for all software developers to use the same programming language or the same hardware
platform. One solution for this situation is the development of standards for communication across both system and
language boundaries. Thus it will be possible to distribute applications to different platforms, obtaining the best devel-
oping environment or the best performance for each program task. This means that, for example, with a simulation pro-
gram, the user interface may be on a PC, the calculation carried out on a high speed workstation and the on-line anima-
tion of the results presented on a graphic workstation.

Generally the market for simulation software provides a large number of multipurpose and special purpose simulation
programs with high functionality. Nevertheless an additionally large number of self-written programs are used for simu-
lation tasks. Often a lot of time is spent implementing service routines and peripheral software devices such as graphical
output to the display or the printer, analysis tools or messaging systems. To realise this in the times of structured pro-
gramming large software libraries had to be included in the program. Later on, after the introduction of object-oriented
programming, terms like reuse and inheritance became more and more important. Thus the development time for soft-
ware decreased, but each program is still growing in size with every additional function it provides.

The costs of developing a powerful simulation environment increase with expectations of ease of use and functionality.
The time where it was enough that a program contains a few specialised functions, reachable via a command-line inter-
face are gone. The expectations of the users have changed considerably and so today’s software systems must have
graphical user interfaces, integrated database capabilities and must be able to cope with complex data structures like
graphics or multimedia objects [MOWBRAY95]. The large number of requirements leads to huge and incomprehensible
monolithic programs with increasing maintenance costs. The example of modern text editing programs shows the conse-
quences of this strategy. These programs try to provide nearly every possible function and often overcharge the user,
who normally wants to use only some particular features. Another approach is to request only those capabilities which
are necessary for a special task. This requires the partition of the total functionality into single functionalities concen-
trated in components and an appropriate mechanism, which is able to bind this requested functions to a suitable pro-
gram. The basis has to be a client/server system, where the server provides a service in form of a program component
requested by the client. The distribution of this service on a network enables several users to demand a particular serv-
ice, although they are using programs with different compositions on different hardware platforms. This evolution in
software development is shown in figure 1.1.

special software universal software universal software
for for for
special hardware special hardware universal hardware

figure 1.1: Evolution of Software Development

14

A necessity for such a system is a comprehensive catalogue of valuable components, thus a combination of a complete
and powerful simulation environment will be possible. To take full advantage of the distributed system this catalogue of
components has to be reachable from different hardware platforms. How this can be realised is discussed in the next

sections.

2 Distributed Systems

Essential for distributed systems is to overcome the hardware and operating system borders. The backbone of this idea is
the middleware. This is the interface between applications written in a particular programming language and the operat-
ing system appertaining to a certain hardware platform. So that the developer is free from dependencies on communica-
tion protocols, operating systems and hardware platforms. He must only move information from one program to another,
placed somewhere inside a network, not regarding anything platform specific like, for example, byte order. Generally
there are several different methods for distributing objects [TALARIAN97]:

® Message Oriented Middleware (MOM)

s Object Request Broker (ORB)

e Remote Procedure Call (RPC)

e Transaction Protocol Monitors (TP Monitors)

In this paper the Object Request Broker is discussed, where the question of whether the other program runs in the same
process or on the same machine or on the same network or on another network across the internet, should play no role,
because the mechanism for accessing local objects is the same as the one for far ones. Thus our program acts like a cli-
ent requesting a service from a server which location, operating system or hardware platform is unknown and it is not
necessary to know anything about that. The way of writing software is changing. To what, will be discussed in the next

sections.

2.1 Distributed Objects

The essence of an object is, that it encapsulate its code and data, has a name and has an interface describing its capabili-
ties. Its functions, described in the interface, can be invoked by an other object which knows about its interface. The
classical object which is used in programming languages like C++ is only known by the compiler and within the capa-
bilities of the programming language it only can communicate with objects in the same program. From outside it is in-
visible and unreachable. Moreover, the objects in a program have to be compatible with one another, which is self-
evident if they are written in the same programming language and running on the same machine. Clearly, this is a com-
pletely other case if the objects are distributed and the application runs parallel on different machines with different
hardware and software platforms. Those objects have to be binary components, accessible from other objects with
method invocation [ORFALI97]. Thus a way of invoking its methods has to be described in an interface. The main idea
is that a programmer can choose components from several vendors and connect them for building new applications as
easily as the well known ‘plug-and-play’-standard for arranging hardware components. A communication standard
which can do this, is described in the following subsection.

2.2 CORBA

Since the non-profit industry consortium Object Management Group (OMG) is founded in 1989' the number of compa-
nies which try to formulate an open standard for a distributed object architecture increases up to 700. The members of
the OMG are hard- and software vendors, but also airlines and other large companies using computer networks. They
had found a way to formulate a mighty standard of high quality and widespread acceptance. The two computing para-
digms object orientation and distributed computing are brought together in the Common Object Request Broker Archi-
tecture (CORBA). CORBA defines the ingredients, the behaviour, and the interfaces of a system based on the later de-
scribed Object Request Bus. The OMG does not distribute CORBA as a product, it tries to certify the compliance of the
commercial products with the agrees-upon standards [TAYLOR93]. Thus the software vendors can write the imple-
mentations of CORBA in their own way, they only have to fulfil the standard. Thus the user can choose between several
implementations considering different aspects.

2.2.1 The Software Bus - ORB

The backbone of CORBA, the mechanism for communication between the clients and servers, is called the Object Re-
quest Broker (ORB). All basic object interaction capabilities are provided by the ORB. This is the middleware which
allows a client to invoke a method on a server, which may be placed on the same computer or one across a network

!The 11 foundation members of the OMG show the band-width of the idea of distributed computing: 3COM, American Airlines,
Canon, Data General, Gold Hill, Hewlett Packard, Philips, Prime, Softswitch, Sun, and Unisys [BENNATANY95].

15

[ORFALI97]. Figure 2.1 shows which interfaces between the application and the ORB are available. The ORB core can
be seen as the basic interface to the transportation layer of the network protocol. The IDL Stubs and Skeletons are used
to define the interfaces between the objects, written in a particular programming language and the ORB. They contain
information on how an operation can be invoked and which parameters are necessary. How they are generated automati-
cally is discussed in subsection 2.2.2.

. Server
Client .

(Implementation)

! A_ A

s S

. ; Dynamic .
Dynamic Clllgal?t ORB g}g;;ﬁ: Skeleton H Aejt;lsgr

Invocation Stubs 1 Interface Invocation

ORE

figure 2.1: The Structure of the Object Request Broker Interfaces [OMG95].

The client may invoke any available method on the server without knowing its location or the programming language
used. The ORB finds the correct implementation across language or system borders. The advantage for the developer is
that he does not have to be concerned with network protocols or byte ordering when he transfers data between different

platforms.

The ORB is like a central software bus, where any application or component is plugged in providing or requesting serv-
ices at runtime. The ORB takes the request from the client and transmit it with the parameters given to the server. There,
the requested method is invoked and the result is returned via the ORB to the client. Although we are speaking about
clients and servers the classification of client/server systems has changed, since every component may play the role of a
client and a server at the same time. A client requests a service, which is provided by a server, but it is also possible that
the client provides services, which are requested by other clients. The object which is the originator of an object invoca-
tion is a client. If it is the recipient it is a server [MOWBRAY9S5]. Thus it is not necessary to handle objects in a special

way to become a client or a server.

For including existing applications or components even if they are not object-oriented one can write so called wrappers
or adapters. These are interfaces which use an Object Request Broker to communicate, for example, with a self-written
application. Thus the whole treasure of existing software can be used, assuming that programmable interfaces exist. The
interfaces could be written in IDL, a standard which is described in the following subsection.

2.2.2 Interface Description with IDL

One of the advantages of CORBA is that it is operating system and platform independent. Furthermore, there exist sev-
eral interfaces to common programming languages like Ada, C, C++, Smalltalk or Java. This independence requires a
neutral description language with the possibility to map a description in one of these languages to one of the chosen
platforms. This description language is called Interface Definition Language (IDL), which is a subset of C++ with addi-
tional keywords. IDL however, is only declarative, which means that no details about the implementation are included.
Within the interface specification the types of objects are defined. So, an interface consists of a set of named operations
and their parameters, following the idea that an object owns data, called attributes, and provides services, called meth-
ods or operations. Inheritance of methods and attributes from interface descriptions is supported. So, in an interface a
particular object implementation publishes its operations and how they may be invoked. This information is needed by
potential clients [OMGS5].

16

inte‘rlace Car{ !
void brake(in double torque):

server
skeleton

client stub

figure 2.2: Mapping from IDL to C++

With an IDL compiler the description of the interface is mapped to a specific programming language like C++. The
client stubs and the server skeletons are generated automatically (figure 2.2). The client program is linked with the stub
file, which looks like a local function call to the client, although it is an interface to the ORB that performs marshalling
to encode and decode the operation’s parameters in a suitable format [MOWBRAY95]. The skeleton communicates
with the server implementation interface. The implementation of the server has to be done by the programmer by hand.
The existence of the ORB is assumed and it is used as a part of the operating system.

3 Distributed Simulation

Most programs consist of one monolithic block. Client/server technology has divided it in two, still monolithic, halves.
The idea of distributing objects is to split the program into a lot of single, self-managing components which can be as-
sembled ‘in an infinite number of lego-like arrangements’ [ORFALI96]. The main idea is to insert only those compo-
nents into the simulation program which are required for the specific task. Thus one can choose the integrator, the input
and output facilities or the analysis tools as needed. The goal is to develop single components which may be reused for
several different tasks. What advantages are given by distributing a simulation environment? Before this question can be
answered, we have to settle the question: What are the components of a simulation environment?

3.1 Components of Simulation Software

First, we have to distinguish between the numerical, modelling and peripheral parts. The numerical part normally con-
sists of several types of integrators, iterators, methods for calculating the eigenvalues or natural responses, event han-
dling, and so on, but not every component is used at the same time. Thus it makes sense to minimise the numerical part,
inserting only the components actually required. The structure of the model is strongly dependent of the particular
simulation task, and is normally assembled from several modules with special functionalities. Whether it is possible to
distribute the simulation model depends on its structure. If it is possible to divide the model in several modules which
can be calculated separately, it is an advantage to distribute these modules on different machines on a network, as long
as the benefit in calculation time is greater than the effort required for data transfer.

The part which is discussed in this paper is the peripheral containing, for example, the graphical user interface, help and
documentation facilities, analysis tools, animation capabilities, data and model interfaces to other programs, pre- or
post-processors, and so on. The idea is to establish interfaces for each function, thus making them available to different
programs. For this an extremely general interface description has to be found. With the possibilities of inheritance, spe-
cial interfaces for special cases could be defined later. An example, with the combination of a simulator and an anima-
tion tool, realised at the Department of Mechatronics, is described next.

3.2 Example

Over the last few years the Department of Mechatronics has been developing the simulation environment FASIM_C++
for three-dimensional vehicle dynamics simulation [ADAMSKI97). In co-operation with the German automotive com-
ponent supplier Robert Bosch GmbH in Stuttgart this tool has been used for the development of automotive controllers,
like anti-lock braking systems, traction control systems and vehicle dynamics control. The environment contains a

17

With CORBA the vehicle method directly calls a method which transmits the data via the ORB to the recipient in AMS
(figure 3.2b). Now it is easy to combine any new programs with AMS, directly calling the operations for animation.
Complex data types, like structures or arrays can be defined in the interface definition using IDL, thus the programmer
can use them as local structures. Therefore orientation and position can now be sent as vectors, with implicit data type

checking.

4 Conclusions

Generally, distributing single simulation tasks has two main goals:

e Assembling the simulation environment in a comfortable way.

e Increasing the computing performance.

In some cases these are contradictory aims. For instance, it is very comfortable to use an integrator component, because
one only has to pay attention to its interfaces and not to its implementation. The obvious disadvantage is that the whole
state vector has to be transmitted to the integrator, and afterwards back to the system. The implementation of the inte-
grator depends on the simulation task. For high performance, approaching real time simulation, combining the integrator
and the system in one process is normally a more effective way. However fast and easy assembly with tested numerical
components, the distributed simulation system may be preferred. For this reason distributing the peripheral program
parts should be the first step to decrease the program size and the development time. Nevertheless, there is a huge po-
tential for developing fully distributed simulation programs.

Finally, we have to answer the question about the advantages of distributed simulation systems. To take full advantage
of such a system, we must have a comprehensive catalogue of valuable components, which are accessible from different
hardware and software platforms. Then we can assemble small and smart simulation programs for specific simulation
tasks. The development times and costs will decrease, furthermore, single components are easier to maintain than large
non-transparent monolithic programs. Often several developers are involved for programming such simulation environ-
ments, in several companies or universities, all using different hardware platforms or programming languages. This is
nearly insignificant, if they are using CORBA and defining their interfaces in IDL. Moreover, it is possible to include
existing software by writing CORBA interfaces called wrappers. With CORBA it is possible to produce open systems,
which can be expanded by a programmer or user.

Acknowledgements

[ADAMSKI97] D. Adamski, C. Schuster and M. Hiller; Fahrdynamiksimulation mit FASIM_C++ als Beispiel fiir
die Modellierung mechatronischer Systeme; VDI-Bericht 1315, pp. 117-141, VDI, Diisseldorf,
1997

[BENNATAN95] R. Ben-Natan; CORBA: A Guide to Common Object Request Broker Architecture; McGraw-Hill,
New York; 1995

[MOWBRAY95] T.J. Mowray and R. Zahavi; The Essential CORBA: Systems Integration Using Distributed Ob-
Jjects; John Wiley & Sons; New York; 1995

[OMGI5] Object Management Group; CORBA Overview; http://www.omg.org; 1995

[ORFALI96] R. Orfali, D. Harkey and J. Edwards; The Essential Distributed Objects Survival Guide; John
Wiley & Sons; New York; 1996

[ORFALI97] R. Orfali, D. Harkey and J. Edwards; Instant CORBA; John Wiley & Sons; New York; 1997

[TALARIAN97] Talarian Corporation; Everything You Need To Know About Middleware, USA, 1997

[TAYLOR93] D. A. Taylor; Object-Oriented Information Systems; John Wiley & Sons; New York, 1993

19

AN MPP SIMULATION METHOD FOR INHOMOGENEOUS DISTRIBUTED
PARAMETER SYSTEMS

I.. Dekker, S.W. Brok, Delft University of Technology, The Netherlands

ABSTRACT

In this paper parallel modelling of linear inhomogeneous 1D distributed parameter systems is
considered. Two modelling methods in relation to MPP simulation are discussed: a two-point series
expansion method and for comparison also an eigenfunction expansion method.

1. INTRODUCTION

In general for computational analysis of both complex and large-scale systems massively parallel
computers are necessary. Therefore it is of great importance to develop parallel methods through
system modelling aimed at creation and preservation of parallelism in all modelling steps. Such
parallel modelling will result in parallel computer models that are optimally efficient, scalable and
portable.

In this paper two methods for modelling of linear inhomogeneous 1D distributed parameter systems
based on the system concept generalized steady-state are presented. The applicability of the gener-
alized steady-state method! to parallel modelling and parallel simulation of linear distributed para-
meter systems is discussed in a number of papers. This paper emphasizes the application of the gss-
method to linear inhomogeneous 1D distributed parameter systems.

In section 2 it is shown that the two-point expansion of an analytical function in its even derivatives
on the boundaries of a given interval can also be applied to the construction of the generalized
steady-state solution of inhomogeneous 1D distributed parameter systems. This concept is
elucidated for some analytical examples. Section 3 deals with an alternative approach, the so-called
eigenfunction expansion method. And in section 4 the MPP modelling aspects of both methods will

be discussed.

2. TWO-POINT EXPANSION METHOD
The aim in developing the two-point expansion method was the creation of efficient massively
parallel models. The method and its application are illustrated for the 1D diffusion system (2.1)

with state z;(x,?):
._éd. __d t); 0<x<£1L,t=20;

dt Ix*? =fxD; x=Lis 2.1
z4(0,8) = @y (®); 24(1,) = Py (£); 24(x,0) = ¥(x)

and the 1D hyperbolic system (2.2) with state z,(x,2):

——Zh —92—11 = f(x,1); 0<x<1,720;

arr Ix?
Az, (x,0) (2.2)
z,(0,0) = @p(1); 2, 1,1) = @ (1); 2,,(x,0) = 7(x);—hat—- = 1(x)

The distributed source term f(x,f) and the boundary conditions ¢q(t), ¢,(r) are assumed to be
analytic functions. The solutions of the diffusion system (2.1) and the hyperbolic system (2.2)
depend on the boundary conditions ¢, (), ¢,(#), the inhomogeneous term f(x,?) and the initial
conditions of the state and its derivative state: 3(x) and 7(x). Both the inhomogeneous term and
the boundary conditions can be conceived to represent input signals for this distributed systems.
‘For a stable system it holds that an input signal, satisfying certain conditions, forces a so-called
generalized steady-state solution. For both the diffusion system (2.1) and the hyperbolic system
(2.2) the generalized steady-states z4,(X,?), 2z, (x,2) can be conceived to be the superposition of the
generalized steady-states z;s,(x,t), z,s,(xt), forced by the source term f£(x,z) in the case
@o(t)=¢,(1)=0 and the generalized steady-states z;b,(x,t), z,b,(x,t), forced by the boundary

1In the paper also the acronym gss is used which stands for generalized steady-state

20

conditions @, (¢), ¢;(¢) in the case f(x,7)=0. In practice most attention has been spent to the
homogeneous case f(x,t)=0. In many preceeding publications, a.o. [1], [4], [5], the way how to
determine the generalized steady-state z,,(x,?) is discussed for different types of distributed
parameter systems.

2.1 Source-input generalized steady-state
First the way of determining the generalized steady-states z;s,(x.f) and z,s.(x?) will be

explained. It is known from literature [2] that a function f(x) of one variable, satisfying certain
conditions, can be expressed within an interval as a two-point expansion of the even derivatives of
f(x) in the boundary points of the interval. Applying this to f(x,t), considered as a function of x
in the interval [0,1], yields that f(x,?) can be written at each time ¢ as a two-point expansion:

(2k,0) (2k,0)
fon= Z{gku)f 0.0+ 8,0 -0 £ (1,0) (2.32)

k=0

where f (0,t) and f (1,t) represent the derivatives of f(x,z) with respect to x of order 2k in x =0
and in x =1 for each time t. The coefficients g;(x) and g, (1 —x) are polynomials of x of degree
2k +1. These polynomials satisfy the recurrent relation:

8 (%)= 841 (x), 8 (0) = g (1)= 0, k2 L; go(x)=1—x (2.3b)

Further properties of these polynomials are described in a.o0.[1].

1D diffusion system

The generalized steady-state z;s,(x,?) is the infinite sum of the generalized steady-states z,s,; (X,?)
(2k,0) (2k,0)

and z;s,,(1— x,t), belonging to the terms g; (x) f (0, t) and g, (1-x)f (1,t), k=0,L ,e in the
(2k,0) (2k.0)

two-point expansion (2.3a). Denote the functions f (0, t) and f (1, t) respectively as u(¢f) and

Vi (8).
Consider now the generalized steady-state 7,5, (x,t) corresponding to the general term gy (x)uy (2)
of the first of the two subseries of (2.3a). This gss 745, (x,t), forced by u(¢), is the solution of:

5ﬂ
_ZéL:e& - -gzisjzk =g (1) @)= (1)=0 (242)

That’s to say z;s,;(x,?) can be constructed as an infinite linear combination of the time-derivatives
of u,(t) with space-dependent coefficients:

248 61 = Y AP (U (@) +p,(1—) ()} (2.4b)
n=0
Substitution of the first subseries of (2.4b) in (2.4a), yielding:
Y pau 0= . b P u(0) = g (x)ug (1) (2.50)
n=0 n=0
results in the set of recurrent equations:
Po®(x) ==, (x); PP (X) = pp_y(X),n 21 (2.5b)

To%gther with property (2.3b) and the condition that z;s,;(x,) must be zero on the boundaries
yields:

Pn(X) =—8ryin1(x),n=0,LL (2.6)

In a similar way the general term of the other subseries of (2.4b) can be handled. Hence, it
appears:

21

(2k,n) (2k,n)

245, (x,1) = —Z Z{gk+n+1(x)f(0 D+ s ner (1= 1) £ (1.0} 2.7)

k=0 n=0

where f (0,t) and f (1,t) represent the derivatives of f(x,t) with respect to x of order 2k and with
respect to ¢ of order n in respectively x =0 and in x =1.

This outcome for z;s,; (x,t) satifies the homogeneous boundary conditions and the inhomogeneous
diffusion equation as can easily be verified by substitution in (2.1).

1D hyperbolic system

The generalized steady-state z,s,(x,t), forced by 1 (t), is the solution of

Fzs 2%z,

gk Sl = g (1) o) =01 (1)=0 (2.82)

Again, z,5.,(x,t) can be constructed as an infinite linear combination of the time-derivatives of
u(t):

a0 = . AP (Ul (1) + B (1 — 00} (2.8b)
k=0 n=0

Substitution of the first subseries of (2.8b) in (2.8a), yielding:

Y 2 ()™ 2 (1) - Z 2 PP 0™ () = g (e (1) (2.92)

k=0 n= k=0 n=0

results in the set of recurrent equations:
B (D= =g () Pom(X) =Poma(x); Pimy () =0, m21 (2.9b)
This together with the condition that z,s,,(0,7) = z;,5.,.(1,2) = U yields:

Dom ()= =84 eme1(X), Popni1 (=0, m=0 2.10)

In a similar way the general term of the other subseries in (2.8b) can be handled. Hence it appears:
— (2k2n) (2k,2n)

586D == D {81 (O F (0.0 + gy 1 =) f (1L,1) } (2.11)

k=0 n=0

2.2 Boundary-input generalized steady-state

1D diffusion system

For the diffusion system (2.1) the boundary-input generalized steady-state z;b,(x,?) is the gss,
forced by ¢ (t) and ¢,(¢) in the case f(x,t) =0. Hence, the gss z;5,(x,t) can be formulated as an
infinite linear combination of the time-derivatives of @,(¢) and ¢;(r) with space-dependent
coefficients. This two-point expansion of z;b,(x,z) can be derived in a similar way as has been
done for the gss z,s,(x,t) by substitution of this series expansion in the state equation and the
boundary conditions of (2.1) and further evaluation of the resulting identities. But, because at each
time the time-derivatives of order k in the boundary points are equal to the space-derivatives of
order 2k in these points, the gss z;5,(x,t) can also be found straightforward by replacing in (2.3a)
the space derivatives of f(x) of order 2k in the points x =0 and x =1 by the time-derivatives of
@o(t) and @, (#) of order k. This results in the two-point expansion:

C k
2b(x0) = Y {8 el @) + 8,0 - 0p{ 1)} (2.12)
k=0
The eigensolutions ¢, (x,¢) of the diffusion system are:
@, (x,1) = exp(—k*7*Dsinkzx k=0,1L (2.12b)
1D hyperbolic system

22

For the hyperbolic system the boundary-input generalized steady-state z,b,(x,t) is the gss
zub.(x,t), forced by ¢q(¢t) and ¢;(z) in the case f(x,t)=0. Hence, the gss z,b.(x,t) can be
formulated as an infinite linear combination of the time-derivatives of ¢,(¢) and ¢,(z) with space-
dependent coefficients. From the homogeneous system equation it follows that at each time the
time-derivatives of order 2k in the boundary points are equal to the space-derivatives of order 2k in
these points. Hence, replacing in (2.3a) the space-derivatives of f(x) of order 2k in the points
x=0, x=1 by the time-derivatives of ¢y(t) and ¢,(z) of order 2k results in the two-point
expansion:

b, (.1 = D {8085 1)+ 2,1~ e (1) (2.132)
k=0

The eigensolutions @ ,(x,t) and ¢, (x,2) of the hyperbolic system are:

G (x,t)=sinkmsinkzx and ¢, (x,t) =coskmsinkzx k =0,LL (2.13b)

Notice that a characteristic of a generalized steady-state solution is that it does not contain eigen-
solutions. Dependent on the initial conditions there arises a transient solutions, composed of eigen-
solutions.

2.3 Some analytic examples
Source-input generalized steady-state of the 1D diffusion system

As a first example the case is considered that the source-input is only space- dependcnt
f (x,t) =h(x). In that case the expression (2.7) reduces to:

245, (x,1)= —Z{ 81 (R0 + g, (1 —)RPP (1)} (2.142)
k=0

Taking for example A(x) =1 and applying the property g (1 —x) =¢(x —x) yields:
248, (x,)= =g (x) — g1 —x) = -%x(l -X) (2.14b)

In the second example the source-input is taken as a function of time only: f(x,f) =¢ °. The space-
independency of f(x,?) then implies:

2k ,n)

f(x,t)=0,k>0and f(xt)—(—l) e (2.15a)
Substitution this result in equation (2.7) yields:
28, (x,1)= Z {n1 (D)D" 48, (1-x) (1)}’ (2.15b)
n=0
Applying further the expression of the generating function for the polynomials g (x):
sinhvb(1- x)
b 2.1

smhw/— z &) (2159

results in:
sin(1— x) + sin(x) } —

e 7t = N "_1 .

ZgSe(x,1) { sin(l) e (2.15d)

Notice that z;s,(x,2)=0 for both x =0 and x =1.

As a last example of the source-input generalized steady-state of the diffusion system a source-
input with separated variables is considered:

fGx,0) =sinzx f(£) with £(t)= 7° sinat +acos at (2.162)

23

It then holds that also the derivatives of the source term with respect to x of order 2k are functions
with separated variables:

(2k,0) gk .
f(x,t)= (") sinzmx f(t) (2.16b)

In this case it is obvious to assume that:

238, (x,t) = sinx g(t). (2.16¢)
Substitution of this in the system equation and further evaluation results in:

Z48,(x,t) = sin 7 sin at (2.16d)
Source-input generalized steady-state of the 1D hyperbolic system

As a first example again the input-source is taken space-dependent only: f(x,t)=h(x). The
equation (2.11) then reduces to:

245 (0)= =D {81 (DHP(0)+ g1 1 = 0 HP (1)) 2.17)
k=0

Notice that for f(x,z)=h(x) the generalized steady-states z;s,(x,z) of equation (2.14a) and
z,5.(x,t) of equation (2.17) are equal. This is not amazing because then both system equations
become equal to the same time-independent system equation: o“zox“ = h(x).

In the second example again a source-input with separated variables is considered:

f(x.t) =(x* — a*)sin zxsin at (2.18)

Following the same procedure as in the last example of the source-input generalized steady state of
the 1D diffusion system yields:

Z5.(x,t) =sin zrxsin at (2.19)

which is the same result as for in equation (2.16d).

Boundary/total-input generalized steady-state of the 1D hyperbolic system
For boundary conditions ¢q(f)=¢@;(t) =sinat and zero source-input (f (x,t) =0) the two-point
expansion (2.13a) can be used the find the boundary steady-state solution:

sinax +sina(l - x) sin at (2.20)

Zhbg (x ’t) = .
sina

The total generalized steady-state z,,(x,t) is the sum of zs,(x,?) in expression (2.19) and

Zpb, (x,t) in expression (2.20). Notice that the introduction of boundary-inputs opens the possiblity

to apply boundary-control of the combined effect of the source-input gss and the transient state

solution.

3. EIGENFUNCTION EXPANSION METHOD

Besides the two-point expansion method for constructing the gss solution of distributed parameter
systems other approaches are possible. One approach is the so-called eigenfunction method. In the
paper this method will be demonstrated for the 1D diffusion system (2.1) with homogeneous
boundary conditions @(f)=¢,(t)=0 and zero initial condition }(x)=0. But the method can
easily be extended to hyperbolic systems. Applying the method of separation of variables it 1is
wellknown that

@ (1) = exp(-k°7*t)sinkzx k=0,lL (3.1)

are solutions (eigenfunctions with eigenvalues k) that satisfies the system equation with homoge-
neous boundary conditions. Because {sin kzx};_, forms a complete set of orthogonal functions on
the interval [0,1] any other arbitrary function can be expanded into an infinite series of these
orthogonal functions, the so-called eigenfunction expansion.

Considering the source term f(x,) of the 1D diffusion suystem (2.1) then f(x,f) can be expanded
into an infinite series of eigenfunctions:

24

oo 1
fon)= D fi@sinkmx with fi(5) =2[f(x,r)sinkzmx dx (3.2)
k=0 0

We now try to find a solution z;(x,?) of the form:

zg(x,t)= ZCk(t)sin kmx (3.3)

k=0
Substitution in the 1D diffusion equation (2.1) taking into account that }(x) =0 results into an
analytical expression for ¢ (z). Substitution into (3.3) leads to the solution:

(0= Y, [exp{-k’2* (¢ - D)} fi(r)desinkrx 3.4)
k=00

which, as easily can be verified, fulfils the boundary conditions and the initial condition.

The easiest way to extract the gss solution z;s,(x,z) from this expression is by means of the
Laplace transformation of z;(x,#) with respect to the time ¢. For simplicity only the result is given.
For a more detailed description see [7]. The gss solution z;s,(x,) is given by:

25, (,0)==, | [exp({ K*7°)t - D f(D)dT| sinknx (3.5)
k=01 {=0

in which the parameter { can be chosen in such a way that the integral in this expression will be
bounded. In case that the source term f(x,z) is a function of x only, i.c. f(x,f)=f(x) and
fx(t) = fp . the integral can be evaluated which then leads to the following expression:

245, (x,1) = —kaﬂ%k—?- (3.6)
k=0 k“m

4. MPP MODELLING ASPECTS

For both the source-input and the boundary-input generalized steady-states, i.c. zys,(x,?),
Z,8.(x,t), z;b,(x,1), and z,b,(x,t), function evaluations of an array of points have to be carried
out. In particular it concerns function evaluations of the space-dependent coefficients g, (x) and
8x (1 —x) as well as the function f(x,?) and its derivatives with respect to x and .

Evaluation of a given function of one or more arguments for an array of N argument values have
the common property that the function evaluation for different argument values is identical as well
as mutually independent. Hence, parallel evaluation of a function for an array of argument values
can be based upon SPMD programming without any communication between computing nodes. It
means that a speed up of N with a 100% efficiency is possible for a distributed-memory parallel
computer of N computing nodes by allocating to each computing node as computing task the
function evaluation. For D computing nodes (D a divider of N) and an enlarged task per computing
node equal to the function evaluation for N/D argument values again the speed up is D with an
efficiency of 100%. In other cases one or more computing nodes are idle for some time, resulting in
a speed up smaller than the number of computing nodes and an efficiency smaller than 100%.

This makes it possible to perform the data processing and the data exchange in an efficient way by
combining SPMD programming with a step-lock synchronization procedure for the data exchange.
This combination will be denoted by Single Program Step Lock (SPSL) programming. Step lock
synchronization means that after the data processing of a (number of) function evaluation(s) step is
ready the data processing is locked simultaneously in all computing nodes concerned and the
exchange of the current values of the state variables is started. This continues until the new values
of all state components have been distributed to the computing nodes concerned. Then the
computing nodes start simultaneously the data processing of the next (number of) function
evaluation(s) step. A parallel SPSL program can be handled in principle by any type of
interconnect system because the only demand is that speed and bandwidth of the interconnect
system are large enough to perform the total data exchange in an acceptable or even a neglectable
time compared to the time needed for the total data processing. Or in other words, the presented
method is a scalable one. That’s to say, enlarging the problem size does not have much influence on

25

the processing time, as long as the parallellism of a (scalable) parallel computer remains
sufficiently large.

Notice that the usual numerical way of modelling through discretization of the distributed
parameter system results in the necessity to solve a large set of linear equations.

The above way of creation of parallellism by means of problem splitting is schematically
represented in figure 1.

P
PR N
> / P\z'\
P21 P22 P23 P24

Figure 1. Creation of parallellism through problem splitting.

In general the same holds for the eigenfunction expansion method. But in this case the calculation
is a little bit more complicated because the time-dependent coefficients in the infinite series (3.5)
and the time-dependent coefficients f,(¢) are now integral expression which has to be solved by
conventional numerical methods. However, when the source term f(x,#) and all its derivatives
with respect to x and # vanish at the boundaries of the interval [0,1] the eigenfunction method is the
only method left.

5. CONCLUSIONS

In the paper it is elucidated for linear, time-independent inhomogeneous distributed parameter
systems that the generalized steady-state is a useful system concept in modelling. It is also exposed
that an important consequence of massively parallel simulation is a quite different approach in
system analysis and system modelling, aimed at creating and disclosing the parallelism of a system
in the analysis phase and to preservation of this parallelism as much as possible in both the
modelling and implementation phase.

The results until now look promising that future parallel modelling of problems from the very
beginning may often lead in practice to highly parallel models with much unbounded parallelism,
i.e. the resulting parallel models are largely of the SPMD programming and SL synchronization
type. This outcome is important for future portability of these parallel models to a wide range of
parallel computers.

A further conclusion is that very likely a great change looks imminent in system modelling and
simulation.

6. REFERENCES

[1] L. Dekker; Numerical aspects of the one-dimensional diffusion equation; PhD thesis, Delft
University of Technology, 1964

[2] J.M. Whittaker; On Lidstone series and two-point expansions of analytical functions; Proc.
London Math. Soc. (2) vol 36, 1934, pp. 451-469.

[3] L. Dekker; 4-Point series expansion, a massively parallel formulation of a function of two
variables; Report 93-122, ISSN 0922-5641, Fac. of Technical Mathematics & Informatics, Delft
University of Technology, 1993.

[4] L. Dekker, S.W. Brok, F.J. Lingen; Semi-analytical method for MPP simulation of distributed
parameter systems; Proc. EUROSIM Conference Massively Parallel Processing Applications
and Developments, Delft, 1994, pp.579-590.

[5] L. Dekker, S.W. Brok; A massively parallel simulation method for parabolic and hyperbolic
systems; Proc. 1995 EUROSIM Conference, Vienna, 1995, pp. 249-254.

[6] L. Dekker, S.W. Brok; Parallel distributed parameter system-adapted simulation and inter-
polation; Proc. EUROSIM Conference HCPN Challeng es in Telecomp and Telecom, Delft,
1996, pp. 93-101.

[7] S.W. Brok; Systems, Modelling and Simulation (in Dutch), Graduate Course (Chapter 8 and 9),
Delft University of Technology, August 1994,

26

Using Cray T3E for the parallel calculation of cellular radio coverage

Pentti Huttunen', Jari Porras’, Jouni Ikonen' and Kari Sipila®
'Lappeenranta University of Technology, P.O.Box 20, FIN-53851 Lappeenranta, Finland
{Pentti.Huttunen, Jari.Porras, Jouni.Ikonen }Jlut.fi
Nokia Research Center, P.O. Box 407, FIN-00045 NOKIA GROUP, Finland
Kari.SipilaOresearch.nokia.com

Keywords: Propagation modeling, ray tracing, distributed memory environment

Abstract

A ray tracing based cellular coverage simulator has been parallelized in order to speed up excecution. The
simulator has been developed for accurate prediction of radio wave propagation in urban microcells. It
combines a vertical plane model simulating the wave propagation over the buildings and a horizontal plane
model simulating the wave propagation in the street canyons between the buildings. The horizontal plane
calculation is made by ray tracing using multiple diffractions around the corners of building. The parallel
version has been implemented for a distributed memory machine, CRAY T3E. Parallelization of the vertical
and horizontal plane calculations reduces the execution times considerably. Results indicate that only a
small number of processors are required for efficient parallel execution. The load balancing algorithm has
an important role in obtaining good speedups.

Introduction

Calculation of radio wave propagation and field strength is one of the most critical tasks in any computer
based cellular network planning system or simulator. Because of increasing demand for capasity in cities
the cells are getting smaller and smaller and there is a need for an accurate prediction of coverage in a
complex urban geometrical setting. During past years several methods have been developed for this purpose.
Some of the models are empirical, or statistical based on field strength measurements and experience, see
e.g. [14], and some of them are deterministic using accurate maps of the service area as input. Most popular
deterministic methdos are based on ray tracing because of its accuracy. Examples of ray tracing based
methods can be found from [5, 9, 10, 13]. In [7] there is a good overview.

The ray tracing method enables accurate results but it also demands a huge amount of calculations. Due to
the high amount of calculations it requires a powerful computer or a lot of time. As several simulations need
to be run before optimal parameters for the cellular network can be found, the execution time of the
simulation must be kept reasonable. Improved algorithms have been developed [8, 13] but the simulation
time remains too long for the iterative process of radio network planning.

Parallel computing offers a solution for time consuming field strength calculations. Calculation times can be
significantly reduced by partitioning the problem into independent parts and by executing the parts in
parallel. Coverage calculation is a suitable application for parallel execution as the independent parts can be
easily found. However, the size of different parts may vary which may result in uneven execution times. In
order to achieve the best possible speedup a work balancing algorithm need to be implemented for the
application.

In this paper, the use of Cray T3E as a parallel environment for the coverage calculation simulator has been
studied. Since Cray T3E is a distributed memory machine, message passing is used for the communication
between processors. The parallelization of coverage calculation is implemented by using MPI (Message
Passing Interface) and SHMEM (Shared Memory) library calls. The following chapters present the coverage
calculation, parallelization of the calculation and the results.

27

Coverage calculation

Coverage calculation means determining those places in the service area of the radio network where a
certain base station (BTS) can be used for a two way connection between the mobile station (MS). This is
done by calculating the attenuation between the BTS location and other locations on a large enough area
around the BTS. In simulators it is sufficient to create a uniform square grid of receiver points (i.e. possible
locations of the MS) over the simulation area where each point represents a small square. Density of the grid
may vary according to the desired accuracy. A 4*4 meter square is usually considered accurate enough.
Figure 1 presents the creation of receiving points by using a grid. The closed polygons visible in Figure 1
represent buildings seen from above.

-y

Figure 1. Creation of the receiving grid, i.e. receiving points.

In this work the coverage calculation has been implemented for microcell environments. Microcells are used
for an efficient utilization of the available frequency in dense city environments with high capasity
requirements. In microcells the base station antennas are typically located on the walls clearly below the
buildings’ roof and therefore the size of the cell is usually less than 1km?®[4,11].

The software uses as input BTS parameters, MS parameters and an accurate map of the area where the
buildings has been presented as closed polylines with building height information. As output it produces the
average field strength to every receiving point outside buildings, i.e. indoor coverage calculation is not
implemented in the current version.

Two different kinds of calculations are needed for accurate results, i.e. vertical and horizontal plane. In
vertical plane calculation the field strength is computed by checking the vertical plane connecting
transmitting and receiving point and by calculating losses due to the obstacles and free space. Only rough
field strength estimations can be achieved by using vertical plane calculation alone. The basic idea of the
vertical plane calculation is presented in the Figures 2 and 3.

In the horizontal plane the field strength calculation is based on the use of reflections and diffractions which
are modeled by using ray tracing. Basic types of rays are depicted in Figure 4. In earlier ray tracing
implementations a large number of rays have been launched from the transmitter to every direction and
followed until their power falls below a threshold. Every time a ray goes close enough to a receiving point
the received power is updated. A propagating ray can reflect from the obstacles or in the case of diffraction
the propagating ray divides into multiple rays diffracting to every direction from the diffraction corner. As
diffractions generate multiple new rays the number of rays increases exponentially as a function of
diffraction order requiring a huge amount of calculations.

28

el g ;

Figure 2. Vertical plane calculation seen from Figure 3. Vertical plane calculation seen from the
above. ground level.

C7

s
S SSS S SSSSSSSSSSSSSSSSS S
Vo4

oy
—J Cr
>

Figure 4. Basic types of ray propagation. Figure 5. Line-of-sight polygon of corner C.

Due to the amount of computation in the horizontal plane calculation a more sophisticated and accurate
method has been developed. The new ray tracing method is based on the use of transmitting points’ line-of-
sight (LOS) polygons [8]. A transmitting point’s LOS polygon represents the area that can be seen from the
transmitting point. LOS polygons are created for the BTS as well as to all diffracting corners. Figure 5
presents the LOS polygon of a diffracting corner C. When a ray arrives to the corner C the polygon
illustrates those receiving points that can be reached by the ray when it diffracts from corner C. By using
this method no single ray have to be traced but ray tracing merely reduces to filling of polygons. The field
strength values of the receiving points in LOS polygons are updated according to the power value of the ray
arriving to the transmitting point, the angle between the in-coming and out-going rays and the distance from
the transmitting point to the receiving point. In this paper reflected rays are ignored because of their
insignificant contribution to the local mean received power [12] in case of microcells. Multiple diffractions
are implemented so that after a ray has diffracted from a comner it can diffract from another comer and so on
up to a predetermined attenuation threshold.

Parallel approach to the coverage calculation

In coverage calculation most of the time is consumed in updating the field strength values of the receiving
points. Both vertical and horizontal plane calculations are suitable for the parallelization. In the vertical
plane calculation the division between processors is trivial, since each receiving point will take
approximately the same time to process. Receiving points are divided to the processors by using a simple
division, i.e. each processor calculates an equal sized simulation area. It should be noticed that the actual

29

work differs as only outdoor receiving points are considered. This difference has no significance as the
vertical plane calculation takes only a negligible time when compared to the horizontal plane calculation.

In horizontal plane calculation the field strength values are updated by filling the LOS polygons. Since the
polygons are independent objects they can be processed in parallel. However, the sizes of LOS polygons are
not equal as the area seen from corners is different. The computation time of a single LOS polygon depends
both on the number of its receiving points and the number of times the polygon is filled. A LOS polygon is
filled as many times as there are rays arriving to the comer. This makes the work balancing more
challenging. The simple division method used in vertical plane calculation is not sufficient in the horizontal
plane calculation. Therefore, the WorkPool algorithm was developed to handle the work balancing between

the processors.

WorkPool algorithm

The WorkPool algorithm makes the division of LOS polygons among processors according to the real
amount of work. In order to realize the real amount of work the total number of receiving points per LOS
polygon is first calculated and then multiplied by the number of rays arriving to the base corner of the LOS
polygon. The real work of a LOS polygon is stored with the number of corner to a table. The table is then
sorted in descending order according to the real amount of work. LOS polygons are processed starting from
the largest, i.e. from the top of the table. The table acts like a pool from where processors fetch a new LOS
polygon to process until all polygons are filled. A free processor will always process the largest free
polygon. The WorkPool algorithm proved to be a suitable solution for coverage calculation. :

Implementation

Table 1 presents the MPI [1,6] and SHMEM [2, 3] library calls which are used for parallel approach of the
coverage calculation. MPI_Init() and MPI_Finalize() calls are necessary for the initialization and
termination of the parallel environment. Communication between processors is implemented by using
MPI_Bcast() and MPI_Reduce() library calls. MPI_Bcast() call is used to transfer data from one processor
to the predefined set of processors. At the end of the simulation the computed field strength values are
collected from processors to a single processor by using MPI_Reduce() call. The SHMEM call is used for

implementing the WorkPool algorithm.

Table 1. MPI and SHMEM library calls used in

the parallelization.
MPI library call SHMEM library calls
MPIL_Init() fast_mem_short_finc()

MPI_Finalize()
MPI_Bcast()
MPI_Reduce()

In parallel version of coverage calculation several aspects affect to the achieved performance, i.e. generation
of LOS polygons, their distribution, communication between processors, etc. Different approaches were
considered for the work and communication optimization. According to the performed studies the best
performance was achieved by using pre-calculated LOS polygons, sequential LOS polygon read and one to

all broadcast.

Cray’s own SHMEM call is used to speed up the WorkPool algorithm. Fetching of the new index to the
table of LOS polygons is implemented with the fast_mem_short_finc() call. This call takes care of the
synchronization between processors and returns the next free LOS polygon to the calling processor. The use

30

of SHMEM call speeds up the communication as SHMEM calls are processed by the Cray T3E’s support
circuitry. A component called backmap [3] is used to maintain the cache coherency.

Test cases and results

Five test cases are used for the evaluation of the parallel coverage calculation. Test cases are from two kind
of cities, European (maps 1-3) and Asian (maps 4 and 5). In all cases the simulation area represents an area
covered by a microcellular network. Maps 1-3 present a typical European city with a lot of small buildings
and empty space, i.e. parks and streets. The streets are wide, long and straight. The amount of free space is
relatively high compared to the whole area. Maps 4 and 5, are from an Asian city. They have large buildings
with little free space. The streets are narrower and shorter than in maps 1-3. Therefore, the number of
receiving points outside buildings is much smaller. Test cases and their parameters are presented in Table 2.

Table 2. Test cases used in the simulator.

Test case | Size of the calculation area | Number of receiving points Number of
(m) to update corners
Mapl 1640x 1470 84140 1436
Map2 1500 x 1380 71258 1251
Map3 1250 x 1730 96278 999
Map4 1270 x 840 46656 511
Map5 1270 x 840 46656 511

In each simulation experiment the coverage is calculated only for a single BTS. Spacing of the receiving
grid in all test cases is 4 meters, i.e. each receiving point represents a square of 4*4 meters. Number of
receiving points to update -column tells the amount of outdoor receiving points which will have the field
strength information at the end of the simulation. Actual number of updates is bigger because each receiving
point is likely to be updated several times. Number of corners -column indicates the actual number of
diffracting corners in the simulation area. Each map has been chosen so that it represents different

characteristics of cities.

Time (secs)
Spesdup

900,00

800,00

700,00

600,00

500,00

Figure 6. Execution times in Cray T3E. Figure 7. Achieved speedups in Cray T3E.

Figure 6 presents the execution times of all test cases. Parallel simulations were run using 4, 8, 16 and 32
processors. The achieved results are compared to the sequential version of the same simulator. It can be
observed that parallel simulation performs clearly faster than the sequential simulation. However, the
minimum execution time is achieved with relatively small number of processors. Even though the
application is highly parallel the scalability of the problem in distributed memory environment remains low.
Figure 7 illustrates the achieved speedups when parallel simulation is compared to the sequential. The low

31

scalability of the problem can be noticed as low speedups. With 4 processors speedups between 3-3,8 are
achieved whereas with 32 processors the speedups remain between 9-14.

Low scalability of the problem in distributed memory environment is due to the sequential part and the
communication overhead. Eventually the amount of work in each processor is so small that the sequential
part (disk I/O) and the communication overhead generated by the parallel part will dominate the execution
time. As far as the microcell simulation is concerned disk I/O takes about 20% of the total execution time.
Transfer of LOS polygons to the processors consumes about 15% of the execution time. With larger
simulation areas there would be more work for processors and the problem would be more scalable.

Conclusions

Execution times of the cellular radio coverage calculation simulator were reduced significantly by using
parallel computing approach. Both vertical and horizontal plane calculations of ray tracing based model
were parallelized. A simple division of receiving points was found to be the fastest solution for the vertical
plane calculation. WorkPool algorithm proved to be a solid way to divide the work load uniformly in the
horizontal plane calculation. The results indicate that good speedups can be achieved for the parallel radio
coverage calculation. However, the distributed memory environment, e.g. Cray T3E, is not the best possible
platform for the application. Especially, the low scalability of the application prevents the use of large
number of processors. In shared memory environment the achieved speedups and scalability are expected to
be much higher due to the non-existing communication overhead.

References

[1] Cray Research: "Message Passing Toolkit: MPI programmer’s manual”, Cray Research Inc., 1996.

[2] Cray Research: “CRAY T3E Applications Programming”, Cray Research Inc., Oct. 1996.

[3] Cray Research: “Cray T3E Optimization”, Cray Research Inc., Jan. 1997.

[4] Feuerstein, M. et. al. "Path loss, Delay spread, and Outage Models as Functions of Antenna Height for Microcellular System
Design”, IEEE Transactions on vehicular technology, Vol 43, NO. 3, August 1994

[S] Fritsch, T., Tutschku, K., Leibnitz, K.: “Field strength prediction by ray-tracing for adaptive base station positioning in mobile
communication networks”, University of Wurzburg, Research report No. 122, Aug. 1995.

[6] HaatajaJ., Mustikkamiki K.: “Parallel programming with MPI” (in Finnish) , CSC-Tieteellinen laskenta Oy, 1997.

(7] Liang G., Bertoni H. L., “Review of ray modeling techniques for site specific propagation prediction” in Wireless
Communications, TDMA versus CDMA, ed. S.G. Glisic, Kluwer London, 1997, pp.323-343.

[8] Heiska, K., Kangas, A.: “Microcell propagation model for network planning”, IEEE PIMRC, 1996

[9] Inanoglu, H., Topuz, E.: “A ray based indoor propagation model for DECT applications”, European Simulation Symposium
1994, pp. 267-271.

[10] Salmi M.: "Parallel ray tracing in propagation modelling of indoor mobile radio communication”, Research Report 51,
Lappeenranta University of Technology, ISBN 951-763-924-4.

[11] Sarnecki, J., et. al.: "Microcell design principles”, IEEE Communications Magazine, April 1993, pp. 76-82.

[12] Sipild K., Heiska K.: ”Can ray tracing be used as a fading generator in simulating micro cellular mobile radio system?”, The g
International Conference on Wireless Communications, July 96, Calgary, Canada.

[13] Tutschku, K., Leibnitz, K.: “Fast Ray-Tracing for Field Strength Prediction in Cellular Mobile Network Planning”, University
of Wurzburg, Research report No. 134, Jan 1996.

[14] Parsons, J.D, “The Mobile Propagation Channel”, Wiley & Sons, Inc. New York, 1992, ch. 4.

32

Analyzing distributed simulation

Jouni Tkonen', Jari Porras' and Jarmo Harju?

1 Lappeenranta University of Technology, P.O. BOX 20, FIN-53851 Lappeenranta, {Jouni.Ikonen, Jari.Porras} @lut.fi
2 Tampere University of Technology, P.O. BOX 553, FIN-33101 Tampere, Jarmo.Harju@cs.tut.fi

Keywords: Distributed simulation, cluster of workstations, performance analysis

Abstract

Simulation is an important tool in planning. Large simulations require a lot of memory and processing time.
In many cases the long simulation times reduce the usability of simulation. In this paper, aspects affecting
distributed simulation have been studied, including hardware, software and network related issues.
Experiments have been carried out with a distributed simulator, Diworse. Simulation experiments are
conducted to show the importance of the used network parameters and the importance of consideration of
the used operating system. The achieved results indicate that distributed simulation can be an effective
method for reducing the simulation time.

Introduction

Simulation has become an important modeling tool in many areas. It has been used efficiently in
meteorology, telecommunications, physics, etc. Unfortunately, the simulation models are getting larger and,
as the result, the time required by the simulation is growing. Multiprocessor computers and distributed
processing environments have successfully been used to reduce the growing simulation time [4]. In this
paper distributed simulation in a workstation environment has been studied. Special emphasis has been
focused on finding the elements that affect to the distributed simulation, and the effects of each element.

Hardwar

User software

Network

Figure 1. Elements of distributed simulation

Distributed simulation is affected by all elements of the distributed system, e.g., software, hardware and
communication network. The software can be divided into the user and the system specific parts. The user
specific part consists mainly of the distribution algorithm and other user controllable software elements. The
distribution algorithm takes care of the correct simulation, synchronization and deadlocks. Several
distributed algorithms have been proposed in literature, and their comprehensive examination can be found
from [4]. The system specific part contains operating system, device drivers, internal buffers, etc. Regular
users can not normally access the system specific parts. The hardware part consists of the used processing
and transmission equipment. The used hardware affects everything, but is often a compromise as simulation
may not be the main application run in the system. In this paper the simulation is performed in a cluster of
workstations. The communication network is used for interworkstation communication and is usually
considered the main weakness of the distributed environments [2]. The communication network part

33

contains all the elements that take part in transmitting a message from one workstation to another.
Parameters of the network part could be the network type, connection elements, e.g. hubs and switches, etc.

In this paper the analysis of distributed simulation is approached by using a previously implemented
distributed workstation environment, Diworse, and a GSM network application [3]. Simulation
experiments are performed by using Sun IPX workstations with a Solaris 2.4 operating system. Workstations
are connected through an ordinary ethemet network using a hub or a switch. Communication between
simulation processes is implemented with sockets and the TCP/IP protocol. A modified Chandy-Misra
algorithm [7] is used as a distributed simulation algorithm.

The effect of different network equipment is tested with a switch and a hub in the Ethernet network. Various
TCP parameters and their effect have been tested in order to minimize the simulation time. These parameters
include send and receive buffer sizes and the Nagle algorithm [5]. The number of used workstations has
been varied between 1 and 9. Results from the simulations and network tests are presented. The results
indicate that good speedups can be achieved with distributed simulation but some improvements can still be
gained by exploiting the used environment to its full extent.

Distributed simulation of a GSM application

Distributed simulation has been researched at the Lappeenranta University of Technology since 1994.
During the research a distributed simulation environment, Diworse, for workstation networks has been
developed. The simulation environment is based on a conservative Chandy-Misra algorithm [1], which has
been developed further [7] to be more suitable for simulation of cellular telecommunication systems.
Distributed simulation requires that a problem is divided into logical parts. In the Chandy-Misra -algorithm
these parts are called logical processes (LPs). They communicate with each other through predefined
channels.

The distributed workstation environment, Diworse, is based on the Manager-Agent concept. This is
illustrated in Figure 2. Agent processes contain the logical parts of the simulation model and take care of
the distributed simulation. The Manager process is used for controlling the start, the end and the error
situations. It does not have an effect on the simulation, but it synchronizes the logical processes at the
beginning of the simulation. All the Agent processes are executed in separate workstations whereas the
Manager process can be executed in a separate workstation or in the same workstation as one of the Agents.
Both Manager and Agent processes contain a scheduler which takes care of the communication between
physical processes in different workstations and simulation order of logical processes inside the workstation.
Communication between workstations has been implemented by using the TCP protocol, because reliable
message delivery has to be guaranteed.

Manager

| Ceneduer)

=
lll \4]

Agent Agent Agent

lw
e

Figure 2. Diworse

34

Logical processes that are located on different workstations can be executed independently, but they may
have an effect on each other. Therefore the logical processes must make sure that events are simulated
where and when they should. This problem is solved by using the Simlep algorithm [7], which is a
modification of the Chandy-Misra algorithm [1]. This algorithm improves the performance of distributed
simulation.

The distributed simulation environment has been analyzed with a GSM application. In the results presented
in this paper the GSM system has been simulated for 900 seconds. Call load per transmitter has been varied
from 100 to 800 calls per transmitter per hour. The average length of a call is 60 seconds. The simulation
area consists of 27 transmitters. Each transmitter is represented by an LP. Mobiles within the service area of
a transmitter are represented by an LP. Therefore, the simulation area of 27 transmitters consist of 54 LPs.
Simulator implements both handover and power control procedures. Both of these procedures are realized
by carrier per interference calculation. These calculations generate most of the computational demands of

the application.
Analysis of the distributed simulation

Distributed simulation is affected by all the elements of the distributed system. It is hard to clearly divide
those elements into separate categories as they affect to and overlap each other. In this paper a crude
division of distributed environment into software, network and hardware parts has been used.

Software

In this paper software is divided into user and system specific parts. Distributed simulation algorithm and
some TCP parameters are clearly in the user specific part whereas operating system belongs to the system
specific part. Some parts of the software, e.g. load balancing algorithm, the effect of other users and
applications, can not be explicitly placed into either category.

Figure 3 presents simulation times of the GSM application on Diworse software. These results show that
distributed simulation performs much faster than the sequential simulation. Sequential simulation is
presented as a dotted line in the figure. Distributed simulations are marked with number of workstations
used in the simulation. Results gained with distributed simulation software are also dependent on the
problem to be solved. Problems to be solved have different degrees of parallel potential [8], which means
that only some parts of the problem can be solved in parallel and that some serial parts of the problem can
not be parallelized. This affects to the speedups that can be achieved with the parallel simulation.

2000
Time (s)
18004 — = = — = — = = e e e
)

e : Number of
workstations

-1
——2
—h—3
——4

160 200 300 400 500 600 700 800
Load {calls/h}

Figure 3. Simulation times of a GSM application

35

From Figure 3 it can be observed that simulation times are gathered into groups, e.g. simulation times with
7 and 8 processors are quite close to each other. This is due to the fact that LPs can not be divided equally
depending on the number of workstations used. Therefore, the workstation with most work dictates the
simulation speed. Load balancing between workstations has to be taken into consideration in order to get
good results. In Diworse a static load balancing is used as the user has to predefine which LPs are executed
in which workstation. Even if load balancing is used, the load can not always be divided perfectly as

previous results show.

The effect of send and receive buffers was also studied. Tests were performed by transmitting different sized
packets between two Sun IPX workstations and changing buffer sizes used in Diworse. The change in buffer
sizes did not affect the execution times in these tests. No long queues are generated into any of the
connections between hosts in simulation, so buffer size does not really affect the performance.

Normally TCP protocol uses the Nagle algorithm [5] to collect small packets together. This improves
network usage as combined packets have only one set of headers instead of many. Unfortunately, there is a
time period during which these packets are collected and this delay is not desirable in distributed simulation.
In Diworse distributed processes have to send messages to each other and it is important to send all
messages as soon as possible, as a process may need messages from other processes to proceed. The effect
of the NODELAY parameter in the TCP/IP, which controls whether Nagle algorithm is used or not, was
studied. Figure 4 presents a comparison of simulation times with and without the Nagle algorithm. It can be
easily seen that the use of Nagle algorithm degrades the simulation times and should not be used in

distributed simulation.

1200

Time (s)

L e itk ittt

|
|
i "
100 200 300 400 500 600 700 800
Load (calls/h)

Figure 4. Effect of Nagle algorithm in simulations

The operating system has many parameters, which have an effect on the simulation, e.g. other users, tasks,
interrupts, device drivers and internal buffers. User can not usually directly affect many aspects of the
operating system, but there are some indirect ways. In early versions of Diworse each logical process (LP)
was executed in its own process. This caused a number of problems as a large number of LPs would run in a
single workstation. Communication between LPs in one workstation was almost as complicated as
communicating trough the network as synchronization and simulation messages had to be exchanged
between processes. The large number of processes also caused a lot of context switches and disk I/O. These
problems were overcome by combining separate processes into a single process. LPs in a workstation are
collected into one process which schedules the execution of LPs and performs the communication to other

workstations (see Figure 2). Similar results of combined processes are also reported in [9].

36

Hardware and Network

Network equipment that connects workstations has its own impact. Experiments were performed with an
Ethernet hub and a switch. The used hub is 8 port CentreCOM MR820TR and the switch is 3Com 12 port
SuperStack I switch 3000. The hub is a relatively inexpensive 10 Mbps Ethernet network device, whereas
the used switch is a more expensive device with capabilities to handle 100 Mbps connections. The switch
uses a store-and-forward method for transferring packets from one port to another.

Transmission tests of different sized packets between two Sun IPX workstations resulted in graphs presented
in the Figure 5. It can be noted that the hub gets faster transmission times in these experiments. However,
when a hub is used multiple workstations transmitting concurrently might cause collisions in the network
and retransmission is required. The use of switch prevents collisions, but suffers from the buffering of
packets. It should be noted that there few different type of switches, which use different policy in
transferring a packet from a port to another [6]. Closer look to transmission time figure reveals an interesting
result. As the packet size exceeds 64 bytes a clear step in the transmission time can be observed. This is
assumed to be due to internal buffers of the network interface cards or due to the operating system’s internal
buffers. This kind of result was not detected in newer Sun workstations.

Tier (o}
0,003 -]
0,0025 : P //
y ; >
o002 =
" "‘// ~
©0.0015
B)
. L~ ™
,001
| [——1PX+Switch |
|——1PXsHub
10,0005
-]

0 64 128 192 25 320 384 448 512 576 640 7J0& 7B B2 896 960 1024
Puckst sizs Qytee)

Figure 5. Hub and switch compared

Experiments with the hub and the switch were not impressive when they were performed in Diworse - no
difference in simulation times could be detected. One reason for this is that packets used in simulation are
relatively small and the difference in transmission times between the hub and the switch is small. Also the
retransmissions required in the hub were avoided in the switch. These results lead to the conclusion that the
selected network equipment has less effect on the simulation time of Diworse than initially was expected.

Improvements in processing power have a direct impact on the performance of distributed simulation. If the
used equipment is heterogeneous the load must be divided according to performance of the equipment. The
used hardware can have tremendous effects, but often users have to make compromises as they can not
always upgrade their equipment to the best available. No results with different workstations are presented,
but experiments with Sun Ultra 1 workstations indicate that Diworse scales nicely to faster computing
equipment.

Conclusions
Distributed simulation is a promising way to improve simulation performance. Unfortunately, writing a
simulation application for a distributed environment tends to be much harder than for a non-distributed

environment. This is due to the fact that there are more aspects to be considered in distributed simulation
than in a sequential. Optimization of the used transmission parameters was found to be important. The

37

results indicate that simulation times can be improved considerably. Consideration of the operating system
behavior was found to be significant and should not be overlooked in the planning phase.

References

[1] Chandy K and Misra J.: Distributed Simulation: A Case Study in Design and Verification of Distributed Programs,
IEEE Transactions on Software Engineering, 1979, pp. 440-452.

[2] Dhabaleswar K. O., Lionel M. N.: Special Issue on Workstation Clusters ands Network-Based Computing - Guest
Editor’s Introduction, Journal of Paralle] and Distributed Computing 40, 1997, pp. 1-3.

[3] Hara V., Harju J.,, lkonen J. and Porras J.: Application of Distributed Workstation Environment to the Parallel
Simulation of Mobile Networks, Proceedings of the 2nd Workshop on Personal Wireless Communications, Frankfurt
am Main, Germany, 1996, pp. 127-136.

(4] Fujimoto R. M.: Parallel Discrete Event Simulation, Communications of the ACM, Vol. 33, No. 19, October 1990,
pp. 30-53.

[5] Nagle, J.: Congestion Control in IP/TCP Internetworks, RFC 896.

[6] Pamell, T.: LAN Times Guide to Building High-Speed Networks, McGraw-Hill, 1996.

[7] Porras J., Hara V., Harju J., lkonen J.: Improving the Performance of the Chandy-Misra Parallel Simulation

Algorithm in a Distributed Workstation Environment, The 1997 Summer Computer Simulation Conference,
Arlington, 1997, pp. 657-662.

[8] Salmi, M., Harju J. and Porras J.: Computing the parallel potential of event-oriented simulation applications,
Proceedings of the ESS’94, pp. 153-157.
[91 Simonovich, D.: Merging Processes in Parallel Discrete-Event Simulation, 7th European Simulation Symposium,

October 1995, pp. 61-64.

38

Simulating Details on Demand Using Variable-Resolution Modeling
Miroslav Liska, Peter Medhart, Jigi Safagik
Slovak University of Technology, 812 19 Bratislava, Slovakia
email: liska@dcs.elf.stuba.sk

Abstract

This paper addresses the possibility of engaging the variable-resolution modeling paradigm for solving the
complexity problem of simulating large systems. The proposed approach exploits a frequent phenomenon that the
level of required details varies in space and time during a particular simulation run. Very often, only a selected part
of the model needs to be simulated at the high-resolution level, whereas the remainder can be simulated with lower
resolution, because its influence over the focused submodel is minimal. The paper also covers implementation issues
Sor the simulator with a user-driven resolution zooming based on the variable-resolution modeling.

Introduction

Along with growing need to simulate large and complex systems consisting of thousands of mutually interacting
entities, the lack of available simulation tools capable to simulate these systems (in acceptable time) is being increased,
too. Most often, simulation tools and languages try to cope with this problem by distributing the model among
multiple simulation processors [2] or by running clones of the same model in parallel or distributed environment [6].
However, none of those methods is satisfactory for simulating buge systems. Communication overhead caused by
interactions among thousands of simulation entities in distributed environment will considerably cripple performance
of the whole simulation run. On the other hand, simulation of the model clones will not be usable when the aim of the
simulation is not to collect statistical data, but rather to interact with the user.

The simulation models consisting of vast amounts of entities owe their complexity to the modeling process, in which
they are designed at a very precise, high-resolution level. However - only very seldom the high-resolution entities
(HRESs) must be involved throughout the whole model, especially if they are located in a submodel that is currently not
of a great interest. Instead, the parts of the model, which are not required to run with the top-precision during the
given simulation run, or the entities currently not being observed by the user (or by reporting module) can be
simulated at a lower-level resolution.

This paper proposes a variable-resolution modeling (VRM) paradigm as a solution to the problem of simulating large
and complex system. The simulation processor initially executes only a simulation of a coarse model — designed at a
low-resolution level. Nevertheless, the observation stations joined to the simulation can freely browse through the
resolution level hierarchy, as if the simulation were running at a multiple levels of resolution. When an observation at
a precise level is required, the appropriate low-resolution entities (LREs) are disaggregated into the constituent HREs,
working at a lower level of abstraction.' When the HREs are not needed anymore, they are aggregated back to the

LRE.

A good example of a system where this kind of simulation appears to be a better solution than distributed or parallel
simulation is the battlefield simulation, allowing multiple observation clients to join the battle. The coarse model
consists of entities representing armed troops, which are acting as a single objects — statistically counting number of
soldiers that were killed or injured depending on the state of troops mutually fighting. However, if an observer station
requires inspecting a troop in details, in order to see the members of the troop individually, the focused entity is
disaggregated into HREs representing soldiers.

To enable usage of such an approach, the model must be designed at several levels of resolution, so the user can
change readily the resolution of a desired part of the simulation model. We cannot aspire to continuously variable
resolution analogous to the zooming of a camera, but we can aspire to making discrete changes in resolution that are
easy to follow and, within limits, valid [1].

This paper tries to answer the problem of aggregation-disaggregation of the entities by making LREs and HREs co-
existing in the time. When a view on the high-resolution simulation is required, a hook entity (a touple of HREs
intended to replace functionality of a LRE(s) at a lower level of abstraction) is involved into the simulation. The
involvement is accomplished by redirecting transaction channels used by LRE to HREs, so they can process the
incoming transactions at a more detailed level and to produce output with a higher precision. Moreover, during the

! Levels of resolution and levels of abstraction are inversely related: high resolution means low level of abstraction,
and low-resolution means high level of abstraction

39

duration of HREs involvement, the low-level state variables of a LRE are reflecting the precise values computed by
HREs. The techniques of redirecting transaction channels — zooking, and attribute reflection - ghosting are described
in the following sections. Also, the mapping consistency across levels of resolution is discussed and hook design issues
are addressed.

Hooking transactions

In the approach proposed by this paper, the simulation entities represent logical processes, able to mutually
communicate via transaction channels. The channels are unidirectional and are created by connecting input and output
ports of entities supposed to communicate. The interaction’ between entities is
realized as sending a chunk of information (that we call the transaction) using the
output port of the sender-entity, what causes receipt of the transaction in the
receiver-entity’s input port. This concept implies that an output port can be
attached only to one input port, but any number of transaction channels can be
Figure 1 Communicating entities bound with a single input port.

When a LRE is to be changed into HRE during simulation run, the usual approach
is to redirect the transaction channels feeding the LRE to the HRE input ports. Thus, the HRE is able to process
transactions instead LRE, at a more detailed level (e.g. distribute them among its disaggregated parts, calculate the
result with higher precision, or process the transaction with respect to information the LRE does not have). Moreover,
the output from the HRE must be usually sent to the entity attached to the output ports of the disaggregated LRE, to
supply the receiving entity with the more detailed data. The LRE (marked X on all following
figures) can still remain active, and continue sending some transactions, which are not
supplied by HRE. The HRE therefore joins the transaction channel by simply reusing the
channel referenced by the given output port of the LRE. (The HRE is marked in the picture

: as join — according to name of the technique used. This convention is used to denote HREs
in all following pictures and serves also as a keyword in simulation language we use to describe variable-resolution

models).

If the LRE is not allowed to continue talking on its output port anymore (after involving
HRE), another technique comes to use — the HRE joins the channel, but strips off the LRE.
As the LRE becomes dumb, all its responsibilities on the stripped channel must be taken over
by the HRE. The decision whether the LRE should remain active on the channel or not must
be made by the model designer. If the LRE should remain only partly active (i.e. some
transactions must not be sent anymore, but some are still valid), then another redirection technique can come to help —
the output port of the LRE is redirected to the newly-created transaction channel. An !
auxiliary entity, listening this channel, distinguishes which transactions sent by X
can be re-transmitted further, and which not. This redirect technique can be of
course applied to another set of problems, too.

Another problem is the input ports redirection — i.e. redirection of the transactions incoming to the LRE. It would be
easy, if only one transaction channel could be attached to one input port. However, the situation described above
requires more complex handling. All transactions incoming onto the input port of the LRE are to be re-routed to HRE,
so all channels joined to the LRE input port must be redirected. This task can be basically accomplished in the
following ways:

e All the output ports in the model are checked. If the examined port is connected to the LRE input port, which is to
be ‘stolen’ by HRE, then the channel is redirected.

e The input port keeps a list of the attached output ports. When being
redirected, all output ports from the list are changed, and the list is
moved to the port accepting the redirected channels.

e The output ports are connected to the receiving input port indirectly —
v1a’so-called_ port redirector. Men a re-routing is required, only tl?e Figure 2 Port redirector usage
redirector’s input port reference is changed, but the output ports still
continue to use the same redirector.

! The interaction term used in this paper does not describe the same concept as interaction used in HLA. It always
refers to communication between two entities performed by sending a transaction one to another.

40

For the implementation we chose the last method as the most suitable, considering mainly the speed of redirection,
which is much higher than in other approaches. Moreover, this method does not cause the memory fragmentation in
such extent as the alternative method using lists of the connected output ports. The disadvantage of the chosen method
is probably only in the time overhead caused by indirect port addressing used, but the speed is still comparable with
the approaches not using the port redirector.

If the input data for the entity X are not to be stolen (and processed by the HRE),
but rather to be enriched by additional data from the HRE, then the join technique
comes again to use. Although the name and the basic principle is the same as the
join technique described above, but parameters passed to the join function
reference the transaction channel to be joined rather by the input port connected to
the mouth of the channel.

Having port redirector, many other different redirection techniques may be easily applied. The one, already described
above, where the input data are ‘stolen’ from the LRE and redirected to the input port of the HRE is called steal.

Likewise, the already described strip technique can be taken from the ‘opposite’
end, too. If all input data to the entity are to be abandoned and replaced by new
input data generated by a HRE — then the old channel leading to X is stripped
{making its mouth blind), and a new channel is created between the given entities.
Responsibility for the correct behavior in the case of sending a transaction over a
blind channel is up to the simulator engine.

Finally, the redirect technique can be extended, so that not only transactions
outgoing from the given output port are re-routed, but instead it is possible to
redirect all transactions entering the input port attached to the output port via port
redirector. Thus, the re-routing takes place after the redirector, not before.

The logic of all transaction redirection techniques can be described more formally:
OP = <0, &PR>
PR

<R, &IP>
IP = <I, &PR>

(PR.IP # null) = (PR.IP.PR = PR)

An output port OP is described by a couple of values, one containing application-specific attributes of the port (O), and
the second containing the reference to the port-redirector used (PR). The same way, description of a port redirector
includes a set of auxiliary attributes of the redirector, and the reference to the input port fed by the channel. Input port
contains a backward reference to the port-redirector, so some redirection techniques (redirect, join(2), steal) can be
easily implemented. The input port referenced by a port-redirector must contain reference to the same redirector it is
referenced by.

The implementation itself is given in the following table (using a simplified C++ language notation). The letter X

denotes a LRE entity, originally working in the coarse model, and Y is a HRE entity applying a redirection technique.
Input and output ports of the entities are named Iand O, respectively.

Simulation language expression C++ code translation
Y.0 join X.O Y.0.PR = X.0.PR;
Y.0 strip X.O Y.0.PR = X.0.PR;
X.0.PR = null;
Y.I redirect X.0 Y.I1.PR = new PR;
Y.I.PR.IP = Y.I;
X.0.PR = Y.I.PR;
Y.0 join X.I Y.0.PR = X.I.PR;

a1

Y.0 strip X.I X.I.PR.IP = null;
Y.0.PR = new PR;
Y.0.PR.IP = X.I;
X.I.PR = Y.O0.PR;

Y.I steal X.I X.I.PR.IP = Y.I;
Y.I.PR = X.I.PR;
X.I.PR = null;

Y.I redirect all X.O X.0.PR.IP.PR = null;
X.0.PR.IP = Y.I;
Y.I.PR = X.0.PR;

Whatever straightforward the transaction redirection concept might look like, it hides potential drawbacks. Consider
the following situation: The LRE entity A, with input port A.I can be hooked by a HRE entity B, stealing input data
from A.I and redirecting them to its own input port: B.I:

B.I steal A.I

However, the model contains also another HRE - C, whose intended function is to
enrich the data input for the A.I by additional information flowing from its output
port C.O:

C.0 join A.T

Involvement and the existence of both hooks are independent. The user may demand involving only one of the HRE
entities, or can make them run simultaneously. If C entity is involved first, it bears no problem, but if B entity first
‘steals’ the input and afterwards the user requires start of C entity, he or she founds that no channel leading to A.l.port
can be joined anymore - it has been stolen.

The simulator can cope with such a situation in the following ways:

e The request of the C entity to join the channel leading to A.I simply fails. However, this solution makes the
simulation user confused - if the hook C is started first and then the entity B is involved, the simulation works
correctly, so the user expects the same (or nearly the same) behavior as would be produced if the hooks were
started in reverse order.

A new channel is created between ports C.O and A.l, so C can send its additional data to A.I, as it is supposed to.
The flaw is again in the behavior, which is different when compared with the reverse situation described above.

e Additional data from the C.O are sent to the B.I instead of A.l, taking into consideration that B.I works now as a
replacement of A.L. The simulation model achieves the same state, as it would be when starting the hooks in the

reverse-order.

The last approach sounds the most reasonable, and it was taken in the implementation of the hook technique as the
only suitable. However, there still remains a problem of obtaining the port, that should be joined instead of Al - i.e.
the problem of finding out that B.I should be joined instead of A.1. The ports are not designed so they could remember
who has ‘stolen’ the channels attached to them - such approach implies cascade searching of all ports stealing input
from each other. The ghosting technique, described in the following section solves this problem more elegantly.

Ghosting attributes

The state of each entity is represented by a set of its attributes (e.g. the NetworkServer entity can have attributes like
Utilization, UsersPeek, OpenConectionsCnt, etc). A subset of the attributes can be observed by a simulation user in
order to create reports, charts, animations and for other statistical and visualization purposes. Part of the attributes
remains hidden for the user— it covers internal implementation of the entity. Some attributes can be set by the user, in
order to parameterize the entity. Usually, the attributes are stored in the object representing the entity, although in
several situations they are not stored physically in the memory, but must be computed from other data instead.

An approach to the generic description of simulation entities and their attributes described in [4] and [5] helps to
access arbitrary entity/attribute even from external applications, without the need to write specific code for each
attribute. This technique was successfully used to create a simulator with an open interface [7], and to design a tool for
constructing user interfaces for simulation [§].

42

Name2Offset ParamPtr ParameterTable(simplified)

Name Index Pur Type | Flags Location
without

hook

A]

SoldCnt / \\‘ ptint | pfRegular | &SoldCnt

Type | Flags Location

added by hook

ptint | ptFunction | &GetSoldCnt

Figure 3 Attribute ghosting mechanism

The principle of the entity/attribute description technique is based on creating a table (called parameter table) for
each entity class, containing name, type and location of every attribute of the entity. The location of the attribute is
given in terms of relative distance (offset) of the attribute from the start of the entity object envelope. In the case the
attribute is a static member of the entity class, the location value points to the absolute address of the described
attribute. For computed attributes, the location field contains the address of the function used to calculate the value of
the attribute. '

When the hooks paradigm (or another approach to the VRM) is engaged, the original parameter tables technique fails.
When a LRE is disaggregated into its constituent HREs, the low-resolution attributes must be changed into high-
resolution ones, which must be usually computed from its multiple parts, located in HREs. For example, a LRE
representing a division has an attribute SoldiersCnt, which is stored in the entity as an integral-type class member.
After disaggregation of the division into separate HREs representing battalions, the count of soldiers must be
computed rather as a summing of the soldiers in each battalion.

Thus, the disaggregation on the entities brings the need of ‘ghosting” attributes — the technique, where the attribute of
the entity is owned (or also calculated) by another entity. The SoldiersCnr attribute of the division must be computed
by the hook, whenever its value is needed. The low-resolution attribute cannot be just ‘forgotten’ during the hook
duration, primarily because the lifetime of the hook is (usually) unlimited. Moreover, the user (or the external
application) observing the attribute must be correctly informed of the state of the examined entity, and the existence of
the hook taking ownership of the attribute must be for them transparent.

The parameter tables are class-based, i.e. there is only one table per entity class, because all entities based on the same
class are expected to have equal set of attributes. However, if a LRE entity is disaggregated — it changes some of its
attributes (its type, location or owner) so the description stored in its parameter table is not valid anymore. The
parameter table approach was hence extended in order to allow description of dynamic changes in individual entities.

The simplest solution is to create separate parameter table for each entity instance, but such an approach would lead to
waste of memory resources, mainly in the case of large and complex systems, where the simulation model consists of
thousands of entities. More elegant answer to this problem is alike to the approach used in transaction hooking.

The description record in the parameter table is not to be accessed directly, but rather via ParamPtr table, containing
pointers (attribute redirectors) to the current description of the given attribute. Names of the attributes are not stored in
the ParameterTable anymore, but are moved into a hash table Name2Offset, which contains associations between
attribute names and the references to the attribute redirectors. The reference is given as an index to the to the
ParamPtr table'. A hook that supports attribute ghosting for a LRE changes the appropriate attribute redirector to
reference the high-resolution attribute during its initialization procedure.

Using this approach, there is only one instance of the ParameterTable and Name2Ofiset tables per entity class.
Along them, there is one separate instance of ParamPtr table for each hookable entity, and one instance reused by all
non-hookable entities. The entity is said to be hookable, if there is at least one hook in the model supposed to hook

! In real implementation, however, the technique is accelerated by using offset of the given attribute redirector, instead
of its index.

43

transactions or ghost attributes of the given entity. Decision, whether the entity is hookable or not is made after the
simulator reads the simulation model description, or can be determined during the run-time, when an attempt to hook
an entity is made. The latter approach spares the memory resources, but it is slower, because it requires heap
operations and various run-time checks and its usage is discouraged.

Attribute ghosting technique gives a solution to the problem posed in the section describing transaction hooking — to
obtain the HRE port that steals transactions from a LRE port. As the ports have their own record in the
ParameterTable, the ports can be ghosted too. When the port is stolen, the appropriate pointer in the ParamPtr table
is changed to point to a HRE port instead of original LRE port. When a request comes to obtain a LRE port
description, the HRE port description is retrieved instead.

Hooks lifetime

As was already said before, HRE entities are involved into the simulation only ‘when needed’. The need may be
declared directly, by requiring the involvement of the specified HRE(s) via specific interface functions provided by
simulator. Indirect demand, however, is more often used ~ if the user (ext. application, reporting module, etc.) requires
observing an attribute of a HRE, the HRE is automatically joined to the simulation model, using hooking and ghosting
techniques described above. This process is transparent to the user - he does not need to know that the entity he
observes works only temporarily, and will be again removed when not necessary anymore. The decision of the hook
join/disjoin is made according to the reference counters, assigned to every hook existing in the model.

The hooks often require for their proper functionality other hooks to be involved into the simulation together with
them. For example, the HRE entity processing transactions at a very-precise level needs another HRE entity working
in a distant part of the simulation model, to enrich particular transaction channels by specific data. The simple
grouping of both entities into one hook will not do, because the latter can work also standalone. Such hooks therefore
declare their demand in the description of the simulation model (or in the hook definition). Hooks can get started
indirectly also if the hook requires values of high-resolution attributes of another hook, not yet involved into the

simulation.

Multiple hooks involvement may occur also in the case the hooksets (sets of hook) are used. These allow simulation
user (or model designer) to create sets of otherwise independent hooks, that need to be started as a group very often.
The hooksets can be involved into the simulation by one command, simplifying (and speeding-up) this way the
communication between user and the simulator.

Mapping consistency

When a LRE is going to be disaggregated into HREs, the hook containing the HREs must properly initialize the state
of all HREs. Their state must be consistent with that one of LRE being disaggregated. In other words, the state of
HREs should be the same as it would be if the high-resolution simulation were running since the start of the
simulation. The so-called mapping consistency is supposed work also in the reverse direction — i.e. when the HREs are
going to be aggregated back to the LRE, the hook must update the LRE into consistent state.

More formally, let
Su(r) denotes the state of a hook working at a high-resolution level in the time ¢

SL(?) the state of a LRE in the time ¢
d(S.(9)) disaggregation function
a(Sy(r)) aggregation function
QL(SL(9),Ar) state-transition function at low-resolution
@u(Su(1),Ap) state-transition function at high-resolution
where
d(S.()) = Su(») and ey
a(Su(®) = S 2

By [1] the models are considered to be consistent in the aggregate if

44

a(Pu(Sa(0),An) = QL@(Su(®)),Ar) 3
and to have a complete consistency if

Qa(Su(0),Ar) = d(QL@(Sy()),A) @

In the real implementation, though, even the aggregation/disaggregation operations performed immediately one after
another could cause problems. By aggregating HREs into LRE, some information not available in a low-resolution
simulation will be obviously lost. Thus, by disaggregating LRE again, part of the high-resolution state variables must
be determined stochastically. We therefore say the hook to be AD consistent if

d(a(Su(®)) = Su(® ()

The AD consistency (5) together with consistency in aggregate (3) assures the hook to have complete consistency (4).
The reverse case of disaggregation/aggregation operations pair usually does not cause implementation problems,
because the state of LRE can be deterministically computed from the state of the HREs. Most of hooks are hence DA

consistent, 1.e.
a(d(S.(0)) = S.() ©)

For the aggregation and disaggregation functions accomplishing the mapping consistency across levels of resolution
cannot be (in most cases) simple described at a simulation language level, the appropriate functionality must be
described in the language closer to the machine level instructions, e.g. in C/C++ languages. This fact narrows the
potential set of the hook designers — not every user is able to program in C++ or similar language [9]. Moreover, for
the security reasons, the simulation users (and even the model designers) should not be allowed to create their own
simulation components in the machine level language. This task is still left for the simulation component designer.

We managed to develop a hook description language, which simplifies creating hook component by using C++ syntax
extended by new keywords denoting transaction hooking types (strip, redirect, etc.) and supporting description of
attribute ghosting. The aggregation/disaggregation functionality is implemented in virtual methods OnJoin and
OnDisjoin, where each hook implements the code guarding mapping consistency.

Conclusions and future work

In this paper we proposed to solve the problem of simulating large and complex systems by using variable-resolution
modeling paradigm. The VRM approach is commonly used to connect dissimilar simulations (e.g. simulations
differing in language, time step, and the representation of the common elements) and is concerned mainly with
resolving conceptual and representational differences that arise from multiple levels of resolution in simulations that
are joined for a common objective [10].

The hook technique described in this paper can be exploited in many areas of simulation science. In fact, the original
idea leading to development of this approach was an issue of research in the field of simulation animation, where the
intention was to create a general-purpose animation module suitable for wide set of simulations. Using hooks, the
model can be simulated at the resolution it was originally designed, but the parts intended to be animated are
simulated at the level that meets animation requirements. For example, in battlefield simulation there is no need to
simulate exact movements of each particular soldier, the battalion level is enough. However, when the soldiers are to
be animated, the given battalion is disaggregated into its constituent soldiers and simulated thus at the level that can
be immediately and precisely animated.

In the future, we expect to make the proposed approach ready for being used in distributed simulations. Also, the
process of designing hooks and the VRM model will be revisited, in order to find more general, sophisticated and
user-friendly solutions.

Acknowledgement

This work was supported by the Slovak grant foundation under grant no. 95/5195/605.

References

[1] Davis,P.K., Hillestad,R.(1993), “Families of Models That Cross Levels of Resolution: Issues for Design, Calibration and
Management”, In Proceedings of the 1993 Winter Simulation Conference, ACM, New York, pp.1003-1012.

45

[2]
(3]

[4]
(5]

Hanagek,P.(1996), “Problems of Implementation of Virtual Time for Parallel Simulation”, In: 18th Int. Workshop
"Advanced Simulation of Systems"” ASS’96, Zabgeh, September 1996, pp.298-303.

Hluchy,L., Dobrucky,M., Astalo$,J.(1997), “Hybrid solving method for task allocation in distributed systems”, In
Proceedings of the Seventh International Conference on Artificial Intelligence and Information - Control Systems of
Robots, ed. by 1. Plander, World Scientific 1997, pp.189-201.

Liska,M., Meohart,P.(1996a), “Parameter Tables - The Transparent Approach to Accessing the Simulation Model
Entities”. Proc. Information Technology Interfaces ITI’96, Pula, June 1996, pp.439-444.

Liska,M., Meohart,P.(1996b): “A Methodology for Describing the Simulation Model Entities”, In: Proceedings of
Scientific Conference with International Participation "Electronic Computers and Informatics”, Kosice-Herlany 26.-
27.9.96. Kosice, TU 1996, 294-299.

Liska,M., Addmy,M., Lali§,1.(1996a): “Goal Seeking in the Parallel and Distributed Simulation”, In: 18th Int. Workshop
"Advanced Simulation of Systems” ASS’96, Zabgeh, September 1996, pp.261-266.

Liska,M., Addmy,M., Lali§,1.(1996b): “Binding the Simulator with the Spreadsheet”, In: Simulation in Industry, 8th
European Simulation Symposium ESS’96, October 24-26, 1996. Ghent, SCS 1996. , pp.334-338.

LiSka,M., Addmy,M., Lali§,1.(1997): “Object Oriented Interface Builder For Simulator Applications”, In: Information
Technology Interfaces ITI’97, Pula, June 1997, pp.561-566.

Peringer,P.(1996), “Methods of Simulation Systems Testing”, In: 30th Spring International Conference "Modelling and
System Simulation” MOSIS’96, Krnov, April 1996, pp.175-180.

Reynolds,P.F.JR., Anand.,N., Sudhir,S.(1997): “Consistency Maintenance in Multiresolution Simulations”, In: ACM
Transactions on Modelling and Computer Simulation, Vol. 7, No. 3, July 1997, pp.368-392.

Weatherly,R. M., Wilson,A.L., Griffin,S. P.(1993), “ALSP-Theory, experience and future directions”, In Proceedings of
the 1993 Winter Simulation Conference, ACM, New York, pp.1068-1072

46

Trade-Offs Between Parallelism and Convergence Rate of Parallel Solvers

H.X. Lin, E.A.H. Vollebregt 2, T. Yang

2Department of Applied Mathematics, Delft University of Technology, P.O. Box 356, 2600 AJ
Delft, The Netherlands
Tel: +31-15 78 7229, Fax: +31-15 78 72 09, e-mail: h.x.lin@twi.tudelft.nl

bDepartment of Computer Science, Linkdping University
S-581 83, Linkoping, Sweden, email: tiaya@portofix.ida.liu.se

Keywords: parallelism, convergence, and scalability

1. Introduction

From supercomputers to small computers multiprocessors and parallel (or distributed) pro-
cessing are becoming more and more a common practice incorporated at all levels of every
computing system. This raises the problem: how to distribute the work among the processors?
In other words how to detect and/or create parallelism in a program? This paper discusses the
issue of the parallelization of sevral known iterative methods for the solution of large sparse
systems of linear equations.

There are many legacy software which have been developed and currently used for simulation
of scientific and engineering problems. Therefore parellelization of existing software has been
received much attention, and it is important for parallel computing in order to achieve the
gerenal acceptance. Many efforts in research of automatic compilation and generation of parallel
programs have been carried out and now some results have already been obtained. Besides the
research on parallel programming languages and automatic compilation, an equally if not more
important issue is designing parallel methods and algorithms.

Sequential methods and algorithms usually optimize the number of operations and/or mem-
mory usuages. However, while many solution methods used in existing software are efficient in
terms of convergence (thus operation count) on sequential computers, they are often not very
suited for parallel computing because they exhibit few parallelism. In Section 2, we will discuss
two such examples and motivate that in the search of efficient parallel algorithms trade-offs
between parallelism and convergence rate must be considered. Section 3, will analyze the par-
allelizability of a number of known iterative solution methods. Then in Section 4, we consider
parallel iterative methods based on domain decomposition approaches. We compare the scala-
bility of different methods and discuss the preconditioned AMS-CG method which is a promising
scalable method. Finally, some concluding remarks are drawn in Section 5.

2. Examples of existing software

In this section we discuss two examples of solution methods used in existing CFD software
packages TRIWAQ and WISH3D respectively.

47

TRIWAQ is a general program that is used for the simulation of many different shallow water
problems [5,6]. It is used by RIKZ, the National Institute for Coast and Sea Management of the
Netherlands. The simulation of the flow is governed by the 3D shallow water euations, which
are derived from the incompressible Navier Stokes equations by assuming a hydrostatic pressure
distribution.

With repect to time, the PDEs are integrated with an Alternating Direction Implicit (ADI)
type scheme. For this each time step is split in two halves that each consists of two phases.
After the discretization, in each time step a system of equations, A® = b must be solved. In
the case that first order upwind discretizations are used for the advective terms, matrix A is
penta-diagonal.

An important part of computation in TRIWAQ at each time integration step is the so-called
CUE-solver, which is a type of flow-following Gauss-Seidel methods. The CUE method resembles
the GS method in the sense that unknowns are updated one by one. However, the order in which
unknowns are updated is different. In the GS method the unknowns are updated cyclically in
a fixed order, until the approxiamtion is accuarate enough. In the CUE method a simple
heuristic is used for adapting the ordering of updates of the unkowns to the flow field; this rule
consists of sweeping through grid rows in positive and negative directions and doing the same
for sweeps over rows. The algorithm CUE is depicted in pseudo-code Figure 1. In this algorithm
11 and 72 count the sweeps over all rows and within rows, and ¢ counts the iterations for each
unknown. In the calculation of a new approximation for a grid point in step (1.k) the latest
available approxiamtions are used for the unknowns of neighboring grid points. The precise
form of the update formula (1.k), hidden in function f, therefore depends on the order in which
unknowns are updated. I ffor certain ¢y, n and i¢; both M;,. and N;,. are positive, then the
calculation of ¢7(7Z?n 41 uses value (bg{,’{‘ﬁ of the previous row, TZ)_ 1o ¢£§;})n from row n and
o((iy — 1)Imaz)m,n+1 of the next row. This data dependence is illustrated in Figure 2. It shows
the iteration levels of the unknowns that are required for the calculation of ¢, , at iteration
level ¢ = i3 + (i1 — 1) Ings-

Figure 3 compares the number of iterations reguired by different iterative methods for the
solution of A® = b. The CUE method (with the number of sweeps I 4, set to 1 per row of
the grid) is compared to the Jacobi, Gauss-Seidel, Block-Jacobi (with 16 subgrids arranged in
a 4 by 4 subdomains), and the Krylov-subspace methods BiCG, BiCGStab and GMRES. The
test problem consists of a finite difference grid of 65 x 65 points. It can be concluded that
Gauss-Seidel type methods can be very effective for advection dominated problems, but only if
the advective terms are discretized by an upwind method and if the numbering of the unknowns
is adapted to the flow field!. More details about the comparisons can be found in [12,13]. The
CUE is very efficient (and robust) for both cases with a strong uniform advection flow and with a
circulating flow, whereas the GS method has difficulties with the test problem with a circulating
flow.

With respect to the parallelizability of these methods, it is another story. The sequence of
updating an unknown in the GS and CUE method is fixed to a certain order (e.g. first the
unknowns with a lower index number then the unknowns with a higher index number). This
implies for the CUE method at the beginning only 1 unknown can be updated, followed by two
unknowns of the direct neighboring grid points, and so on. The update of unknowns constrained
by the data dependence can be described a wavefront starting a corner point propagating at a
speed of one neighboring grid point each step. Therefore, the maximum parallelism is limited to
v/non a \/n X /1 grid. Moreover, parallelization along the wavefronts leads to fine-grain paral-

!The convergence of Krylov subspace methods can usually be improved by preconditioning. We have ignored
preconditioning here. In a later section we do consider preconditioning for computing the vertical water levels.

48

set initial estimate ¢(°)
determine dominant v direction: V. =3, vm n,
determine dominant u direction in all rows n: U, =3, umn
set Nipe = sign(V), set Nfirst; Nigst
for:; =1,2,...do
for n = Ny, 5t to Nigs step N;,. do (sweep over rows)
set Mine = stgn(U,), set Myirst, Migst
for 1o =1 to I, do
q= 12+ (21 - 1)Imaa:
for m = My;r s to M5 step M;,. do (sweep in row n)
update grid point (m,n) : ¢>$;'{L = f(¢(@, ple=1))

end for
reverse m direction (M;n. = —Mine, swap(Myirst, Migst))
end for
end for
reverse n direction (Nipe = —Nine, Swap(N first, Niast))

end for

Figure 1. Sequential iteration process CUE for the 2D problem.

(il - 1)Irn.a:l:

i2 4 (i1 = DImaz—— i3 + (i1 = 1) sz

Z-l Ima:

in—1+ (‘il - l)Imaz

Figure 2. Update stencil for the calculation of ¢>£§?n, g = 12+ (41 — 1)Imqes (central point). for

positive M;,. and Nj,..

49

200 . - 20“ , .
Flow rotating around (0.0, 0.5) Flow rotaing argund (0.0, 0.5) !
Pe-x=1000, Pe-y=1000 Lt Pe-x=1000, Pery=1000 | BiCGStab
65 X 65 intenal gridpoints BiCG + 25: “j z:;ma' gridpoints [
150 . 150 nk:
First order upwind method GM%ES ¢ 1%) :' .
1 Block Jacobi
] 1
5 Pl
g B '
kS 2 ! 4Bice
x | GMRES(10)
Jacobi .
Gauss-Seidel +®
5ot s0f Red-Black GS ,/
X/
: CUE_so! qg"
o Solvi
54 Block Jacobi P
of ‘LI+I-?1'¥T'6ﬁng_j p FEEY .
o' 10° 10' 10? 10" 10° 10' 10
CFL-x number CFL-x number

Figure 3. (left) Convergence for the test problem with rotating flow, first order upwind, with a
flow pattern of a half circle. (right) The same test problem, now with derivatives approxiamted
by central differences.

lelism and causes a low data locality (for every update operation, which comprises only several
basic arithmetic operations, several values of the neighboring grid points must be communicated
from other processors). Therefore, the CUE method cannot be parallelized in this way. The
Jacobi method has a higher degree of parallelism, it can be easily parallelized, however, its very
slow convergence makes even the use of a large number of processors ineffective. The major
operations in the Krylov subspace type methods are matrix-vector multiplications. Thier paral-
lelizability is less than the Jacobi method, but better than the GS and CUE methods. However,
it is known the calculation of the inner products required by a Krylov method imposes global
communication, and this global communication is a bottleneck for the scalability (see e.g. [9,15].
Another difficulty in parallelizing the software package TRIWAQ is that its data structures use
much indirect references (e.g. [7,8]), but here we omit the discussion about this aspect.

Next, we consider the CFD software package WISH3D, which is a general program for sim-
ulation of heat flow in furnaces, etc. WISH3D is developed by the TNO-TPD Applied Physics
Research Institute. It can be used for siumlation of 2D and 3D problems. Characteristics of
the solution of the algebraic systems of equations after the discretization of the physical domain
are the use of the Gauss-Seidel type methods along the lines (of one coordinate diemension)
in a 3D problem and the use of the so-called line TDMA (Tri-Diagonal Matrix Algorithm) for
solving the unknowns along one coordinate direction (line) whithin a plane. For instance, the
update of unknowns is performed by first sweeping along the z-planes (i.e. plane with constant z
coordinates) and then along the y-planes. Within each plane the variables are updated one line
by one line along the z-direction. This corresponds to solving a tridiagonal system of equations
of the unknowns on the line by a Gaussian elimination method. The solution of a tridiagonal
system by Gaussian elimination is strictly sequential, therefore parallelism of the computation
must be sought elsewhere. To update the unknowns of a number lines in parallel corresponds
to changing a Gauss-Seidel update sequence to a Jacobi update, consequently the convergence
is influenced by that. A very popular parallelization approach is to divide the domain into a
number of subdomains and use the original solution method for the global domain (in our case

50

the line-TDMA) for each subdomain. Again we observe a deteriation of convergence by this
approach which is getting worse as the number of subdomains increases. This can be explained
by the fact that a line is now cut into several pieces and the boundary values used by a line
Gaussian elimination for line-segement of an internal subdomain is less accurate and therefore
requiring more iterations to achieve the same accuracy (in other words, in one iteration the
information propagtion is limited by the boundaries of a subdomain).

The discussions in this section illustrate that although many solution methods implemented
in existing software programs are very efficient on sequential computers, they are less suitable
for parallel simulation. Therefore, we need to modify these methods or use other type (new)
methods in order to obtain an efficient parallel implementation.

3. Parallelization of some known iterative methods

We compare the parallel speedups and convergence of several known methods in this section.
The following methods are considered: Jacobi, SOR (generalized GS), CG and PCG with MILU
as preconditioning. We choose as the test problem a simplified form of the shallow water
equations.

ou o 19 ou
E“f”‘g'éﬁm—a("é;) (1)
dv 8¢ 10 [v
s ()

¢ 0 1) 13} (1

—=—-=1h do)——1{h d 3

at 69;(0/”" By °/'”"> (3)
The equations have been transformed in the vertical direction into depth-following coordinates

(¢) by the so-called sigma transformation: ¢ = 5—;%. The boundary conditions at the sea surface

(0=0) are given by: (u%)gzo = —%Wf cos (@) , (vg—g)6=0 = —%Wf sin (¢) with W=windforce

and ¢=direction of windforce. The boundary conditions at the bottom (c=1) are given by:

(u—gﬁ)r_l = &4, (v%ﬁ)g=1 = Z¢ with ug and vg velocities near the bottom. In the hor izontal

direction a staggered grid is used , see e.g. [14] for more information abou t the advantages of
staggered grids. In the vertical direction the grid is divided into a few equidistant layers.

The variable (is discretized as Z, which is the water level compared to a plane of reference. The
spatial derivatives are discretized using second-order central differences. The time integration
is performed by a two-stage time splitting method [2]. The time step is splitted in two stages:
t=ntot=n+1/2and t=n+1/2tot=n+ 1. At the first stage the equations describing
the ve rtical diffusion are treated implicitly. Each vertical line of grid points corresponds to a
separate tridiagonal system of equations.

At the second stage the equations describing the propagation of the surface waves are treated
implicitly. This pentadiagonal system of equations describes the water level related to the water
level in 4 neighbouring gridpoints:

(T+er+eztes+) 0 — aZitl — eZit — e 204 — caZith, = Z77?
Zf;” is the water level in gridpoint (i,7) at time t=n+1. The coefficients ¢; are functions
depending on the water level Z. This equation can be put in the form:

A (Z'n-H) gn+l _ Zn+1/2

51

The equations are first linearized before applying an iterative solution method by:
A (Xm) xXm+l — Zn+1/2

Here X°=2"*1/2 and A is symmetric positiv e definite. These sytems are linear in X™*1.
The iterative methods will be used to compute X™*!. Thus there are two iteration processes:
The outer iteratio n process updates A(X™) and continues until |X™! — X™| < ¢ and the
inner iteration process solves each X™*1. Both processes are executed until convergence. In
our experiments we compare the results of the iterative methods for the entire two iteration
processes in the second stage.

For the parallelization of the computation in an iteration, we partition the domain into a
number of subdomains (a subcube for a 3D problem) of equal size. The update of the unknowns
within a subdomain is assigned to the same processor, in this way data exchange is only required
for the grid point at the boundaries between the subdomains (except for the evaluation of the
inner products which require global communication). Table 1 shows the speedups and execution
times of the different methods when they are used to compute a solution to the same accuracy.
It can be seen that the Jacobi method has the highest relative speedup (i.e. the ratio of the
execution time the Jacobi method executed at 1 processor and at p processors). This is as we
have expected. The fact that the speedup is not equal to p with p processors is mainly caused
by the global communication overhead of the inner product required for the convergence check?.
The SOR method has the second highest relative speedup. The relative speedups of the CG
and PCG methods are very poor, they soon drop when the number of processors is increased
beyond a certain number. This is beacuse two inner products required in each iteration and the
global communication overhead increases quickly with an increasing number of processors.

On the other hand, Table 1 also shows that the total execution time is the lowest with the
PCG method, whereas the Jocobi method has the largest execution time. Since eventually
the total execution time of a program is the only thing we are interested when using parallel
computers to accelerate the simulation, we must not only look at the speedup figure, but also at
the convergence rate. This means that the trade-off between parallelism and convergence rate
must be considered.

Table 1
Comparisons of sppedups for different methods on the Cray T3D.
Method Processor grid Exec. time
2x1 | 3x2 || 4x3 | 5x4 6x5 || (1 processor)
Jacobi || 1.94 | 5.13 {| 8.36 | 11.0 i 12.75 15.31s
SOR || 1.92 | 4.90 || 7.65 | 9.67 || 10.61 2.52s
CG || 1.97 | 3.57 || 3.50 | 3.27 2.84 4.61s
CG+MILU || 1.31 | 2.72 || 3.05 | 2.77 2.36 1.31s

4. Scalable parallel iterative methods

In this section we first describe the so-called preconditioned AMS-CG method (Approximate
Multi-Subdomain Conjugate Gradient method [11,10]), followed by discussion about the exper-

2In order to reduce this overhead, we already reduce the frequency of convergence to once in every 10 iterations
for all the methods.

52

imental results and scalalibity of the method. The AMS-CG is a domain decomposition based
CG method, it is specially designed for (massively) parallel computation. From the previous
section we have already observed that the main performance bottleneck of the CG type methods
is the global communication required by the two inner products in each iteration. Therefore
the main idea in the AMS-CG is to reduce or eliminate the global inner products from the CG

method.

4.1. Approximate Multi-Subdomain CG

Starting with a basic form of CG without any optimizations, we can derive the Multi Subdo-
main CG (MS-CG) method by splitting the global search direction into local search directions,
one for each subdomain. The local search direction p; for subdomain d is a vector with zero
entries for variables corresponding to positions outside subdomain d. Each iteration a p 4 for
each subdomain must be determined. The py’s are put in the columns of a matrix P. In-
stead of the scalars o and 8 in the CG method, a and 3 are vectors with a separate entry for
each subdomain. We require that p% = zfj‘l + BFP*~! is conjugate to all previous p’ with
j<k. This is satisfied by computing 8 from C*~18% = —(Q*1)TzF~1. In order to minimize
Hz — zk”A = (z —zk b— Azk), a is computed by C*ka*=(P*)Trk~1 where C*=(Q*)TP*. 1t

can be proven that the errors ‘z - zk”A are non-increasing [11]. The preconditioned MS-CG

method can be derived from PCG.
Algorithm: preconditioned Multi-Subdomain CG

x%=initial guess, k=0, rO=b-Ax°
while ’not converged’
solve Mz§=r§
k=k+1
if (k=1)
for each subdomain d: p§=zg

else
Ck—l/gk=_(Qk—1)Tzk—l
for each subdomain d: p§=z§'l+ﬂkPk_1 end
QF=AP*
Ck=(Qk)TPk
Ckak=(pk)Trk-1
gk=xk—14pk ok
rh=pk-1_gkqk
end
x=xF
The matrix M has to be a symmetric positive definite preconditioning matrix. p§=0 outside
subdomain i. The matrix C is symmetric positive definite if the matrix A is. The CG method
has the disadvantage that each iteration 2 dot products are computed. Instead of these dot
products the MS-CG method has 2 matrix equations with the matrix C which should be solved.
The matrix C is symmetrical positive definite in our problem. The idea of the Approximate
MS-CG (AMS-CG) method is to approximate the 2 equations with the matrix C by a few
Jacobi iterations. The matrix C is relatively small: [X [, where [= number of subdomains.
The Jacobi