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ABSTRACT

Given the measurements of a magnetic field induced by the electrical activity of the brain, the mathe-
matical model to localize the electrical activity on the human cortex is given by an inverse problem. The
minimum-norm approach is among the common reconstruction techniques to localize the brain activity.
Here, the standard approach is to minimize the Euclidean norm of the current distribution of the under-
lying dipole moments. A generalization from the Euclidean norm to generalp-norms with1 < p � 2 is
attractive because the reconstructions appear more focal asp approaches1. Rather than using reweighted
least-squares algorithms with their potential numerical instabilities, a gradient-based optimization algo-
rithm is investigated. More precisely, a Newton-type algorithm is used where the required gradient of
the cost function is either accurately computed by automatic differentiation or approximated by finite
differences. Numerical results are reported illustrating that accurate gradients computed by the so-called
reverse mode of automatic differentiation are more efficient than approximations based on finite differ-
ences.
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1 INTRODUCTION

In magnetoencephalography (MEG) a weak magnetic field induced by the electrical activity of the brain
is recorded at little distance outside the head using up to 300 so-called Super Conducting Quantum
Interference Devices (SQUIDs). The mathematical model to localize the underlying electrical activity
on the human cortex from the measurements is given by an inverse problem. In 1853, Helmholtz showed
that there exists no unique reconstruction of a current density distribution in a volume conductor for
a given electrical potential distribution on the surface of the conductor. Consequently, there are many
reconstruction methods to localize the brain activity.

The minimum-norm approach (H¨amäläinen and Ilmoniemi 1984) is a common method to localize
electrical activity in the brain. A vector field is calculated on a pre-determined grid where each vector
represents a current dipole. In general, many more source locations than sensors are used, making the
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problem highly underdetermined. The current distribution with the minimal Euclidean norm is taken as
the possible solution. The major disadvantage of the Euclidean norm is that the reconstructions appear
very smeared. In (Wagneret al. 2000), however, it was observed thatp-norms produce more focal
reconstruction asp approaches1.

In (Beucker and Schlitt 1996) it is shown that the solution space of the underdetermined system
can be described by an overdetermined system of linear equations with full column rank. Using that
formulation the minimization problem was solved by a reweighted least-squares algorithm. The major
drawback of this algorithm is its numerical instability forp near1 when a large number of dipoles is
considered (Sp¨ath 1992). Therefore, in this note, thep-norm minimization problem is tackled with a
gradient-based optimization method. Automatic differentiation is used for the efficient evaluation of the
underlying gradient of the cost function.

The structure of this note is as follows. In Section 2, the underlyingp-norm minimization problem
is derived. For its efficient solution, a Newton-type algorithm needing derivatives of the cost function
is employed. The gradient is not approximated by numerical differentiation such as finite differences
but is computed accurately up to machine precision using automatic differentiation which is sketched in
Section 3. To demonstrate the sharpening effect when usingp-norms rather than the Euclidean norm, the
resulting current distributions are visualized in Section 4 on a rendered cortex for different values ofp
with 1 < p < 2.

2 MINIMUM P-NORM APPROACH

For simplicity, the human head is modeled by a spherical volume conductorK. The magnetic fieldB at
a pointr around the conductorK produced by the electrical currentJ in K is given by the Biot–Savart
law

B(r) =
�0
4�

ZZZ
K

J(r0)� (r� r0)

jr� r0j3
dV 0; (1)

where the integral is over all pointsr0 of the volumeV 0 of K; see (Jackson 1975) for details. The current
densityJ in K is usually written as the sum of the so-called primary and volume currents (H¨amäläinen
et al. 1993). In case of a spherical volume conductor, only the tangential part of the primary current
contributes toB around the conductor (H¨amäläinenet al. 1993). If the primary current inK is assumed
to be the sum ofs current dipolesQi at locationsrQi

, the expression

Jp(r0i) =

sX
i=1

Qi � Æ(r
0
i � rQi

)

is used forJ(r0) in (1) whereÆ denotes the Dirac delta function. Then the problem is completely de-
termined by the radial component of the magnetic field (H¨amäläinenet al. 1993). Letb 2 R

m denote
the vector whose entries represent the scalar components of the magnetic field in sensor direction atm
locations aroundK and letq = (QT

1
;QT

2
; : : : ;QT

s )
T 2 R

3s denote the vector whose entries are the
scalar components of the ensemble ofs current dipolesQi in K. Under this scenario, the discrete form
of (1) is given by

b = Lq; (2)

whereL is called the leadfield matrix whose dimension ism � 3s. The entries of the leadfield matrix
describe the effect of each dipole at the sensors. Given an ensemble ofs current dipoles on a grid within
a pre-determined source space inK, the resulting magnetic field atm points aroundK can be calculated
from (2).
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We now reverse this process and assume that there is a magnetic field aroundK whose radial com-
ponentsb are given from measurements atm sensors. We are then interested in finding an ensemble
of s current dipoles on a grid producing that magnetic field. Note that, in general, the number of sensors
is much less than the number of locations where current dipoles are assumed, i.e.,m � s, so that the
system (2) is highly underdetermined. To perform a stable minimization, the Tikhonov regularization is
employed. More precisely, the following formulation presented in (Hansen 1998) is used:

Find q 2 R
3s to minimize f(q) (3)

where

f(q) :=






�

L
�I

�
q�

�
b

03s

�




p

(4)

in which � 2 R is a scalar parameter,1 < p < 2, the symbolI is the3s � 3s identity matrix, and03s
denotes the zero vector of length3s. For the solution of thep-norm minimization problem (3), a Newton-
type method is used requiring the gradient of the cost functionf with respect toq denoted byrf 2 R

3s

hereafter.

3 AUTOMATIC DIFFERENTIATION

Derivatives are not only useful in optimization algorithms but also play an important role in a variety of
scientific computing applications including solution of nonlinear equations, sensitivity analysis, param-
eter identification, and inverse problems. Automatic differentiation (AD) (Griewank 2000) is a powerful
technique for accurately and efficiently evaluating derivatives of a functionf given in the form of a
program in a high-level programming language, here Fortran. The program is treated as a potentially
very long sequence of a small set of elementary operations such as+;�; �; =; sin; cos, or exp for which
derivatives are known. AD tools systematically apply the chain rule of differential calculus over and over
again to these elementary derivatives eventually accumulating the derivatives off .

Compared with other techniques to evaluate derivatives, AD offers the following significant advan-
tages. Numerical differentiation by, say, finite differences only gives an approximation to derivatives
whereas AD-generated derivatives are accurate up to machine precision. Moreover, the performance of
AD-generated code usually exceeds that of the corresponding finite difference code, yet often rivaling
the performance of code developed by hand. AD also requires less human effort because it eliminates the
time for code development and debugging. Furthermore, AD can be used to validate simulation results
based on numerical differentiation. The main disadvantage of finite differences is that they crucially
depend on a suitable step size typically making indispensable a number of experiments varying the step
size. There is always the inherent dilemma of finite differences that, on the one hand, the step size should
be small in order to decrease the truncation error and that, on the other hand, the step size should be large
to avoid cancellation errors in finite-precision arithmetic.

In the context of automatic differentiation, a program input variable is calledindependentif deriva-
tives with respect to that variable are to be computed. A program output variable is calleddependentif its
derivative with respect to the independent variables are desired. There are two basic implementations of
automatic differentiation differing in operations counts and storage requirement. The so-called forward
mode of AD is usually preferred when the number of independent variables is less than the number of
dependent variables because its cost of floating point operations and storage—relative to the correspond-
ing cost of evaluating the function being differentiated—scales with the number of independent variables
and does not depend on the number of dependent variables. In contrast, the so-called reverse mode of AD
is more efficient if the number of dependent variables is less than the number of independent variables
because its relative cost of floating point scales with the number of dependent variables and doesnot
depend on the number of independent variables. However, the reverse mode may exhibit unpredictable
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Table 1. RatioTF 0=TF of the execution times ofF 0 andF

Forward mode Reverse Mode Finite differences
2974 233 1111

storage requirement because many intermediate values need to be stored and/or recomputed. A detailed
discussion of the forward and reverse mode is given in (Griewank 2000).

In the present work, we use version 3.0 of the Adifor (Bischofet al. 1996) tool supporting both
forward and reverse mode of automatic differentiation. More precisely, suppose that there is a Fortran
code F evaluating the cost functionf given by (4) at a particular inputq, i.e., invokingF yields

y = f(q):

Then, Adifor automatically generates a Fortran codeF 0 by specifyingq as the independent variable andy
as the dependent variable. The codeF 0 still evaluatesf atq = (q1; q2; : : : ; q3s)

T but also evaluatesrf
at the same point, i.e., invokingF 0 computes the pair

y = f(q) and by = rf jq

whereby is an object storing the elements of the gradient@f=@qi for i = 1; 2; : : : ; 3s.

4 NUMERICAL EXPERIMENTS

In the numerical experiments reported below, the measurements of a magnetic field atm sensors are
simulated by the computation ofb in (2) where it is assumed that a current dipoleQ is put in the left
hemisphere at locationrQ = (x; y; z)T = (�0:6; 0:0; 0:2)T of the unit sphereK with momentQ =

(0; 1; 0)T ; that is, with unit moment iny-direction. The corresponding leadfield matrixL is calculated
using the BESA 2000r software package (Megis Software GmbH) for a BTI 148-magnetometer array.
In the experiments, there ares = 366 grid points andm = 148 sensors. The scalar parameter� in (4) is
set to0:01.

In Table 1, the ratios of the total execution times ofF 0 andF are given for various approaches
calculating the gradient. Recall thatF is the code to evaluate the cost functionf(q) whereasF 0 is the
program evaluating the pairf(q) andrf jq. Thus the ratioTF 0=TF of the execution times of the two
programsF 0 andF is a measure of the cost for computing the gradient that is of length3s = 1098

here. On an SGI Onyx equipped with 195 MHz MIPS R10000 CPUs, the time spent in evaluating the
cost function isTF = 2:7 � 10�3s. The ratiosTF 0=TF when the gradient inF 0 is calculated using the
forward and reverse mode of automatic differentiation are given in Table 1. The table also presents the
corresponding ratio when using finite difference approximations

@f

@qi
�

f(q+ hiei)� f(q)

hi
for i = 1; 2; : : : ; 3s (5)

whereei 2 R
3s is theith Cartesian unit vector. Automatic differentiation not only eliminates the need

for experimenting with different step sizeshi but is by far more efficient than finite difference approx-
imations when the reverse mode is employed. These experimental results agree with the theory stating
thatTF 0=TF scales with the number of independent variables,3s = 1098, in the forward mode and the
fact that3s+ 1 = 1099 function evaluation are necessary using finite difference approximations (5). In
contrast, using the reverse mode the ratioTF 0=TF does not depend on3s at all.

For the solution of thep-norm minimization problem (3), the routine E04KZF of the NAG Fortran
Library (The Numerical Algorithms Group Limited 1999) implementing a Newton-type algorithm is
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p = 2:0 p = 1:75 p = 1:5

Figure 1. Current dipole distribution for different values ofp

used allowing the user to supply a routine to calculate the pairf(q) andrf jq. In Figure 1, the resulting
current dipole distributionq = (QT

1
;QT

2
; : : : ;QT

s )
T is visualized using the BESA 2000r software

package (Megis Software GmbH). Here, differentp-norms are involved in the minimization of the cost
function (4). More precisely, the quantity at grid pointi identified by color is

qrel :=
jQij

max
1�j�s

jQjj
for i = 1; 2; : : : ; s:

Comparing the distributions for various values ofp starting with the Euclidean norm,p = 2:0, we
see that the reconstructions appear more focal asp approaches1:5.

5 CONCLUDING REMARKS

Given a magnetic field around the human head induced by the electrical activity of the brain, the math-
ematical model to localize the electrical activity on the human cortex is given by an inverse problem.
Among the various reconstruction techniques to localize the brain activity, the minimump-norm ap-
proach minimizes a suitable cost function with respect to the current distribution of the underlying dipole
moments. The main advantage of this approach compared to standard approach involving the Euclidean
norm is the availability of the parameterp that can be used to let the reconstructions appear more focal
asp approaches1.

From a numerical point of view, a Newton-type algorithm is used to carry out the actual optimization
of the cost function. Here, automatic differentiation not only enables the evaluation of the required
gradient accurately up to machine precision. It also increases performance considerably in comparison
to an approximation of the gradient by finite differences. To be more precise, the reverse mode of
automatic differentiation is used to compute a gradient of a scalar-valued cost function with respect to
a large number of independent variables, here1098. However, the number of floating point operations
for evaluating the cost function and the gradient in a combined way doesnot depend on the number of
independent variables using the reverse mode.

The formulation of the minimization problem used in this study is based on a regularization involving
a scalar parameter�. Directions for future work includes the investigation of the influence of� on the
simulation results.
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