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Abstract  

Today’s  importance of on time deliveries according to JIT concept makes managers to 
consider a desired set of extra “due date related “ criteria in the workshop scheduling. These 
criteria can be stated as tardiness, number of tardy jobs, and earliness. In bicriteria scheduling 
problems one criterion can stands for the manufacturer concerns and the other can represent 
customer concerns. In this paper we focus on the bicriteria scheduling problem of minimizing 
the number of tardy jobs and maximum earliness for single machine, in which the idle time is 
not allowed. The problem is known to be NP-hard. This problem has not been solved by any 
meta heuristic. Thus, we developed a genetic algorithm (GA) by exploiting its general 
structure that further improves the initial population, utilizing a heuristic algorithm on the 
initial population. We present a computational experiment, considering the real conditions of 
industrial systems based on generating stochastic processing times and due dates in different 
intervals to test the algorithm for both high and low processing time that shows the out 
performance of the improved GA by comparing the results with a pair wise interchange 
method, applied on the two famous sequences (Moore and MST). Our effort is also to 
minimize both two criteria simultaneously. 
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1 Introduction 
In this paper we consider a bicriteria scheduling 
problem on single machine: minimizing number of 
tardy jobs and maximum earliness. We developed a 
genetic algorithm to solve the problem. Single 
machine scheduling problem can be generally 
described as follows: 
 A set of n jobs has to be scheduled on one machine 
and each job has a processing time (pi), and due date 
(di) in addition, the machine can only process one job 
at a time [2]. 
Although, single machine scheduling is one of the 
simplest problems, there are several reasons that the 
majority of the literature on earliness and tardiness 
scheduling deals with problems with only a single 
machine: First, this problem can be regarded as a base 
for learning scheduling concepts which leads to 
facilitate modeling of complex systems. Second, 
analysis and determination of the specifications of 
bottlenecks in multi stage production lines can be 
conducted through single machine concepts.  
According to just in time (JIT) approach production 
managers should consider more than one criterion in 
scheduling problems .Just in time requires only the 
necessary units to be provided with the necessary 
quantities at the necessary times. Producing one extra 
unit is as bad as one unit short [7].   
While both early and tardy completions are not 
desirable, one criterion can represent manufacturer 
concerns and the other can represent customer 
concerns. Minimizing maximum earliness-the first 
criterion-leads to reduce finished goods inventory for 
manufacturer; nT (number of tardy jobs) can affect on 
customers dissatisfactory regarding the tardiness. 
Many researchers have been working on single 
machine bicriteria scheduling problems. Hoogveenm, 
J. A. [6] studied a number of bicriteria scheduling 
problems. 
 GA has been applied to various forms of earliness and 
tardiness criteria in the past. 
Koksalan, M. and Burak Keha, A. [8] used a GA to 
solve two bicriteria scheduling problems: minimizing 
flow time and maximum earliness, and minimizing 
flow time and number of tardy jobs. 
Hallah, R.M. [5] applied hybrid of SA and GA to 
solve minimize total earliness and tardiness on single 
machine and tested the capability of the proposed 
algorithm. 
Azizoglu, M. et al. [1] proposed a heuristic algorithm 
to solve the bicriteria scheduling problem of 
minimizing the maximum earliness and number of 
tardy jobs on single machine by developing a general 
procedure for generating all efficient schedules and 
finding the best one. Since this problem has not been 
solved by any meta heuristic, we developed a GA to 
solve this problem and compared the results with a 
constructive heuristic, applied on this problem, 
obtained by [3]. 

The organization of this paper is as follows: in section 
2 we define the problem then in section 3 we describe 
the utilized method. The computational results are 
presented in section 4. 

2 Problem description 
We consider the problem of scheduling a set of n jobs 
on a single machine with the following assumption: 
•  Set up times are considered as a part of its 
processing times.  
• The jobs are ready at time zero in a static 
scheduling environment  
• There are no precedence relationships between 
jobs and preemption is not allowed. 
• Machine idle time is not allowed. 
• The maximum earliness criterion is a non Regular 
performance measure, that is, it may be beneficial to 
insert machine idle times between the processing of 
some jobs. It is of course, possible to force Emax to 
zero by inserting sufficient machine idle time. 
However, there could be strong reasons against 
keeping the machine idle [1].  
The following notations are used to describe the 

scheduling problems: 
n  number of jobs; 
Pi processing time of job i; 
di due date of job i ; 
Ji job located in ith position in sequence; 
Si slack time of ith job. Si = di - pi; 
Ci completion time of job i; 
Ei        earliness of ith job.    E i =d i - C i ; 
Given a schedule S, our criteria is: 
Emax = max {Ei} 
NT: number of tardy jobs.  NT = ∑ αi (S)     
 
Where αi (S) =      1     if    Ci (S) > di         

0     if      Ci (S) <= di    
 
 
Definition: A schedule S is set to be efficient if 

there does not exist another schedule S′ satisfying: 
 
E max (S′) <= E max (S)   and       nT (S′) <= nT(S). 

 
Lee, C. Y. and Vairaktarakis, G. L.[9] showed that 
solving this problem is NP-hard. Minimizing both E 
max and nT problems can be solved optimally in 
polynomial time when taken individually. it is evident 
that NT is minimized by using Moore’s algorithm and 
E max  is minimized by MST (minimum slack time ) 
order [10]. 
However NP-hard problems can be solved by several 
heuristic and Meta-Heuristic methods (GA, SA…), we 
develop a genetic algorithm because there were not 
any paper to solve this specific problem with GA or 
any other Meta-Heuristic methods. 
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3 GA application 
GA is a flexible, intelligent probabilistic search 
algorithm. Genetic algorithm operates by maintaining 
and modifying the characteristics of a set of trial 
solutions over a number of solutions. Each individual 
solution is represented by a string include a set of 
random numbers. GA is capable of retaining certain 
desirable characteristics that may be ignored by 
completely random searches. 
 GA applies genetic operations on the individuals 
(chromosomes or parents) chromosomes are 
reproduced by exchanging genes utilizing cross over 
.an offspring inherit some characteristics from each of 
its parents .the offspring face mutation in which some 
of genes in random selected chromosomes, alters to 
make it adaptable to the environment. The offspring 
can be replaced with some or all the previous 
population through calculating fitness function for 
each new generated chromosome. The general steps of 
GA are as follows: 

1. Generate random numbers for initial 
population. (chromosomes) 

2. Evaluate fitness function of each chromosome. 
3. Repeat POP times: 
• Select two parents from population  
• Apply cross over to them to produce new off 

springs 
• Enter the new offspring to the population 

utilizing replacement strategy  
• select a chromosome from the population  
 apply mutatio• n to the random selected 

• to the 

ges of 
plied GA is as follows: 

he procedure of the applied 
e

 

d find the 

5.
d of the schedule by ascending due 

dates order. 

chromosomes  
 enter the mutated chromosomes 
population using replacement strategy. 
Mutation and crossov• er apply with the 
probability of pm and pc. 

For scheduling problem a chromosome includes 
genes that are number of jobs (in single machine) that 
should be applied on one machine with permutation.  
There are several ways to be made in all the sta
GA. in this article the ap

3.1 Initial population 

In this problem the population size is 30. We first 
generate random schedules for the first population; we 
then utilize a heuristic algorithm on each chromosome 
of the initial population. T
h uristic includes 7 steps: 

 Search the whole ran1. dom schedule and find the 
Place of Emax. (PEmax) 
 Search the whole random s2. chedule an
Place of fist tardy job (P ). nT

3. If P  is greater than P  go to  step 5Emax nT  
4. If PEmax is lower than PnT go to  step 6 

 Assign the jobs from the place of the first tardy 
job to the en

6. Assign the jobs from the place of the job, to the 
place of the first tardy job by descending due 
dates order. go to the step 7 

7. Enter the acquired schedule to the initial 
population. 

3.2 The fitness function 

 In different bicriteria scheduling problems different 
fitness functions are used to evaluate the solutions. As 
in Azizoglu,M., et al.[1] , we utilize the following 
linear fitness function:  
 
F = w [E max(S)- E max(MST)] /  [ E max (moore)- E 
 

max (MST) ]  +  (1-w) [n T (S)- nT (moore)] / [n T  
 
(MST)- n T (moore)]    

  
Where w is the weight representing the relative 
importance of the criteria. Note that the fitness 
function is to be minimized in comparison with 
traditional maximization fitness functions. 

3.3 Parent selection 

The selection strategy is a procedure to choose the 
individuals in the current population for creating 
offspring of subsequent generation. For this mean, 
there are a number of efficient procedures in the 
literature. 

In the most selection strategies, the solutions with 
better fitness have more chance to be selected as 
parents for creating offspring of subsequent 
generation. Rolette wheel sampling (RWS) is one of 
the most common strategies in which each individual 
is assigned a slice of a circular ‘‘rolette wheel,’’ the 
size of the slice being proportional to the individual’s 
fitness. The wheel is spun Pop-Size (population size) 
times, where Pop-Size is the number of individuals in 
the population. On each spin, the individual under the 
wheel’s marker is selected to be in the pool of parents 
for the next generation. This method can be 
implemented as follows: 

1. Let F be the sum of the fitness values of all 
solutions in current population as follows: 

1
( )

pop size

i
i

F f
−

=

= ∑  

Where fi is the fitness values of solution i and Pop-
Size is equal to the number of chromosomes in 
the population. 

2. Let Pi be the relative probability related to 
chromosome i as follows: 

  
F
fiPi =   k = 1,2,…,pop-size 

3. Let qi be the cumulative probability related to 
chromosome i as follows:   

  
 qk =                 k = 1,2,…,pop-size ∑Pj

=

k

j 1
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4. Generate a random number such as r in the range 
of [0, 1]. If r < q1, then the first chromosome 
selected. 

Otherwise, the ith chromosome is selected where qi-1 < 
r < q i .  ( 2 ) sizepopi −≤≤
The fitness of each solution is obtained by the 
objective function directly. The initial population is 
randomly created in terms of a continuous uniform 
distribution [11]. 

3.4 The crossover operator   

 We test three types of crossover: one point, two point 
and cycle crossover. The best one recognized as cycle 
crossover. The probability of cross over is 0.6 (pc=0.6) 
Cycle crossover method is discussed by Goldberg [4]. 
In this method, the information exchange begins at the 
left of the spring and the first two digits are 
exchanged. We illustrate this method by one example.  
Cycle Crossover (Initial Parents) 
Offspringx1                                                                         [3 4 6 2 1 5] 
Offspringx2                                                    [4 1 5 3 2 6] 
By exchanging 3 and 4 we have: 
Cycle Crossover (First Step) 
Offspringx1                                                                         [4 4 6 2 1 5] 
Offspringx2                                                   [3 1 5 3 2 6] 

We randomly choose a chromosome and two of its 
genes as a candidate to be mutated. We change the 
value of chosen genes with each other, with 
probability of 0.4(pm). 

3.5 The mutation operator 

There are two 4s in the first off spring. We exchange 
the second positions in each parent: 
Cycle Crossover (Second Step) 
Offspringx1                                                                         [4 1 6 2 1 5] 
Offspringx2                                                    [3 4 5 3 2 6] 
Now there are two 1s in the first off spring, so we 
exchange position 5 with second offspring. 
Cycle Crossover (Third Step) 
Offspringy1                                                                        [4 1 6 2 2 5] 
Offspringy2                                                    [3 4 5 3 1 6] 
The next position to exchange is position 4 where 
there is a repeated 2.  
Cycle Crossover (Fourth Step) 
Offspringz1                                                                        [4 1 6 3 2 5] 
Offsprinz2                                                      [3 4 5 2 1 6] 
   At this point, we have exchanged the 2 for the 3 and 
are back to our starting point, so the crossover is 
complete .We see that each offspring has exactly one 
of each digit, and it is in the position of one of the 
parents.  

The elitist strategy is applied in this problem. In each 
generation we select the best chromosome as one of 
the chromosomes in the next population, in addition to 
the chromosomes (parents and off springs) which are 
ranked after cross over and mutation according to their 
fitness values. Among these ranked chromosomes, 29 
of the best chromosomes select as the next population. 

3.6 Replacement strategy 

GA is terminated if the best chromosome of the 
population does not change for 50 consecutive 
generations or after 100 generations in total, which 
ever comes first. 

3.7 Stopping conditions 

We conduct experiments utilizing randomly generated 
problems to evaluate the performance of the proposed 
algorithm. We generate the processing time of each 
job from a discrete uniform distribution in the range of 
[1-30] for high processing time and in the range of [1-
10] for low processing time. Then we generate due 
dates from a discrete uniform distribution in the range 
of [0- ρ ∑pi] .we use three different values for  ρ to 
create three set of problems that are as :0.4,0.6 and 
0.8. 

4 Computational experiments 

We tried three problem sizes n= 50,100and 150. thus 
we have  2*3*4*3*3 class of problems corresponding 
to different levels of factors such as problem sets(high 
and low processing time), number of jobs, different 
GAs, different weights and due dates, respectively. 
And also 2*3*3*3 classes to make the solutions of 
Hmst and Hmoore (table1).  
 For each class we randomly generate 10 problems 
therefore 2700 problems are solved in total.                    
In this paper we concentrate on improvement of GA 
solutions through utilizing the described heuristic in 
section 3.1. In order to achieve it, four different 
genetic algorithms are presented as follows, in which 
the only difference is in their initial population, the 
results of these GAs are then compared with a 
constructive heuristic method applied on Moore and 
MST sequences (Hmoore & Hmst). 
 

1. GA1: The GA described in section 3 with 
randomly generated chromosomes. 

 
2. GA2: The GA1 that the heuristic algorithm is 

applied on its initial population. 
 

3. GA3: The GA1 that contains Moore and MST 
schedules in its initial population.(28 random 
schedule + Moore + MST) 

 
4. GA4: The GA2 that contains Moore and MST 

schedules in its initial population. (28 random 
schedule that the heuristic procedure in section 
3.1 is applied on + Moore + MST) 

 
5.  Hmoore & Hmst: a pair wise interchange 

method* is applied on Moore and MST sequences.
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Tab. 1 Average deviation over 10 replication. 

w=0.1   w=0.5 w=0.9
n ρ GA1                  GA2 GA3 GA4 Hmoore Hmst GA1 GA2 GA3 GA4 Hmoore Hmst GA1 GA2 GA3 GA4 Hmoore Hmst

a. Low processing time  
                     0.4 5.96 5.23 0.103 0.089 0.079 10.13 0.8842 0.4233 0.0752 0.0805 0.3052 0.4263 3.97 0.21 0.045 0.009 7.22 0.066

50                   0.6 5.74 5.95 0.105 0.128 0.052 12.55 1.21 0.77 0.070 0.060 0.282 0.410 5.26 3.20 1.115 0.031 7.60 0.050
                   0.8 9.03 8.00 0.286 0.155 0.057 11.56 3.95 2.22 0.262 0.019 0.218 0.390 30.46 13.87 0.092 0.028 8.30 0.209
                    0.4 9.10 9.54 0.057 0.041 0.014 10.53 3.84 0.56 0.192 0.213 0.118 0.251 20.31 0.97 0.245 0.011 7.24 0.036

100                    0.6 8.44 7.91 0.059 0.097 0.034 8.48 5.28 2.56 0.091 0.043 0.170 0.232 37.06 17.92 0.037 0.022 7.68 0.083
                     0.8 10.97 8.92 0.182 0.193 0.001 9.25 5.39 2.18 0.068 0.041 0.162 0.147 47.04 29.32 0.050 0.042 7.94 0.043
                     0.4 11.95 11.75 0.314 0.092 0.328 12.76 3.97 1.47 0.124 0.094 0.191 0.298 34.59 9.75 4.873 0.025 7.44 0.026

150                    0.6 11.68 9.08 0.077 0.063 0.067 9.13 5.48 3.96 0.085 0.020 0.161 0.236 43.86 28.19 0.007 0.023 7.57 0.039
                     0.8 16.34 14.85 0.168 0.075 0.115 9.35 10.93 5.98 0.219 0.049 0.078 0.155 112.97 65.88 0.340 0.018 9.30 0.240

average 9.91                9.03 0.150 0.104 0.083 10.41 4.54 2.23 0.132 0.069 0.187 0.283 37.28 18.81 0.756 0.023 7.81 0.088

b. High processing time  
                    0.4 6.73 6.40 2.779 0.268 0.164 12.02 0.78 0.23 0.066 0.056 0.052 0.287 3.29 0.08 1.098 0.005 5.89 0.023

50                   0.6 5.19 5.08 0.078 0.007 0.161 9.49 1.51 0.72 0.111 0.075 0.245 0.261 13.98 4.35 0.245 0.179 8.39 0.047
  0.8 7.29 6.25 0.150 0.118 0.022 8.02 4.08 1.46 0.298 0.168 0.289 0.343 27.93 8.35 0.015 0.034 7.45 0.103 
  0.4 7.12 7.12 0.048 0.019 0.019 8.74 2.65 1.27 0.066 0.021 0.130 0.251 18.38 7.21 0.023 0.008 6.81 0.025 

100                    0.6 8.08 8.46 0.098 0.088 0.017 9.19 5.19 1.88 0.079 0.015 0.084 0.250 34.84 9.05 0.283 0.009 6.66 0.014
                     0.8 12.12 9.19 0.091 0.077 0.009 8.39 6.90 3.10 0.043 0.083 0.036 0.157 59.64 23.48 0.066 0.066 7.54 0.053
  0.4 14.55 8.33 0.528 0.123 0.129 9.66 3.57 1.62 0.048 0.046 0.197 0.292 30.63 8.81 0.003 0.000 7.27 0.000 

150                    0.6 10.91 9.42 0.088 0.024 0.076 9.04 5.53 1.77 0.089 0.038 0.138 0.229 38.73 12.62 3.946 0.000 7.30 0.008
                     0.8 14.51 10.52 0.104 0.078 0.106 8.28 6.11 4.70 0.103 0.032 0.104 0.136 60.28 36.64 0.084 0.063 8.15 0.061

average 9.61                  7.86 0.440 0.089 0.078 9.20 4.04 1.86 0.100 0.059 0.141 0.245 31.97 12.29 0.640 0.040 7.27 0.037
**note that the efficiency of the heuristic applied on initial population can easily be seen through comparing GA1 and GA2.th best in each weight has the minimum average 
value both in high and low processing time.  
 
. 
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w=0.1   w=0.5 w=0.9
n ρ GA1                  GA2 GA3 GA4 Hmoore Hmst GA1 GA2 GA3 GA4 Hmoore Hmst GA1 GA2 GA3 GA4 Hmoore Hmst

a. Low processing time  
                     0.4 8.88 8.43 0.587 0.587 0.418 13.29 1.63 1.200 0.400 0.200 0.760 1.000 8.11 1.08 0.12 0.042 8.11 0.124

50                    0.6 8.09 8.82 0.364 0.364 0.400 16.60 3.16 2.84 0.237 0.360 0.600 1.000 14.93 9.44 8.67 0.087 8.45 0.099
                     0.8 14.25 14.00 0.538 0.700 0.231 20.50 9.73 5.24 1.091 0.152 0.333 0.643 49.81 28.19 0.43 0.222 11.35 0.471
                     0.4 13.71 11.58 0.155 0.155 0.060 14.52 7.88 2.81 1.071 1.308 0.216 0.389 30.53 4.94 1.80 0.043 8.47 0.064

100                    0.6 11.59 10.01 0.176 0.176 0.138 9.59 11.05 4.72 0.256 0.278 0.344 0.389 54.32 45.38 0.09 0.082 8.13 0.176
                     0.8 23.50 17.72 0.936 1.128 0.010 16.66 9.24 5.95 0.143 0.116 0.371 0.400 76.11 69.20 0.25 0.293 10.47 0.205
                     0.4 16.02 17.72 0.724 0.507 0.830 18.15 6.17 5.51 0.257 0.471 0.324 0.471 41.10 32.72 8.74 0.200 9.64 0.111

150                    0.6 31.17 15.96 0.211 0.263 0.362 11.32 12.47 8.72 0.351 0.064 0.333 0.389 75.40 58.50 0.05 0.183 8.15 0.220
                     0.8 30.46 30.01 0.464 0.266 0.679 14.36 18.93 16.50 0.515 0.136 0.303 0.394 341.89 207.68 1.63 0.075 20.58 1.289

average 17.52                  14.92 0.462 0.461 0.347 15.00 8.92 5.95 0.480 0.343 0.398 0.564 76.91 50.79 2.42 0.136 10.37 0.306

b. High processing time  
                     0.4 13.75 11.50 13.41 1.500 0.471 21.50 1.34 0.33 0.316 0.154 0.263 0.429 9.82 0.56 8.60 0.042 7.75 0.042

50                    0.6 8.26 7.55 0.23 0.054 0.613 13.52 1.94 1.88 0.235 0.250 0.353 0.471 41.16 12.90 1.62 1.432 20.62 0.190
  0.8 11.00 10.00 0.56 0.563 0.113 12.75 6.79 3.75 0.923 0.923 0.731 0.857 44.95 28.50 0.12 0.149 9.00 0.351 
                     0.4 8.75 8.67 0.23 0.101 0.148 9.86 3.70 3.24 0.400 0.071 0.257 0.429 25.20 17.48 0.09 0.042 8.13 0.087

100                    0.6 11.92 10.25 0.25 0.200 0.115 10.13 11.03 7.20 0.257 0.073 0.263 0.371 68.49 53.08 2.16 0.031 7.87 0.031
                     0.8 24.68 16.42 0.19 0.163 0.075 9.47 11.32 10.97 0.184 0.136 0.103 0.289 101.89 80.10 0.39 0.250 9.28 0.163
  0.4 51.44 10.82 3.61 0.155 0.299 11.00 6.70 4.59 0.130 0.220 0.471 0.588 37.37 32.70 0.02 0.000 8.00 0.000 

150                    0.6 21.00 12.78 0.20 0.111 0.203 10.27 9.42 4.72 0.220 0.189 0.297 0.351 66.80 36.76 5.60 0.000 7.88 0.020
  0.8 39.91 14.52 0.49 0.313 0.448 9.15 8.67 7.23 0.316 0.067 0.205 0.316 77.33 62.27 0.28 0.250 9.38 0.282 

average 21.19                  11.39 2.13 0.351 0.276 11.96 6.77 4.88 0.331 0.231 0.327 0.456 52.56 36.04 2.10 0.244 9.77 0.130

**This table confirms the final results achieved from table 1

 
Tab. 2 Maximum deviation over 10 replication. 
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in which the jobs are interchanged two by two up to 
the end of the schedule, for each fitness function 
values is calculated and the minimum is selected. 

    *pair wise interchange is a method that a near 
optimal schedule is obtained through suitable pair 
wise interchange between tasks [3].   
 We compare the performances of the above 
mentioned GA1, GA2, GA3, GA4, Hmst and Hmoore 
using the following deviation measure: 
 
% deviation =   100 × F – best         
                                      best 
Where F is the fitness function value (presented in 
section 3.2) of GA1, GA2, GA3, GA4, Hmst and 
Hmoore for each replication. 
Best is the minimum value of F among each set of 
instances (replication). 
The average percent of deviation is calculated for 
each class of problems as shown in table 1. 
In table 2 the maximum of the above mentioned 
deviations are reported. 
With respect to Table 1, for w=0.1 , w=0.5 Hmoore 
and GA4 outperform than other solutions as they 
obtained the minimum average value of deviations 
both in high processing time and low processing time, 
respectively. 
In w=0.9 GA4 is preferred as the best solution in high 
processing time, but for low processing time Hmst is 
recognized as the best one. 
The quality of the results in table 1 are obviously 
confirmed through table 2 by comparing the average 
of maximum deviations for the preferred solutions. 

5 Conclusion 
In this study we first addressed the single machine 
scheduling problem. As evaluation measures we 
considered maximum earliness and number of tardy 
jobs. Then we proposed a GA for solving such 
problem in which a heuristic algorithm is applied on 
the randomly generated initial population. The 
computational results for solving different problems 
show the performance of the proposed algorithm. In 
order to show the efficiency well, we utilized pair 
wise interchange, On MST and Moore sequences and 
then compared with the results achieved by different 
GAs and for simulating the system based on the real 
industrial systems we utilize the uniform distribution 
for processing time of jobs. Consequently the results 
show the best solution for different weights of 
objective function.  
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