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Abstract 

From ancient time one of the most important problem in non-life insurance companies has 
been how to calculate incurred but not reported claim provisions (IBNR). When accounting 
period ends, premiums have received, but there is always situation that claims have incurred 
but still not reported because it is not always possible to report them in the same day of 
occurrence. To have right accounts money from received premiums have to be reserved for 
such claims. There are many classical methods how to do that. All these methods are based on 
different coefficient calculations and deal with classical development triangle. Nowadays new 
stochastic methods actual have become to calculate the mentioned reserves (Charpentier, 
2004 [1]). Every claim relates with loss adjusted expenses which are needed for insurance 
company to be able to pay out claim. We have gone further to look on each claim in non-life 
insurance like event consists from three important characteristics: the claim size, the allocated 
loss adjusted expense and the development time (time from the moment of claim occurrence 
until its settlement). Our interest is concentrated to the joint study of all three random 
variables what is very important for IBNR claim provision calculations. Using multivariate 
distributions with different dependence structures, we statistically evaluated IBNR claim 
provision. 
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General 
Understanding and quantifying dependence is at the 
core of all modelling efforts in financial econometrics. 
The linear correlation coefficient, which is the far 
most used measure to test dependence in the finance 
and also elsewhere, is only a measure of linear 
dependence. This means that it is a meaningful 
measure of dependence if asset returns are well 
represented by an elliptical distribution. Outside the 
world of elliptical distributions, however, using the 
linear correlation coefficient as a measure of 
dependence may lead to misleading conclusions. 
Hence, alternative methods for capturing co-
dependency should be considered. One class of 
alternatives is copula-based dependence measures. 
Copula like a tool for modelling different dependence 
structures more and more widely have been used in 
different fields of research: finance, insurance, risk 
theory. Copulas were introduced in 1959 by Sklar [2] 
but only in 1997 Wang introduced copula models in 
insurance. Many conferences, seminars have been 
about that topic from that time [3,4,8]. Most 
commonly copulas in non-life insurance are used to 
model claim sizes and allocated loss adjusted 
expenses (Frees, E. W., Valdez, E. A. (1998) [7]), 
evaluate economic capital (Tang, Valdez (2006) [8], 
for combining different risks (Clemen, Reilly (1998) 
[5]. 

1 Copula Technique 
1.1 Definition of copula 

In the real world, there is often a non-linear 
dependence between different variables and 
correlation cannot be an appropriate measure of co-
dependency. Therefore linear Spearmen’s correlation 
coefficient is a limited measure of dependence. It is 
not surprising that alternative methods (the copula 
method) for capturing co-dependency have been 
considered. The concept of copulas comes from Sklar 
[2] in 1959. 
 In rough terms, a copula is a function: 

[ ] [ ]1,01,0: →nC ,        (1) 

with certain special properties.  

1.2 Gaussian copula 

The Gaussian copula is given by 
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where ρ is the parameter of the copula, and Ф-1 is the 
inverse of the standard univariate Gaussian 
distribution function and a = 1/(2π(1-ρ2)1/2. 

 
Fig. 1 The density of the bivariate Gaussian 

distribution with correlation cor = 0.7 and standard 
normal marginals 

 
Fig. 2 The density of the bivariate Gaussian copula 

with parameter ρ = 0.7 

1.3 Student’s t-copula 

The Student's t-copula allows for joint fat tails and an 
increased probability of joint extreme events 
compared with the Gaussian copula. This copula can 
be written as 
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where ρ and v is the parameter of the copula, and tv
-1 

is the inverse of the standard univariate t-distribution 
function with v degrees of freedom, expectation 0 and 
variance v/(v-2). 

1.4 Sklar’s theorem 

The most useful results of copula theory is Sklar’s 
theorem. Let F be a joint multivariate distribution with 
marginals F1 and F2. Then, for any x1, x2 there exists a 
copula C such that  

( ) ( )( )221121 ,),( xFxFCxxF = .    (2) 

Furthermore, if marginals F1 and F2 are continuous, 
the copula C is unique. Conversely, if F1 and F2 are 
marginal distributions and C is a copula, then the 
function F defined by ( ) ( )( )2211 , xFxFC  is a joint 
distribution function with marginals F1 and F2. If we 
have a random vector X = (X1, X2) the copula of their 
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joint distribution function may be extracted from 
equation (1): 
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where the 1
2

1
1 , −− FF  are the quantile functions of the 

margins. 

1.5 Definition of a two-dimensional copula 

A two-dimensional copula is a two-dimensional 
distribution function C with uniformly distributed 
marginals U(0,1) on [0,1]. Thus a copula is a function 
C:  

[ ] [ ]1,01,0: 2 →C ,        (4) 

satisfying the following three properties: 

1. For every u, v from [0, 1]: 

C(u, 0) = C(0, v), C(u, 1) = u   and   C(1, v) = v. 

2. C(u, v) is increasing in u and v. 

3. For every u1, u1, v1, v2 from [0, 1] with u1 < u2 and  
v1 < v2 we have: 

0),(),(),(),( 11211222 ≥+−− vuCvuCvuCvuC  
Condition 1 provides the restriction for the support of 
the variables and the marginal uniform distribution. 
Conditions 2 and 3 correspond to the existence of a 
nonnegative “density” function.  
Sklar’s theorem provides a decomposition of the joint 
distribution into marginal features (that are F1 and F2) 
and dependence features (represented by copula C). 
The two variables X and Y are independent if and 
only if F(X) and G(Y) are independent. The 
independence condition can be written in terms of 
copula as C(u, v) = uv. When C(u,v) ≠ uv, the 
variables X and Y (or F(X), G(Y)) are dependent and 
the dependence summarized in the copula depends on 
the variables up to (nonlinear) increasing 
transformation of the variables. It is important to see if 
they are more or less dependent, and the “sign” of the 
dependence. The comparison of dependence can be 
based on the usual first order dominance stochastic 
ordering applied to copula. In most financial cases we 
can effectively use Archimedean copulas. The 
Archimedean copulas provide analytical tractability 
and a large spectrum of different dependence measure. 
These copulas can be used in a wide range of 
applications for the following reasons:  

a) the simplicity with which they can be constructed;  

b) the many parametric families of copulas belonging 
to this class;  

the great variety of different dependence structures.  

1.6 Definition of an Archimedean copula 

Definition of Archimedean copula’s generator. Let us 
consider a function φ: [0;1]→[0;1] which is 
continuous, strictly decreasing, convex and for which 

φ(0) = ∞ and φ(1)=0. We then define the pseudo 
inverse of φ[-1]: [0; ∞] → [0;1] such that:  
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As φ is convex, the function C: [0; 1]2 → [0; 1] 
defined as C(u1, u2)= φ−1[φ(u1) + φ(u2)] is an 
Archimedean copula and φ is called the generator of 
the copula [2,7]. In case of the multivariate extension 
for all n ≥ 2, the function C: [0; 1]n → [0; 1] defined 
as  

C(u1, ..., un) = φ−1[φ(u1) +. . . + φ(un)],   (5) 

is an n-dimensional Archimedean copula if and only if 
φ−1 is completely monotone on [0, ∞).  

Alternatively we can say that it is a multivariate 
distribution function defined on the unit cube [0; 1]n. 
Copula functions are well studied object in the 
statistical literature. These functions have been 
introduced to model a joint distribution once the 
marginal distributions are known. When multivariate 
normal distribution is rejected by data, the copula may 
be used as an important alternative to represent the 
dependence in joint distributions.  

1.7 Copula-based dependence measures 

Since the copula of a multivariate distribution 
describes its dependence structure, it might be 
appropriate to use measures of dependence which are 
copula-based. The bivariate concordance measures 
Kendall's tau and Spearman's rho, as well as the 
coefficient of tail dependence, can, as opposed to the 
linear correlation coefficient, be expressed in terms of 
the underlying copula alone. 

Kendall’s tau. Kendall's tau of two variables X and Y 
is 

( ) ( )∫ ∫ −=
1
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where C(u, v) is the copula of the bivariate 
distribution function of X and Y. For the Gaussian and 
Student's t-copulas and also all other elliptical copulas, 
the relationship between the linear correlation 
coefficient and Kendall's tau is given by 
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Spearman's rho of two variables X and Y is given by 

( ) ( )∫ ∫ −=
1

0

1

0

3,12, dudvvuCYXSρ . 

For the Gaussian and Student's t-copulas, we have that 
the relationship between the linear correlation 
coefficient and Spearman's rho is 
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Both ρτ(X, Y) and ρS(X, Y) may be considered as 
measures of the degree of monotonic dependence 
between X and Y, where as linear correlation 
measures the degree of linear dependence only. 
These measures are invariant under monotone 
transformations, while the linear correlation 
generally isn't. Hence, according to Embrechts 
(2003) [6] it is better to use these measures than the 
linear correlation coefficient. Therefore copulas have 
become a powerful tool for modeling dependence 
between random variables. Also copula methodology 
is effective for modeling joint distributions with fat 
tails. Fat tails in financial return data have been 
documented in numerous real cases. Joint distribution 
on financial data returns is very important issue in risk 
management. 

1.8 Simulating algorithm from the copula 

If in addition to equation (5) function φ equals the 
inverse of Laplase transform of a distribution function 
G on R+ satisfying G(0) = 0, the following algorithm 
can be used for simulating from the copula (Marshall 
and Olkin, 1988) [9]: 

 I. Simulate a variate X with distribution function G 
such that the Laplace transform of G is the inverse of 
the generator. 

 II. Simulate n independent variates V1,... , Vn. 

 III. Return U = (φ-1(-log(V1)/X),..., (φ-1(-
log(Vn)/X)). 

Frank, Clayton and the Gumbel copula can be 
simulated using this procedure. For example for the 
Clayton copula simulation algorithm becomes 

 I. Simulate a Gamma variate X~Gamma(1/θ, 1). 

 II. Simulate n independent standart uniforms 
variates V1, ..., Vn. 

 III. Return U = ((1-log(V1)/X)-1/θ,..., (1-log(Vn)/X)-

1/θ). 
Functions needed for simulating algorithm are shown 
in Tables 1, 2. 

Tab. 1. 

Tab. 1 Frank copula 

Functions Frank copula 
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Tab. 2 Gumbel and Clayton copula 

Functions Gumbel 
copula Clayton copula 
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2 IBNR claim provision calculations  
First the marginal univariate distributions are 
examined to use families of lognormal, Pareto and 
Wald distributions. Random variable X has Wald 
distribution with parameters μ and λ, if the density is 
of the form: 
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where μ, λ and x >0. The distribution function of the 
Wald distribution can be presented through the 
standard normal distribution: 
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where x > 0 and )(xΦ  is the distribution function of 
N(0,1). The parameters of the marginal distributions 
are first estimated, and then each parametric marginal 
distribution function is plugged into the copula 
likelihood, and this full likelihood is maximized 
with respect to the copula parameters. [4].  
In the paper claims of a Latvian insurance company 
from the first quarter of the year 2004 are studied. The 
data under consideration consists of 1657 claims 
characterized by development factor, claim size and 
loss adjusted expenses. Basic characteristics of all 
three random variables are presented in the following 
Table 3. 
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Tab. 3. 

Tab. 3 Characteristics of defined random variables 

Random 
variable 

Development 
factor 
(days) 

Claim 
sizes 

(LVL) 

Loss 
adjusted 
expanses 

(LVL) 
Used notation R1 R2 R3 
Mean 36.74 284.36 15.81 
Median 3 121.49 19.47 
Mode 1 0 19.47 
Standard 
Deviation 94.19 668.41 13.65 

Sample 
Variance 8872.25 446774.40 186.29 

Kurtosis 16.93 70.42 6.03 
Skewness 3.92 7.17 1.55 
Range 706 9000 106.20 
Count 1657 1657 1657 
Largest (1) 707 9000 106.20 
Smallest (1) 1 0 0 

As one can see from Table 3, distributions of all three 
random variables are skewed and kurtosis is far from 
zero for all random variables. That creates large 
difficulties to define marginal distributions. We have 
used Kolmogorov-Smirnov goodness of fit test to find 
the best approximation for all three random variables 
and lognormal, Pareto and Wald distributions. The test 
statistics for comparison with 5% critical value of 
Kolmogorov-Smirnov test (0.03341) are shown in 
Table 4. 
Tab. 4. 

Tab. 4 Kolmogorov-Smirnov test statistics for all three 
random variables 

 Developm
ent factor 

Claim 
size 

Loss 
adjusted 
expenses 

Lognormal 
distribution 0.01995 0.00826 0.04587 

Pareto 
distribution  0.02897  

Wald 
distribution   0.03616 

Graph of both theoretical and sample densities for 
some of them are shown in Figure 3, 4 and 5. The 
success of the fully-parametric method obviously 
depends upon finding appropriate parametric models 
for the margins, which may not always be so 
straightforward if they show evidence of heavy tails 
and/or skewness. Hence, it would be better to have a 
procedure that avoids marginal risk as much as 
possible. Several authors, e.g. Jansons and Jurenoks 
[3], have therefore proposed a semi-parametric 
approach, for which one do not have any parametric 
assumptions for the margins. Instead, using semi-

parametric method the univariate empirical 
cumulative distribution functions are plugged. 
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Fig. 3 Approximation of development factor by 
lognormal distribution 
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Fig. 4 Approximation of claim sizes by Pareto 
distribution 
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Fig. 5 Approximation of loss adjusted expenses by 
Wald distribution Figures, tables, and equations 
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Matrices of linear correlation and Kendall’s tau 
between samples are shown in Table 5, 6. 

Tab. 5. 

Tab. 5 Relationship between samples – linear 
correlation coefficient 

Linear correlation coefficient 
 Development 

factor 
Claim 
size LAE 

Developmen
t factor 1 -0.135 0.353 

Claim size -0.135 1 0.200 
LAE -0.353 0.200 1 

Tab. 6. 

Tab. 6 Relationship between samples – Kendall’s tau 

Kendall’s tau 
 Development 

factor 
Claim 
size LAE 

Developmen
t factor 1 -0.274 0.350 

Claim size -0.274 1 0.276 
LAE -0.350 0.276 1 

We have used multivariate Frank, Clayton and 
Gambel copula and generators for copulas (see Table 
1). For modeling of Archimedean copula we have also 
used algorithm described in Frees, Valdez [7]: 
 I. Generate U1, U2,…, Up independent standard 
uniform  random numbers. 
 II. Set X1 = F1

-1(U1) and c0 = 0. 
 III. For k = 2, …, p recursively calculate Xk as the 
solution of 

1( 1)
1

1( 1)
1

{ ( ( ))}
( )

k
k k k

k k
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c F xU
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ϕ ϕ
ϕ

− −
−

− −
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+
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, 
where φ is the generator of Archimedean copula, F - 
marginal distribution function and 

1 1 2 2[ ( )] [ ( )] ... [ ( )]k k kc F x F x F xϕ ϕ ϕ= + + + . 

3 Conclusions 
Finally to obtain total liabilities we multiply average 
claim amount plus average loss adjusted expenses 
with expected number of claims reported in each 
development day and with number of days. We have 
calculated liabilities by using the average number of 
claims in one day plus standard deviation, the average 
number of claims in one day plus two standard 
deviations and the average number of claims in one 
day plus three standard deviations. To have back 
testing we compared calculated liabilities with real 
money necessary to pay out and cover loss adjusted 
expenses. It was 128145.32 LVL. Copula theory 
makes it possible to approximate joint distribution of 
the claim size, loss adjusted expenses and the 
development factor. Copula theory makes it possible 

to approximate joint distribution of the claim size, loss 
adjusted expenses and the development factor. The 
results are shown in Table 7. 

Tab. 7. 

Tab. 7 Calculated IBNR reserves and related 
probabilities 

Calculated 
reserve (LVL) 

Used number 
of claims 

happening in 
one day 

Probability that 
necessary paid 
out sum will be 

larger (%) 
113162.2 19 13.57
148897.6 25 2.28
184633 31 0.13  

On the basis of the obtained copula model it is 
possible to estimate liabilities of insurance company 
in relation with probabilities and therefore its expected 
values what is not possible to do with classical 
methods. 
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