Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

ACCELERATING SOLAR WIND CALCULATIONS
J. Schiile

GauB-IT-Zentrum, TU Braunschweig, Germany
J.Schuele@TU-BS.de (J. Schiile)

Abstract

A hybrid simulation model (PIC code) for the solar wind interaction with the ionosphere
of stellar objects is optimized sequentially and its runtime almost halved. Parallelization
with decomposition of the computational grid in static subdomains supported by a single
ghost cell performs well because particles are almost uniformly distributed and thus cause
no load balancing problems. We observe that we can spawn two independent threads
on a dual-core Xeon processor without any performance loss due to the effective Hyper-
Threading. We have compared partitionings in two different directions namely z and y.
A partitioning in x direction shows a performance degradation due to increased L2 cache
traffic and more communication traffic than a partitioning in the direction of y. If we
combine both partitionings the application will show an increasing speedup with up to
32 processors. For production runs the performance is reasonable with an effecitvity of
78% with up to 16 processors. This effectivity could be improved on a cluster with faster
network interfaces or a more effective open source MPI implementation. Currently we
reach on a Gb Ethernet network for a unidirectional send only a bandwidth of 25 MB/s
compared to 128 MB/s hardware bandwidth. In total, sequential optimization and par-
allelization both have reduced the waiting time for a simulation by a factor of 23 on 16
Processors.
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1 Introduction
1.1 Physics

A hybrid simulation model for the solar wind in-
teraction with the ionosphere of planets like Mars
and Titan has been developed at the Institute for
Theoretical Physics at TU Braunschweig [1]. The
present version of this program code has already
been successfully applied to the solar wind inter-
action with comets [2, 3] as well as to the plasma
environment of Mars [4] and Titan [5].

In the hybrid approximation the electrons are
modeled as a massless charge-neutralizing fluid,
whereas the ions are treated as macro-particles.
The model dynamically solves the following equa-
tions on a curvilinear grid in three spatial dimen-
sions:
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Here g5, ms and v, denote the charge, mass and ve-
locity of a macro-particle of species s, respectively.
kp is a constant, n, is the number density of the
neutrals, u; is the mean ion velocity, n. the electron
density, P, sw, and P, p; correspond to two differ-
ent electron pressure terms, and V and x represent
the Nabla operator and the cross product, respec-
tively. The code operates on a curvilinear grid in
three spatial dimensions which reflect the spherical
resolution in the vicinity of the planetary atmo-
sphere. Details of the calculations may be found in
[1] and [4].

1.2 Simulation Code

The basic scheme to solve the specified set of equa-
tions is the "Particle-in-Cell’ (PIC) method: a fixed
grid is defined in coordinate space and the electro-
magnetic field quantities as well as charge densities
and currents are defined only on the nodes of this
grid whereas the macro-particles are located any-
where in the computational domain. A PIC code
consists of four basic steps, namely:

(i) Gathering moments; densities and currents are
computed (gathered) on each grid point from
given particle positions and velocities.

(ii) Solution of field equations; using densities and
currents the electric and magnetic fields are
updated in a leap-frogged algorithm.

(iii) Force interpolation; the electromagnetic field
quantities are interpolated from the grid nodes
to each particle position.
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(iv) Particle movement; given the forces acting on
each particle, both their position and velocity
are updated, accordingly.

In addition to this basic PIC steps a simple smooth-
ing procedure is applied to the magnetic and the
electric field to reduce noise from statistical parti-
cles in each time step. More details are given in

[2].
1.3 Implementation

The code is implemented in C++ where all fields
are defined in a common class vfield containing a
three-dimensional data array and several operators
with three to five arguments among other things.
These operators return the pointer to a memory
location in this data array depending in all cases
on the coordinates, in some cases on the number of
vector components of the field and sometimes even
on a conditional parameter used to interchange co-
ordinate directions to code cross products smarter.
A second class contains and handles particles which
are organized in a chained list to add/remove par-
ticles easily as required.

2 Performance Optimization

The results of a simple profiling (gprof) of the
original sequential program are given in column
2 of table 1. Listed are the 10 most time con-
suming functions amounting to 84.2% of the to-
tal time of 3m 40s required for 3 time steps (of
some thousands required in a production calcula-
tion) on an Intel Xeon Dual-Core processor running
at 3.2 GHz. This processor is known to have de-
ficiencies in its memory access times. This is sup-
ported by a STREAM benchmark [6] resulting in
3.67 Gflops compared to 6.4 Gflops peak perfor-
mance indicating a performance loss of 1.73 Gflops
or 27% due to its weak memory system.

function %t %2 %3
Solve B 25.0 | 11.0 | 13.1
vfield::ijkl 15.3 | 46.3 2.9
calcmrJLG 94 5.4 2.8
field_interpol 7.6 2.0 4.7
get_v 6.4 2.8 1.9
main 5.1 0.0 0.1
smooth 5.0 4.3 0.8
cart_coord 3.9 4.8 3.4
get_wijk 3.5 7.9 3.5
calcmr] 3.1 1.6 3.0

Tab. 1 Functions and their profiling amounts are
listed in percentage of total time used: ! Original
C++ code on final target computer. 2 Original
C++ code on ES45. 3 Code after improvements.
The values are divided by 1.9 to account for the
reduced overall runtime compared to column 2.

To illustrate differences in profiling data related
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to different processors we have listed the results
for the same profiling experiment on an 1000 MHz
Alpha-processor in a COMPAQ ES45 in column 3
of table 1. A single processor of this machine yields
a STREAM benchmark result of 1.9 Gflops com-
pared to 2.0 Gflops peak performance. Clearly this
computer is better balanced than the Xeon pro-
cessor which becomes even more pronounced when
more than one processor is utilized.

While on the Xeon processor most time is spent
in function Solve B. In this function various cross
products in all three dimensions of the magnetic
field are formed. It consumes only 11% on the
Alpha-processor due to its faster memory sys-
tem. In contrast to this, we have recognize a
change in the amount required for the opera-
tor vfield::ijkl in the C++ field class viield,
which is a pure integer manipulating function. Here
the Xeon system with fast integer arithmetic units
clearly outperforms the Alpha-processor.

Nonetheless we have noticed in this first profiling
output a significant drawback of the smart C++
field class operator vfield::ijk1 - it has slowed
down the program. By replacing this with inline
address arithmetic directly working on the data
array the computational time has indeed been re-
duced by 15%.

In the following we mainly concentrate on the pro-
filing results for the Xeon processor as the final tar-
get computer system consists of a cluster of these
systems.

The distribution of most time consuming functions
among the PIC code steps is of great importance.
Solve B is the major function in step (ii), smooth
and to a great extend vfield::ijk1l belong to it
as well. The function field interpol is part of
step (iii). These functions manipulate field quanti-
ties on the grid and are independent of the macro-
particles. Depending on the macro-particles are the
functions calcm rJLG and calcmrJ in step (i)
and get_v (Maxwellian velocity for new particles),
cart_coord (Cartesian coordinates for a particle)
and get_wijk (weighted coordinates for a particle).
At first it is surprising that functions related to step
(iv), the particle movement, are missing.

It would be boring and overburdening this paper to
give full details of all performance optimizing steps.
But one simple improvement is the replacement of
a repeated call of the power function in smooth by
a precalculated array in the following piece of code.

// Replacement of
// pow(2.,(double) (-(i*i+j*j+k*k+3)))
// in i,j,k loops below running from
// -1 to 1 with increment 1 for each
// grid node.
potenz[0]=1.;
for(i=1;i<7;i++) potenz[i]=0.5*potenz[i-1];

In addition to this modification the changes mainly
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consist of removing operator calls in class vfield
and of rearranging the particle class into boxes with
tunable size. Now, instead of allocating/freeing
each particle, we have arranged the particle data
in these boxes and have added some cleaning func-
tions to get rid of almost empty boxes.

As may be seen in column 4 in table 1 these modifi-
cations have indeed changed the profiling amounts
drastically, and even more important they have re-
duced the overall runtime for a sequential run from
3m 40s down to 1m 54s or almost have halved the
runtime for production runs. This is an important
improvement because production runs require be-
tween 3000 to 10000 more time steps than our very
limited test case.

3 Parallelization

Parallelization of a PIC code may introduce severe
load balancing problems if particles are not equally
distributed among all grid nodes. This is especially
important if functions in steps (i) and (iv) - here
particles are involved - are very time consuming [7].
Fortunately this is not the case in our application
because solar wind particles are almost uniformly
distributed on the computational domain with the
exception of the stellar object considered. And fur-
thermore, as pointed out in the previous section,
step (iv) does not require significant amounts of
time. Therefore it is a promising approach to be-
gin with a static partitioning of the grid and to
distribute particles accordingly.

Subdividing a cubical computational domain is
possible in all three directions but should take the
following into account

e load balancing, that is it should generate do-
mains that are almost equal in size;

e preserve regular data layout and generate reg-
ular (straight) interfaces between domains;

e preserve inner loops, that is it should preserve
data access with stride 1;

e reduce the number of communication toward
an increase in communicated data between
processes with the help of a ghost or halo re-
gion around domains;

e consider a preferred movement direction of
particles in order to reduce the number of par-
ticles passing from one domain to another.

The above specified viewpoints clearly favour regu-
lar cuts in the physical x and y directions of the
cube becausebecause z direction is organized in
inmost loops with data access pattern with unit
stride. The halo region consists of one ghost cell
layer, because only direct neighbouring cell infor-
mation is required in the calculation (cf. Fig. 1).
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Fig. 1 Schematic decomposition of the computa-
tional domain into three subdomains along z di-
rection. Indicated is the halo region consisting of
one ghost cell layer at each interface.

Since we do not expect significant problems in the
load balancing with a static decomposition as many
subdomains are formed as processors are used. In
future developments we will extend this to more
subdomains than processors to account for unbal-
ance in the work load which arises due to missing
particles in grid cells representing the stellar object.
This will become more important in the future. We
are planning to move from the curvilinear grid to
an adaptive Cartesian grid. Representation of the
stellar object in this grid as well as the adaptivity of
the grid will introduce more severe load balancing
problems and thus more flexibility in the distribu-
tion and replacement of domains among processes
is mandatory.

Random numbers are supplied by the sprng2.0 li-
brary [8] in independent streams per processor.
Substituting the sequential random number gener-
ator against the sprng2.0 library causes only a small
overhead. With these decisions the parallelization
is straightforward.

Particles are generated independently in each sub-
domain and relocated between subdomains accord-
ing to their movement. All the electromagnetic
field quantities as well as charge densities and cur-
rents are distributed accordingly and the halo re-
gion is updated as required. Only the node coor-
dinates are replicated in each process to allow for
random replacement of particles in all the processes
in case some of them are leaving the computational
domain. In addition to shortened runtimes this ap-
proach opens up the possibility to extend the pro-
gram to larger and/or finer grids because the mem-
ory requirements per processor is almost linearly
reduced by the number of processors used.

3.1 Hard- and Software Considerations

Parallelization strategies and concepts are easy to
consider and investigate theoretically, but a little
bit more complicated when they have to be im-
plemented. Already the sequential profiling infor-
mation discussed in 2 shows a significant system
variation because it mainly depends on the balance
between processor and memory speed. This is even
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Fig. 2 Unidirectional MPI bandwidth between two
nodes connected via 1 Gb interfaces measured with
LLCBENCH suite [12] for the target cluster.

more pronounced in parallelization because besides
processor and memory speed even network latency
and bandwidth, MPI implementations (cf. [9]), re-
mote memory access policies, and filesystem access
influence the runtime.

As implementation has been started on a COM-
PAQ ES45, has been continued on an IBM p-Series,
and has been finished on a Linux cluster portabil-
ity is an important issue. Therefore MPI [10] in
version 1.1 is chosen as software platform. Espe-
cially at the current state neither I0-extensions nor
extensions to handle one-sided communication nor
dynamic process management are incorporated nor
do we consider hybrid programming mixing MPI
and OpenMP. This is a major drawback because
one-sided communication can help to speed up par-
ticle calculations in PIC codes as pointed out in [7].
But the final target system has no hardware sup-
port for this type of communication (see below).

On the COMPAQ ES45 and the IBM p-Series we
use vendor compilers and libraries, on the Linux
cluster we use the Intel C compiler suite version
9.1 together with OpenMPI [11] in version 1.2.2.
Only performance numbers for the Linux cluster
are given below therefore we restrict the hardware
specification to this system.

The system consists of Intel Xeon Dual-Core run-
ning at 3.2 GHz, 2 MB L2 cache, and 2 GB memory,
operating under SUSE LINUX 10.0. The cluster is
interconnected with two 1 Gb Ethernet connections
one of them is dedicated to the communication traf-
fic and the other one mainly handles IO to NFS
mounted filesystems. The Ethernet cards do not
provide the possibility for remote memory access.
Therefore one-sided communication is not feasible.
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Even worse than this is the effective bandwidth this
network provides in our current OpenMPT 1.2.2 im-
plementation [11]. As depicted in fig. 2 we mea-
sure for an unidirectional MPI_Send a bandwidth
less than 25 MB/s compared to 128 MB/s nominal
bandwidth of a Gigabit Ethernet interface. Con-
sidering McClements investigations [9] this should
even be worse for other open source MPI implemen-
tations and urgently requires further investigations.

3.2 Methods and Results

The implementation of a grid decomposition with
halo regions is straightforward. A bit more involved
is the coding of the particle movement because an
unknown number of particles has to be moved to
beforehand unknown processes and vice versa. In
our first implementation we have used immediate
send/receive operations of one integer in order to
inform the receiving process and then subsequently
to exchange the corresponding amount of particle
data. The end of a particle movement period is
passed on to all the processes by sending the in-
teger —1. While this version was running without
problems on a shared memory node this approach
got stuck once in a while on the Xeon cluster. We
have traced this behaviour down to problems with
overtaking messages in our OpenMPI implemen-
tation under certain conditions even though MPI
clearly prohibits this in its documentation.

For that reason we have changed to MPI_Isend in
combination with MPI_Iprobe. This has the ad-
vantage of avoiding one point to point communi-
cation per particle package because the informa-
tion about the number of particles to be received
is available in the status information returned by
MPI_Iprobe. Of course we neither exchange parti-
cles one by one nor do we use derived datatypes to
send them but perform local buffering for perfor-
mance reasons (see [14]).

Both implementations differ only slightly in their
runtimes but the latter has shown not any deadlock
up to now.

The results given below refer to calculations on a
90 %90 %90 grid in curvilinear coordinates modeling
the solar wind around Titan over 40 time steps on
the above described Xeon cluster.

Runtimes for different scenarios are depicted in fig.
3. One scenario refers to a test of the nodes in pro-
cess handling and we compare the same runs exe-
cuted with one and two threads on each node (com-
pare the single loaded marked curve with others).
The other scenarios compare different partitioning
directions which are either a decomposition along
z, along y or a combination of both directions.

As we have already mentioned above and proved
with the STREAM benchmark, the Intel Xeon ar-
chitecture has deficiencies in memory accesses with
a ratio of 0.54 between memory and peak perfor-
mance. This situation is even worse when using
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Fig. 3 Parallel runtimes for solar wind interactions
with Titan as described in the text for different
numbers of processors. Shown are curves for runs
with one process per core (single loaded) and with
two processes per node for different partitioning
strategies.

both cores of the Dual-Core Xeon, as this ratio
drops below 0.3. As pointed out in section 2 our
overall code is memory bound and thus we expect
a significant performance degradation when run-
ning with two processes on a dual-core compared
to running the same parallel application on two dif-
ferent nodes. Surprisingly enough, this is not the
case as can be seen in fig. 3. A first assumption
for this unexpected behaviour points toward the
Gigabit Ethernet interconnections with their poor
bandwidth (s. fig 2) which certainly introduce an
overhead that may compensate for the pure mem-
ory accesses in dual loaded nodes. In fact profiling
with mpiP [13] reveals that this is not the case, as
both singe loaded and dual loaded runs both show
11% MPI overhead, thereof most time is spent in
MPI Wait (59%) and MPI_Iprobe (16%) which are
called in functions which exchange particles. An-
other aspect is a very effective Hyper-Threading for
the Xeons. In order to investigate this further we
have started four parallel threads on one dual-core
node and have compared this to a run with two par-
allel threads on the same node. Four threads should
not run faster on two cores but slower due to the
increased competition among the threads. But we
have observed that four threads on two cores run as
fast as two threads indicating that scheduling and
thread and data management introduce an almost
neglectable overhead on the Xeon dual-core nodes.

As pointed out in section 3 a simple decomposition
of the computational domain provides a meaning-
ful strategy for parallelization. Runtimes for parti-
tionings in x and y are compared in fig. 3 together
with timings for a combined partitioning in z as
well as in y. The z direction is organized in out-
most loops and y in middle loops of a 90 x 90 x 90
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Fig. 4 Speedup for solar wind interactions with Ti-
tan as described in the text for different numbers
of processors.

grid. We expected partitioning in z to be faster
with 8100 = 90 x 90 grid points fitting well into
cache in most computations. To our surprise this
is not the case and a partitioning in y has proven
to be faster instead.

To investigate this behaviour we have compared
these partitioning schemes with the help of the
hardware performance monitor on an IBM p-Series.
In fact this comparison proves the importance of
the L2 cache for runtimes. In contrast to our es-
timation the z partitioning requires twice the L2
traffic and a significant larger amount of page faults
with IO traffic than the y partitioning thereby re-
ducing the hardware Flops rate by 12% and increas-
ing the runtime by the same rate. But the differ-
ence between these partitioning schemes is smaller
than 12% on the Xeon cluster. If we assume a sim-
ilar behaviour of the memory systems for the Xeon
cluster and the IBM p-Series, the following ques-
tion arises: Where does the z partitioning gain time
on the Xeon cluster? Again a profiling with mpiP
[13] provides its usefulness. The MPI overhead in
the z partitioning is 7% and thus smaller than in
the y partitioning with 11%. The profiling data
indicates that most time consuming MPI functions
are called during particle movement in step (iv).
We have traced the MPI calls in this program unit.
Many particles have velocities in z direction there-
fore in the x partitioning scheme most data traffic
is directed from threads with domains with low in-
dices to neighbouring threads with domains with
higher indices. Therefore there is less data traffic
in a partitioning in y direction with respect as well
the frequency as the amount. Nonetheless and very
surprising the MPT overhead is less in case of a par-
titioning in z than in y direction. This has to be
investigated further.

As can be seen in fig. 3 and even better in fig. 4
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- the speedup is displayed there - partitioning in y
will become more and more superior to a partition-
ing in = the more processors we use. Nonetheless
both partitionings prove their weaknesses in case
we use more than 12 processors. This is as could be
expected because chunk sizes get too small. Much
better but still unsatisfying are the speedups mea-
sured for combined partitionings in z and y direc-
tions. But more important than the speedup are
of course savings in runtime and as a consequence
reduced waiting times for researchers working with
this program code. In the beginning a calculation
of the solar wind around Titan required more than
46 minutes for 40 time steps. The same calculation
can now be accomplished in less than 2 minutes on
8 dual-core Xeon nodes.

4 Conclusion

We present the performance optimization and par-
allelization of a hybrid simulation model (PIC
code) that has been developed at the Institute for
Theoretical Physics. This model is applied to cal-
culate the solar wind interaction with stellar ob-
jects.

By removing C++ operators, introducing block al-
location for particles, and substituting replicated
calculations against precalculated arrays the se-
quential runtime has been halved. In addition to
this, sequential profiling information reveals valu-
able information for a parallelization strategy. We
have achieved a reasonable speedup with a decom-
position in static subdomains supported by a single
ghost cell. First we noticed that Hyper-Threading
on dual-core Xeon processors effectively handles
multiple threads. Therefore it is possible to spawn
two independent threads on a dual-core Xeon with-
out any performance loss.

We have compared partitionings in two different
directions namely x and y and have analyzed their
differences. A partitioning in z direction shows per-
formance degradation by 12% due to increased L2
cache traffic and more communication traffic dur-
ing particle movement with respect to as well the
frequency as the amount of data. In contrast to
these observations the MPI overhead is smaller in
the x partitioning scheme and performance degra-
dation is much less pronounced than expected from
pure numbers of the hardware performance moni-
tor.

As expected we will achieve better results if we
combine partitionings in z and y direction than
with a single direction because the combination
shows a better ratio between inner cells and ghost
cells. We achieve an increase in speedup up to 32
processors but more than 16 processors should not
be used in production runs because the effectiv-
ity significantly drops with more processors. We
expect better speedup numbers for runs on a hard-
ware with faster network interfaces which allow for
one-sided communication and perhaps even with a
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more effective open source MPI implementation.

In conclusion, our work provides researchers at the
Institute for Theoretical Physics now with results
after 1 day compared to 3 weeks before this work
started. Half of these savings are due to sequential
optimization of the program code and the remain-
ing is due to parallelization. We will continue our
work in both directions and extend it to a third
direction as are mathematical improvements.
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