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Abstract  

Scope of the work is the decision of a high accuracy experimental data reception problem in 
medical, ecological and chemical data processing software. There will be reviewed techniques 
for sensor fusion in gas concentration control system, emphasizing algorithms for safety 
control in chemical industry. These find use when the sensor suite of a chemical treatment 
comprises several different sensors with vary stochastic properties. The review describes 
integration techniques for various categories of stochastic processes. The review provides an 
arsenal of tools for achieving maximum likelihood conditions in estimation problem 
solutions, including varieties of Kalman filters. 
Using complex schemes of filtering improves reception of experimental data with high 
reliability. Approach of data acquisition about random parameter with a required degree of 
reliability is investigated. The approach is used for control of experimental stochastic 
parameter on the basis of the found interval estimations regression dependences [1, 2].  
Results using this new method indicate that the complex scheme of filtering accurately 
estimates the concentration of dangerous pollutant (is the stochastic parameter) by 
determining actual sensors instrumental errors. The described technique also can be used in 
many other areas, including: noise reduction of signals, trajectory tracking of moving objects, 
etc. It points to several further-research needs, including: scaling; robustness of decision rules; 
using other types of filters. 

Keywords: Complex scheme, Control system, Data fusion, Filtering, Kalman filter, Rate 
of convergence, Robustness, Sensor. 

Presenting Author’s biography
Alexander Zorin.  
a) Studies: Information systems control, mathematical modeling, real-
time control systems, adaptive estimation.  
b) Academic Positions: St. Petersburg State University, Faculty of 
mathematics and mechanics, assistant, PhD candidate. The D.V. Efremov 
Scientific Research Institute of Electrophysical Apparatus (NIIEFA), 
research engineer. 
c) Scientific Activities: My current scientific interests closely related 
with robustness of control systems and probabilistic analysis. 
Working under parts of “Design of the Hybrid Fastest Computers and 
System Programming”, “Stochastic Methods of Optimization in 
Computer Science” with co-authors. 
d)Participation in a number of research projects. 

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM



1 Introduction 
Alongside with systems, which properties can be 
specified by active experiment, there are systems 
accepting only possibility of passive overseeing by 
variables of their states. On the basis of the 
observational data about processes their current and 
prognosticated properties can be detected, that allows 
to accept adequate measures of counteraction to 
development of unsafe situations [2,3].  

Main the requirement is the maximal reliability of 
situations distinguishing, and also lowering the 
probability of a unsafe situation. The problem of 
lowering the hazard includes both first and second 
requirements, which execution is reached by 
appropriate data processing of observations [2,3]. 
Thus one of the tasks of statistical estimation is 
solved. 

For improvement the estimations accuracy of 
observable parameters it is possible to utilize two 
approaches: 

• rise of accuracy by usage of more precise sensors; 

• using the complex schemes in control systems with 
standard accuracy sensors. 

The first approach has set of objective implementation 
difficulties. The second approach bases on usage of 
standard sensors and implementation (program or 
hardware) algorithm of processing. It requires only 
knowledge of structure and numerical characteristics 
of instrumental error of sensors, collection of the 
external factors influential on instrumentation 
indications. Thus the potential accuracy of estimations 
is reached using complex scheme in control systems 
[12, 15]. 

2 The Problem Statement 
2.1 Main Assumptions 

In composition of elementary complex scheme is two 
measuring systems – data sources about the parameter 
N. These sources produce the parameter N with errors 

1∆  and 2∆  accordingly. The signal of measurements 

on a filter, is formed as a differential signal 21 ∆−∆ , 
which does not contain N. Kalman filter formed in 
view of statistical properties of errors 1∆ , 2∆  and 
implemented in a computing system, using 
measurements, produces optimal estimations of a 
vector of a system condition, of which units the   
optimal estimations of separate errors are formed. 

Consider main first meter, forming the parameter N 
with a resultant error equal error of an optimal 
estimation 11 ∆̂−∆  [5]. 

The problem is to minimize the function 11 ∆̂−∆ .  

 
Fig. 1 Complex filtering scheme with two 

experimental data sources 

2.2 Proposed Method 

The extreme accuracy of the parameter N estimation is 
characterized by diagonal elements of covariance 
matrix P(t). 

It is significant, that in the open-loop system a 
composition and number of sources of experimental 
data can be arbitrary. The choice of a main source 
depends on properties definition of the considered 
system. If estimation errors of the first and second 
data sources are characterized by identical mean-
square error, the choice of a main source should be 
from features of its actual operating conditions.  

In case of the main first source we have: 

Input filter signal:  ;  + ∆ −∆= ν21  z  (1) 

Output filter signals:  ; = nxx ,,x 1 K  

Sensors errors estimations: ;ˆ,ˆ
21 ∆∆  

Matrix 0H , providing calculation of error estimation: 

.ˆ
1∆  

Main component of the system is the optimal filter. It 
is generated using information about stochastic 
properties of entry experimental data.  

Let's consider more operation of Kalman filter in 
complex scheme of control system and write its 
equation. Let measuring system intended for forming 
of the parameter N, will use in it 2 independent 
sources, which output parameters: 

)()()( 11 ttNtY ∆+=     (2) 

)()()( 22 ttNtY ∆+=  

Consider that structure of measurement errors like the 
following:   

)()( 1101 ttddt ε+⋅+=∆     (3) 

)()( 22 tct ε+=∆ , 

where d0 – component of an error of the first source 
using an initial parameter error; d1 - linearly varying 
component of an error of the first source; d0, d1 – 
components of errors characterized by dispersions 

2
0)(σ , 2

1 )(σ  and zero average of distribution; )(1 tε  
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– stochastic process with zero average of distribution 
and correlation function:  

);exp(2)
1

()(1
τεαεστε −⋅=K    

c –  component of an error of the second source with a 

dispersion 2
2 )(σ  and zero average of distribution;  

)(2 tε  – Stochastic process with zero expectation and 
correlation function:  

))sin()/()(cos()exp(2
)(2

τββαβττεαστε ⋅+⋅−⋅=K

System state vector:  
.22111654321 cx, ε, ε, dx , x, x, x, x, xxx(t)  , ,==

 State vector components:  

,GwFxx +=&    (4) 

;

000000
00000
012000
00000
000000
000010

22



























−−
−

−
=

βα
α

α
F  

;

00
00

20
02
00
00

2

2



























=
ασ

ασ
G  

.
10
01









=w  

Covariance matrix for the system: 

.

200000
0)(0000
00000
000100
000000
0000025.0

2

222

2

2

2

0



























+

=

σ
βασ

σ
σ

σ

P
 

3 Problem Solution 
Let the dynamics of dispersions changes and 
correlation moments is described by the following 
matrix covariance equation (Riccati equation): 

 Q  P  P T
1

T
1k ΓΓ+ΦΦ=+   (5)  

General errors model for complex scheme: 

w;  t Gx t F x )()( +=&  

,)( xtHy =     (6) 

where x – state vector (dimension (n × 1)); w –white 
noises vector (dimension (r × 1), having a matrix of 
intensity Q); y – system parameters errors vector 
(dimension (m × 1)); F, G, H – matrix of dimensions 
(n × n), (r × r), (m × m) (generally these matrixes 
depend on time). 

This model generalizes different types of control 
systems with complex scheme, with two main. The 
first type systems concerned with the filters defined by 
transfer functions (or matrixes) with known 
parameters. In this using complex schemes with 
stationary filters, defined by operator form. Second 
type schemes have such model: 

   Gw Fx  x ,+=&  

v,Hxz +=  

xHy 0=     (7) 

satisfying to relations: 

  xHz K x F x ),ˆ(ˆˆ −+=&   (8) 

in the same denotations with (5), where v – 
measurement noises vector (dimension (m × 1), with 
intensity R); z – vector of filter input measurements 
(dimension (m × 1)); K – amplification coefficient 
matrix (dimension (n × m)). 

Consider feasibilities of suboptimal Kalman filters and 
suboptimization of the second type complex scheme. 
Let's consider varieties reduced orders suboptimal 
filters. The reduced filters (RF), simplified filters (SF) 
and their stationary modifications concern to reduced 
orders suboptimal filters. As any stationary filters of 

sort   xHz K x F x ),ˆ(ˆˆ −+=& can be shown to 
appropriate transfer functions and matrixes on known 
relations  

KF - KH - pI H pW -
n

1
0 )]([)( = ,  (9) 

the main attention will be given non-stationary 
Kalman filters of types of RF and SF. The filters of 
this sort have by common feature that they are 
intended for an estimation (n1 × 1) - subvector x1 of a 
state vector x of model (6). So the structure of a matrix 
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K(t) of such filters has n2 =  n – n1 of zero rows. 
Admitting, that the estimated part of a vector x is 
posed in its top, the appropriate extended vector of 

Kalman filter estimations x̂ and matrix K* look like:  

















0

ˆ
ˆ 

1

...
x

=x
,
















=

0

1

...
K

 K* 
,
















=

2

1

x
...
x

x 
, (10) 

where, 1x , 1̂x  - vectors of dimension (n1 × 1); 2x  - 

vector of dimension (n2 × 1); 1K  - amplification 
coefficients matrix (with dimension (n1 × m)). 

The analysis of accuracy and sensitivity of Kalman 
filter type (6) is grounded on obtaining covariance 
matrixes of estimations this error: 
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Covariance matrixes, appropriate to this vector: 

 ;)(
2221

1211





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
=

PP
PP

 =  e e MP T
 (12) 

;)( 1111   e e MP T=   (13) 

;)( 212112   x e MPP TT ==   (14) 

.)( 2222   e e MP T=   (15) 

has block structure. 

At dimension of a matrix P (n × n) it means solution 
of n(n + 1)/2 equations due to symmetry of this 
matrix. 

After obtaining matrixes 11P , 12P , 22P , in each 
instant, the covariance matrix of output variables y(t)  
is determined by standard method:  

.)()( 00
T

y HtP H tP =   (16)  

One of suboptimal Kalman filter modifications is the 
approximated filter, in which model the amplification 
factors are approximated, forming a matrix of 

approximated amplification factors .)(tKa  

Let's substitute approximated amplification factors 
( )()( tKtK a=  in a continuous function case, 

kak KK )(=  in a discrete function case) in the filter 
equation: 

,)()( TTT KRKGQGKHFPPKHFP ++−+−=&

 

0)0( PP =  – continuous function.   (17) 

Similar to errors for discrete function case 
( kkkk ESeP cov,cov == ): 

T
kkk

T
kkkk KRKHKESHKEP +−−= )()( ,(18) 

 G GQ   S T
k

T
kk ,ΦΦP1 +=+  

.)0( 0PP =  

Considerable simplification of the equations P 
analysis, because of approximating of amplification 
factors matrixes. In this model Riccati equations are 
not written. 

4 Simulation Results: Convergence and 
Robustness 
The implementation of considered approach displays 
essential decrease of parameter estimation error. 

Usage of the surveyed complex scheme in control 
systems using Kalman filters allows increasing 
accuracy of estimations. The error of estimation of the 
parameter decreases with time.  

Without application of a method there was an 
accumulation of instrumental error in closed-loop 
control systems. 

 
Fig. 2 Convergence and robustness of complex 

Kalman filtering scheme in contrast with ordinary 
closed-loop control system (Matlab modeling: X-axis 

– time, Y-axis – relative error of parameter N 
estimation) 
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5 Conclusion 
A very powerful method of using complex schemes in 
filtering control systems has following main 
advantages: 

• comparative simplicity of information processing; 

• sharp rise of estimations accuracy (on a short time 
interval); 

• low cost of high accuracy and function stability. 

Although performance of complex schemes in closed-
loop control systems with Kalman filtering was best 
when we had knowledge of structure and numerical 
characteristics of instrumental error of sensors, this 
approach allows to provide increasing of estimation 
accuracy without replacement of sensors by more 
precise. Such schemes allow to apply scaling with 
major number of sensors. 
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