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Abstract

In this paper the realization problem for 2D positive multi-input and multi-output (MIMO)
linear hybrid systems with delays in state vector and input is addressed. A method based on
the state variable diagram for finding positive realizations of a given proper transfer matrix is
proposed. The essence of proposed method for solving of the realization problem for positive
2D hybrid systems with delays in state vector and input will be presented on single-input
single-output (SISO) system. The solution for MIMO systems will be obtained by
generalization of method proposed for SISO systems. Sufficient conditions for the existence
of a positive realization of a given proper transfer matrix are established. This conditions
gives only the answer is there exists positive realization for given proper transfer matrix, they
do not consider the stability of obtained realization. A procedure for computation of a positive
realization is proposed for SISO systems and generalized for MIMO systems. The
considerations are illustrated by two numerical examples. First example illustrate solving
procedure for SISO system with one delay and the second example illustrate solving
procedure for system with two inputs, two outputs and one delay.
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1 Introduction

In positive systems inputs, state variables and outputs
take only non-negative values. Examples of positive
systems are industrial processes involving chemical
reactors, heat exchangers and distillation columns,
storage systems, compartmental systems, water and
atmospheric pollution models. A variety of models
having positive linear systems behavior can be found
in engineering, management science, €cONOMics,
social sciences, biology and medicine, etc.

Positive linear systems are defined on cones and not
on linear spaces. Therefore, the theory of positive
systems is more complicated and less advanced. An
overview of state of art in positive systems theory is
given in the monographs [2, 5]. The realization
problem for positive discrete-time and continues-time
systems without and with delays was considered in [1,
2, 5-10]. The reachability, controllability and
minimum energy control of positive linear discrete-
time systems with delays have been considered in [3].
The relative controllability of stationary hybrid
systems has been investigated in [15] and the
observability of linear differential-algebraic systems
with delays has been considered in [16]. A new class
of positive 2D hybrid linear system has been
introduced in [11], and the realization problem for this
class of systems has been considered in [12].

The main purpose of this paper is to present a new
method for computation of positive realizations of a
given proper transfer matrix using the state variable
diagram method. Sufficient conditions for the
existence of a positive realization of a given proper
transfer matrix will be established and a procedure for
computation of positive realizations will be proposed.

2 Preliminaries and problem
formulation

Consider a hybrid system with delays in state vector
and input described by the equations [11]

X, (t,0) =Zh: Al AL | X —kd, i)
x,Ei+D) | S A A, | xti—k)
h Bk
+Z{ lk}u(t—kd,i—k)
k=0 B2

h — 3
i)=Y le! Czk{xl(t kd,l)}

(D
— X, (t,i—k)

h
+ > D*u(t—kd.i—k)

k=0

for te R, =[0, +o], i€ Z,
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ox, (t,1)
ot
u(t,iye R™, y(t,i)e R” and d >0 is delay.

where x,(z,i) = , x(t,i))e R", x,(t,i)e R™,

Let R be the set of nxm real matrices with
nonnegative entries and R" = R”™ . Let M, be the set

of nxXm Metzler matrices (real matrices with

nonnegative off-diagonal entries).

Definition 1. The hybrid system with delays (1) is
called  (internally) x,(t,i)e R,
x,(t,i)e R?, and y(t,i)e R, teR,, ieZ, for
arbitrary boundary conditions x,(—kd ,0)e R",
x,(0,—k)e R}?, k=0,1,...,h and
u(t,—k)e R}, te[-hd,0), k=01,....h.

positive  if

inputs

Theorem 1. The hybrid system with delays (1) is
internally positive if and only if

Al eM,, Al Al eR"™, AfeR"™,

Al e R”™, A}, e R, Bl e R™", )
B e R, C/ e R, C5eR"™, D"eR™
for k=0,1,....,h.

Proof.

Necessity. Let ei] be the ith (i=1L,...,n) column of
the identity matrix /, . From (1) for 7 =0, i = 0 and
x,(0,0) = e;l , X (=kd,0)=0, k=1...,h x,(0,—j)=0,
u(=jd.=j),
%,(0,0) = Ale, . The trajectory does not live the orthant

and inputs j=01..,h we have
R} only if Ajle,; >0, what implies a; 20, i#j.
Therefore, the matrix A’ has to be the Metzler
matrix. For the same reasons, for x,(0,0)= ei,z s
x,(=kd,0)=0, k=0L...h x,0,—j)=0, j=1L..,h
and inputs u(—kd,—k)=0, k=0,,..,h we have
%(0,0)=Ale, >0 that implies A}e R . In a
similar way we may show that the hybrid system with
delay (1) is internally positive only if the conditions
(2) are satisfied.
Sufficiency. From (1) for i = 0 we have
X, (1,0) = AD x, (1,0) + A x, (£,0) + Al x, (t — d,0)

+ALx, (t, =)+ ...+ Al x, (t — hd ,0)

+ Al x, (t,~h) + B u(t,0)

+..+ Bl'u(t —hd,~h

(1a)
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x, (8,1) = A x, (£,0) + A, x, (£,0) + Al x, (t — d,0)
+ AL x, (t,=1) +...+ Al x, (t — hd 0)
+ Al x, (t,—h) + Biu(t,0)
+...+ Blu(t — hd —h)

(1b)

For given nonnegative initial conditions x, (¢ —kd,0),
k=0,,...,h; x,(0,—j)=0, j=L..,h and the input,
u(t—kd,i—k), k=0,1,..,h we may find the solution
of the equation (1a)

At
x,(2,0) = e " x,(0,0)
+ j MDA 3 (2.0) + ...+ Blu(t — hd ~h)ld T
0
Which is nonnegative ¢ > 0 if the conditions (2) are

met. Knowing x,(#,0)€ R} from the equation (1b) we
obtain x,(#,1)e R}? if the conditions (2) are met.
Continuing the procedure for i =1,...,7 we may show
that if the conditions (2) are satisfied the x,(¢,i)€ R}
and x,(¢,i)e R> fort>0and i€ Z, . O

Transfer function of the system (1) is given by
equation

T(s,z)=——

by (W)s" 2" +b,,  (W)s" 2" + .4 by (W)sz+ by (W)s + by, (W)Z + byy (W) B

9-13 Sept. 2007, Ljubljana, Slovenia

T(s,2) = (C* + C'w+ ...+ C"w")

-1

I s 0
x|| ™ —A"—Alw—. AW
0 I,z 3

><(B° +B'wt ...+ B'w")

+D°+D'w+...+D"W" € RP™"(s,w)

where w=e", R”"(s,z) is the set of mxn

rational matrices in s and z.

Definition 2. The matrices (2) are called the positive
realization of the transfer matrix 7'(s,z) if they satisfy
the equality (3). A realization is called minimal if the
matrices A}, and Aj, have minimal dimensions

among all positive realizations of 7'(s,z) .
The realization problem can be stated as follow.

Given a proper rational matrix T(s,z)e R”"(s,z),
find its positive realization.

3 Problem solution for SISO systems

The essence of proposed method for solving of the
realization problem for positive 2D hybrid systems
with & delays will be presented on single-input single-
output (SISO) system.

Consider a hybrid system with the transfer function

33,0052/

i=0 j=0 (4)
—1
§"7" —a,, Ws"Z" —..—a;,(W)sz—a,,(W)s — ay (W)z — agy(w) o
512" 2D ay(0s's
i=0 j=0
i+ j#n+m
where b, (w) =bw" +...+b,w+b], E=U+(a,, Wz " +a,,,ws"
aij(w)=ai’j’.wh +...+a:jw+a3 for i=0,1,...,n; +otayw)s™zTME ©)

j=0,1,...,m, and coefficients bij (w), a; (w) for

i=0,1,..,n—1; j=m areequal b,,(w)=hy,
a, (w)=ap .
Multiplying the numerator and denominator of

transfer function (4) by sz~ we obtain

b, (Wb, (W +b,,,,(Ws™ +.. 4Dy (Ws "z ™"
T(S’ Z) = - ' —1 —,_—imn
l_aﬂ,WH (M/)Z _anfl,m (VV)S T ‘_aOO(VV)S < ( 5 )

¥
U

and

ISBN 978-3-901608-32-2

Y=(b,,W+b,, (wz"+b

ot byy(W)sz"E

(w)s™

n—1,m

Using (6) we may draw the state variable diagram
shown in Fig. 1.

Copyright © 2007 EUROSIM / SLOSIM
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% binn-2,2 % binjn-2,1 % bwjn-2,0
in-
biwn-1,2 binjn-1,1 (njbn-1,0

4:@».2 éb(w)m é(w)bno in

ult,il

% afmn-2,0 % aiwn-2,1 % almjn-2,2
— l l Lo
# afwn-1,0 # aiwin-1,1 # almjn-1,2
.
afn,0 a1 alwin,2

Fig. | MATLAB/SIMULINK state variable diagram for transfer function (4).

e il

B

biajn,m

m
m
= i
1
1

Remark. Blocks b;(w),a;(w) for i=0]l..n-1;

j=01..m-1 and b,, (w) have the form shown in
Fig. 2
s |- :
bh-1.ij I I

Fig. 2 MATLAB /SIMULINK state variable diagram
for blocks b, (w),a; (w)

with  exception for

i=0,L,..,

of blocks  b;(w),a;(w)
n—1; j=m which have no delay unit w

and they are equal to b,,(w)=b., a, (W)=a. .

im?
As a state variable we choose the outputs of
integrators (x,,(z,i), x,,(t,0), , %, (t,0)) and of
(x2’1(t’i)9 xz,z(t9i), sy xz’zm(t9i) )‘
Using state variable diagram (Fig. 1) and taking into

account (Fig. 2) we can write the following
differential and difference equations

delay elements

X, (8,0) = x5, (8,1)

Xy, (8,0) = x,5(2,0)

: (10)
Xy (8,0) = X, (2,1)
X, (8,0) = e(t,1)

ISBN 978-3-901608-32-2

X, (it ) =ay,,  (wx, (&) +a,,_ (Wx, (1)
tota, . Wx, )+ x,,(t,1)
+a,,.  (we(t,i)

X, i+ D) =ay,, ,(Wx @) +a,,_,(Wx (1)
tota, W, (1,0) + X, 5(2,1)

+a,,._,(we(t,i)

Xy (GIHD) =ay, (W)x, (2,0) +a,, (W)x, , (,7)
+ota, ,(Wx, (0D +x,, 1,0)
+a,,(we(t,i)

Xy i+ 1) = ag(Wx,, (8,0) +a,,(W)x,, (2,1)

+..ta, Wx,, D) +a,,(we(t,i)

Xy (&1 D) =Dy, WX, (2,0 + by, (W)x, (2,1)
+ot b WX, (D + Xy, ,0)
+b, . (We(t,i)

Do W)x, (8,0) + Dy, (W)X, (2,1)

tot by WX, (8,0 + X5, 5 (8,1)

+b, ., (We(t,i)

Xy (1,04 1) =

Xy omt P +1) = by, (W)x, (£,0) + b, (W)x,, (2,1)
+..+b,_, (w)xl’n &0+ x,,,(@,0)
+b,,(we(t,i)

Xy 1+ 1) = by (W), | (8,1) + by (W)x, 5 (£,1)

+otb,_  (Wx, (1,1 +D, ((We(t,i)

(N

Copyright © 2007 EUROSIM / SLOSIM
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Yt 0)=by,x, (t,)+b,,x ,t,D)+..+b,_,,x, (1)
+X, i D) b, (We(t, 1)

n,m
where

e(t’ l) = Aot (t’i) + A X2 (t’i)

+..+a Xy, (E,0) + x,, (2,0) +u(t, i)

n—l,m

Substituting (8) into (7) we obtain

5D |G ([w-kdi] &
[xz(t,lq.])}_zA {xz(t,i—k)}-ZB u(t—kd,i—k)

k=0 k=0 (9)
h . h
) x,(t—kd,i) . )
y(t,i)y=» C* ) + Y D u(t—kd,i—k)
; x,(t,i—k) ;
where
a [ Ak e [
Al AL T BY | for k=01,....h (10)
c=let ci] b=l
and
o 1 0 0 |
0 0 1 0
Al=| it e R™,
0 0 0o .. 1
_a(()),m aﬁm ag,m b ar(l)fl,m i
AL =[0]le R™, k=1,...h
[0 0 ... 0 0]
00 .. 00
AL =] o le R,
00 .. 00
1 0 .. 0 0]
AL =[0]e R™", k=1,...h
_a(imfl al],cmfl aZk,mfl b ariil,mfl |
L_l(;(,m—Z L_lll,(m—Z 52k,m—2 L_lr]l(—l,m—2
E.k E.k E.k Ek.
Ak = _ 00 _ 10 _ 20 _n—l() eRmen
2 é()’fmfl lzl f(mfl é;mfl lZn]il m—1
bOI,cmfZ bl{cm72 b2]fm72 bnkfl,m72
R o an
b()];) bl](f) bZIE) bnk—l()
k=01,...,h
ISBN 978-3-901608-32-2 5
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a,, 100 000000
@.,010..0000000..000
@, 000..0100000..000
@ 000..0010000..000
A @y, 000..0000000..000
*18,,000..0000100..000
B, 000..0000010..000
B, 000..0000000..010
B, 000.0000000..00°1
|6y 000..0000000..00 0]
GRZ:me
ak,, 0 .. 0
Ak ai 0 0 0 R2m><2m
= e s
2ok, 0 .0
bty 0 0
k=1,..h
o
0
B’ =|:|e R™, B} =[0]le R™, k=1,.,k
0
_1_
.
an,m—l
ank,m72
-
B)=| " |eR™, k=0l..h
bn,m—l
b:,m72
buo
Clo = I;O(,)m l;l?m l;no—l,m ]E R1><ﬂ’
cr=les cnlern,
c = o .. oler™, (1)
ch=[ o 0le R™™
ct=le, @, . ahler™
ci=let chlermn,
ch=lpi, 0 .. oler™,
ch=[1 o Ole R™", k=1,.,h

D* =[pt Je R™, k=01..h

Copyright © 2007 EUROSIM / SLOSIM
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and q, a =a} +a,man] , bk bk +almb,'; , _.. = amb,f]
for k =0,,..,h; i=0]l..,n-1; j=0.L..,m—1.

Therefore, the following theorem has been proved

Theorem 2. There exists a positive realization of the
transfer function (4) if all coefficients of its numerator
and denominator are nonnegative.

If the assumptions of Theorem 2 are satisfied then a
positive realization can be found by the use of the
following procedure.

Procedure.
Step 1. Write the transfer function 7'(s,z) in the

form (5) and the equations (6).

Step 2. Using (6) draw the state variable diagram
shown in Fig. 1 taking into account Fig. 2.

Step 3. Choose the state variables and write
equations (7) and (8).

Step 4. Using (7) — (9) find the desired realization

(11) of transfer function (4).

Example 1. Using the Procedure find positive
realization of the transfer function of

b, (W)sz + b,y (W)s + by, z + by (w)

T(s,2) = (12)
§Z — alO(W)S —4g1Z— Ay (w)
where
by (W) =blyw+byy, bo(w) =byw+by,

1 0 1 0
boo(W) =bgow+by,, a,,(W)=a,,w+aj,,

9-13 Sept. 2007, Ljubljana, Slovenia

Step 1.

Multiplying the numerator and denominator of

-1_-1

transfer function (12) by s~z we obtain

R ANES
I—a,,(Wz" —ays™ —ay,(W)s z U
Defining
- —= — a9
l1—a,y W)z —ays™ —ay(w)s™'z
from (14) and (13) we obtain
E=U +(alo(w)z'1 +ams_1 +ag,(w)s~ 'z HE (15)
Y = (b, (W) +by(w)z™ +bys™ + by (w)s "z )E
Taklng into account that b, (w), a;(w) for i=1,...n;
=1,...,m we obtain
E=U+[(ayz " +ags™" +ags'z7")
+(alyz " +ays T zHWIE (16)

Y =[(b), +byz" +byys 'z

+(b,11 +b,10171 +b(1)0s7 ZHWIE

+bys™

Step 2.
Using (16) we may draw the state variable diagram
shown in Fig. 3.

ag, (W) =agw+ay, and w=e".
s L] it i)
dz i d1
€ : :
= =
1
1
w| — 1,00
= | () :
B1.14 t-l:l.11 b, 10 i1 1; 4% atlio 0,10
T 1
eltit | E
a
urt.i) u
Fig. 3 MATLAB/SIMULINK state variable diagram for transfer function Eq. (13).
Step 3. (x,,(5,0), x,,(2,0)). Using the state variables diagram

As a state variable we choose the outputs of
integrators  (x,,(¢,i)) and of delay elements

ISBN 978-3-901608-32-2

(Fig. 3) we can write the following differential and
difference equations

Copyright © 2007 EUROSIM / SLOSIM



Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. BlaZzic) 9-13 Sept. 2007, Ljubljana, Slovenia

x,,(8,0) = e(t,i) ag 1 0
! . 0 . 1 . 0 Alol A102 0 010 0 0
X, i+ 1) = agyx,, (1,1) + ayx,, (t —d,i) A" = A0 A0 =|ay taga, a, 0}
+ale(t,i)+a\ye(t—d,i—1) TR by +agby by 0
Xy, (1,0 +1) = by x, (1,0) + byx, , (t —d,i) (17) A g 0 0 0
B0 et i)+ b et —d.i—1) ‘—{ v ‘f} ag +agay, ag O,
e\, 10 > A A
. . 0 . 0 . 21 2 bl +Cl0bl bl 0
Y(t,0) = x,,(t,0) + by, x| (¢,0) + by e(t, i) 00 01710 10 (22)
+blet—d,i~T) T I I TR I
h B = BY =lay |, B = B! = |
e b =L

e(t,i) = x,, (t,0) + ag,x,, (t,i) + u(t,i)
e(t—d,i—=1)=x,,(t,i-D+agx, (t—d,i) (18)
+u(t—d,i—1)

c=let o=y +phal B 1]
c'=lc cil=ladn bl 1]

D’ :[blol]’ D' :[blll]‘
Substituting (18) into (17) we obtain

Ey (t0) = alyx,, (120) + Xy (£.) + u(t. ) 4 Generalization for MIMO systems

X, (i 1) = (aly +adal)x,, (6,0) +afyx,, (,i) Consider t.he m-inputs and p-outputs 2D hybrid linear
o . 1 o . system with A delays (1) with the proper transfer
+ au(t, i)+ (ay +aga)x,, (t— d,i) matrix
1 - 1 _ .
+ax,, (Li-D+au(—d,i—1) T,(5,2) ... T, (s5.2)
Xy, (i +1) = (byy + agbyy)x,, (t,1) + by x,  (t,0) T(s,z) = : : : € R™(5.2) (12)
+bou(t,i)+ (by + anbiy)x,, (t—d,i) (19) T,(5,2) .. T,(52)
+bjyx,, (ti— D) +bju(t—d,i—1) where
y(t,i) = (b, +ag,b))x,, (t,0) + b/ x,, (t,i) wy
vl i
x5, (,0) + bu(t,i) + (ad bl )x,, (t = d. i) _Z_be,j (w)s'z
1 . . T,(s,2)= e (13)
+bx,, (i =)+ x,,(t,i=1)
) - Ty
+blu(t—d,i—1) sz — Zz air’lj(w)sizj
i=0 j=0
Step 4. i+ jEn+my

Defining
for r=12,....,p; [=12,..m

X (00) =[x, 0.0] 0 %, (6:0) (20) z bt Lo
= = Tl —_ g Ny 7
I Ll 2 Xy, (1) and b; (w) =b;"w" +...+b;"w+b;" ,
) ) ) a,.;l(w) = a;f’rlwh +..+ a,.lj'rlw—i- ag.’r' for i =0,L,...,n,;
we can write the equations (19) in the form

j=0,1,...,m,, and coefficients bl.;l (w), al.;'(w) for

Y » . . vl
[ x(l (tfl)l)} = Ao[xl ((t’ Z)J + A'[x' ((t _d’ll))} i=0l..,n,—-1; j=m, are equal to
X, (t,1+ X, (f,1 X, (01—
i 0 ) . 1 . . bi:iﬂ (w) = bl'(r);t::]’ air'iw (w) = ai(:;t:: :
+ B u(t,iy+ B u(t—d,i-1) 21
x, (t,i) x,(t—d.,i) 0 It is well-known [5] that the 2D transfer matrix (12)
y(t,i)=C" . : , can be always written in the form
X, (t,0) X, (t,i=1)
+ D u(t,i)+ D'ut —d,i~1) mi($,2) My (8,2
d (s,2) d, (s,2)
where T(s,z) = : : :
(82 M (5:2) (14)
dl(S,Z) dm(S,Z)
| Ny(s,2) N, (s,2)
di(s,2) 7 d,(5,2)

where

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM



Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. BlaZzic)

T
Nﬂ@=h@@ -w@d
n,(s,z) = b;f,,m,l (w)s™ z™ + br:f,,mﬂ—l (w)s™ 7"

+ .t B (W)sz+ b (W)s + B (W) z + by (W)

d (s,z)=s"7" — “i,,m,-l (wys™ "™

1 1 1 1
—...—a;,(W)sz—a,,(W)s — ay, (W) z — ap, (W)

(15)
bl (W) =b" W' +. 4+ w+ by

hl.  h

1 — 1,/ 0,
a;(w)=a; w' +..+a; w+ta;

n=n,, ny=m,

r=12,...p; [=12,...m

i=01..n, j=01..m,

rl
aim "

b(),rl

and b,.:fw (w)=b,", (w)=a’" for

imy;

i=0,1,...,n, —1; T denotes the transpose.

In a similar way as for SISO systems, multiplying the
numerator and denominator of each element of

ny

transfer matrix (14) by sz ™ we obtain

E =U,+d,(s,2)E,

Yl ﬁll(s’ Z) ﬁlm(s’ Z) El (16)
Y, n, (s,2) n,,(s,2) | E,
where
g I -1 I -1
d(s,2)=a, ,_ Wz +a,_,, (Ws
Fotag,(wys ™z
_ , , »
n,(s,2)=b, , W+b, , (Wz (17)
+ b;ﬁl iy W)s™ + ...+ bl (w)s " 2™

r=12,...p; 1=12,...m

Similarly as for SISO systems using (16) we may
draw a suitable state variable diagram for the MIMO
system with the proper transfer matrix (14). Using the
state variable diagram we may write the set of
differential and difference equations.

Defining vectors

X, (t —kd,i) Xy, (t,—ki)
X, (t—kd,i) = , X, (ti—k)=
X, (t —kd, i) X, (t,=ki)
where
Xy, (t —kd, i)
X, (t—kd,i)= : )
Xy (0 —kd,i)
(18)

Xy (81— k)
Xy, (ti—k) =
‘x2,r,(]7+1)m1 (t’ l - k)

for [=12,...m; k=01,..,h;
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u, (t —kd,i—k)
u(t —kd,i—k)= :

u, (t—kd,i—k)
(19)
¥, (t.i)

y(t,i) =
y,t.0)

we may write the set of equations in the form

X, (t,0) _Zh: Al x,(t — kd, i)
x2(t’i+1) _k:O A; xz(tvi_k)
h
+> B*u(t—kd.i—k)

k=0
]{x, (t— kd,i)}

X, (t,i—k)

k
A12

k
A22

/ (20)
veiy=Yler
k=0
h
+> D*u(t—kd,i—k)
k=0
where
Al = blockdiag| A%
AX = blockdiag|A¥!
AL = blockdiag[Ak! .. Ak
AL = blockdiag[A ... AL
k.1 m

B B
g | | g

1
k.1
k.1
G,

k.m
All

k.m
A]2

}
}
}
}

Bf = blockdiagH H,

_Clk,l

k k _
Cf N e A
k,p k.p
_Cl G,
[k
npp.my

k,lm

M sMm
Df=| i :
k,pl (21)
L 1.

k,pm

M pm M pm

and

X
: . : |le R,
0o .. 1
0., 0.
aZ,mI n=lmy |

0

0,/
al,m,

0
0,/
_a(J,mI

k.l
All

[ole R™™, k=12....k

0
0
Ay’ =

0
0
0
0

0 0]
0 0

00

0 0]

: nyX(p+lym,
e R '

A5 =[0]e ROk =12,k

(22)
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=k — k.l [ k.
fiv?’[*l 7’,1(1;1-”’1*1 ny,my—1
Ao m—2 Ay 2 fl’{ml_z
— k.l — kil ’
w | %oo a, 0 at
B B B Bi =| S0 e RUV k =0k
bl e
: nymy=2
2 by
k=0,1,..,h L buo |
(@, 100..0000000 .0 et =le el
@, 0 .0000000..000 c :[bof’;;j bot .. b,,?ff,,,,,]e R™",
: T cor :[CS”' Cg.rml
n;,2 0 0 O 0 1 0 0 O 0 0 0 0 O C;),rl — [Cé)lrl CS:;I_H]E Rl><(11+l)m,’
@ 000..0010000..000 ol ol om
0’; CZi = [bn ’m 0 O]E R™™ ’
o | Gy 000..0000000..000 s " N
B 000..0000100..000 Cotu=lt 0 .. 0 r™ (22)
2 5 000..0000010..000 ctr=letr o]
: R A A A cH :[E(f;;i E,ﬁ'n’]’ E,,k];”,vml]e R™™,
0O,rl
w2 000..0000000..010 chr =[C§,r1 Céc,rm],
w0 000000..001 o :[C;ﬂ C§”ll]e RXHm
b”()l”r(l) 0 0 0 k,rl k,rl ! 1x;
. cit =t 0 .. ole R™™,
e R(p+l)anX(p+l)mz Ll
L cilo=ll 0 .. 0]e R™™, k=1...h
nymy—1
: —kl _ ki 00 kil kol _ gkl 0,0 1 k,rl
N and a;" =a;" +a,a,;, b;" =b;" +a,, b7,
Aé}’l = ff’r/]’o e R(Phmxpim Ei/."’ :a%b:”;’ for k=0,1,...,h; r=12,...,p;
S 1=12,.om;i=0....,n,—1; j=01,...m 1.
bk Summing up the considerations we obtain for the
- MIMO 2D hybrid linear system with delays the
k=1. _’h_ following theorem.
0 Theorem 3. There exists a positive realization if all
0 coefficients of the numerators and denominators of the
B =|tle R, B! = [ole R™, k=1,...k; transfer matrix (12) are nonnegative.
0 The procedure given for SISO systems with slight
modifications can be also used for finding a positive
- realization of the transfer matrix (12).
Example 2. Find a positive realization (2) of the
proper transfer matrix with 4 = 1 delays
bllll(w)sz +bll$ (w)s+ b(l,fz + béé(w) b;f W)s’z +bé§ (w)s* +b1112sz + bllg (w)s + béfz + bég(w)
sz—al'o(w)s —a(',lz —a(l)o(w) s’z —ajo(w)s2 —alzlsz—alzo(w)s —aglz —aéo(w)
I(s,2)= (22)

In this case we have p =2 outputs and m = 2 inputs,
coefficients for one delay have the forms

afj(w):ai'jlw+a b,.;’(w):bilj'lw+b

rl _ 1,011
b ="

Using Procedure we obtain the following.

ISBN 978-3-901608-32-2

bl (W)sz+bly (W)s +by 2z +by (W) by (W)s’z +bas (W)s” +b7 sz +biy (W)s +bir 2+ b (w)

1 1 1
§Z—0,0(W)S — 2 — Ay (W)

orl
ij o

2 2 2 2 2 2 2
§ 2= a5, (W)s” —a, 52— a,,(W)s —agy,z — agy(w)

Stepl.

Multiplying numerators and denominator of the first

1

column by s'z™' and multiplying numerators and

denominator of the second column by s72z7' we

obtain

Copyright © 2007 EUROSIM / SLOSIM



Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. BlaZic) 9-13 Sept. 2007, Ljubljana, Slovenia

bllll(w)+bllo1 w)z™ +b(1)fs_1 +bé(l)(w)s_lz_1 b;f(w)—i-bég(w)z_l +l71112s_1 —i—bllg(w)s_lz_1 —i—b(lﬁs_2 +b(l)g(w)s_zz_l
1 11 a1 . 2 J_ 2.1 2 a1 2.2 2 2
T(s,2)= I—=a, Wz~ —ay s~ —agp(w)s™ z 1—a,,(Wz™ —a; s~ —a,,Ws 27 —ay s —agp(W)s z
4 21 21 -1 21 -1 21 -1_-1 22 22 -1 22 -1 22 -1_-1 22 -2 22 -2 _-1
by (W) +by(W)z™ +bys™ +byy(W)s™ 2= by (W) +byy(W)zT +bsT +bjy(w)sT 27 +by s +byy(w)s Tz
1 -1 1 -1
1-a,,(Wz~ —ays

- a(])o(w)sfl " 1- ago(w)zfl - alzlsfl - alzo ws'z" = aglsf2 - ago(w)sfzzfl
and
E, =U, +(a},(wz " +a},s" +ay,Ws 'z )E,
E, =U, +(a3,Wz " +a,s™ +amw)s™ 2 +ag,s +ag,(wWs 2 )E, (23)
Y| bl +bl )z +byys™ +by)s 'z by (W +by W)z +bys ™ +bicws 2 by +by(ws 2 || By
{Yj:{bﬁ‘ W+ Wz +b}\s™ +bp(wW)s ™'z bYW +bs Wz +b77s™ +bia(W)s ™ 27 +bors T +bga(w)s 7 }{Ej
Step 2.

State variable diagram for (23) has the form shown in

w1 :I ralunl

biwi22,10 GE bi22,00

F

Biwiy12,00

Biwi11,00

- ot
+t 1

w11,

. I bOwi12.10
i L
1 l az,11
w2, 10
b(w)11.11 brw)11,10 | L Q 4}4 1
& ami1.10 x12,2
B12.11
biwi)12,21 A b 12,20 i2 iz 20
E1 | 21(ti)

EZ | =2ctiy

-t
Lk

uz uZit, i)
Fig. 4 MATLAB/SIMULINK state variable diagram for transfer function (22).

where coeflicients a.(w) an (W Oor onc dela N
h ffici ;) and b (w) f delay Step 3

have the form shown in Fig. 5 Using state variable diagram we can write the

following equations

Xy, (80) = e (8,1)
X0, (t,0) = x5, (t,0)

Xy, (8,0) = e, (2,0)

. 01 . 11 .
X, i+ = Ago Xy, (t, )+ A Xy, (t—d,i)
+ale, (t,i)+aje (t—d,i—1) (24)

. o11 . 111 .
Xy (Li+ 1) =byy x,(2,0) + by, X (t—d,i)

1]
1
z

+b)'e, (t,i)+b}y e (t—d,i—1)

. 021 . 121 .
X,15(E, i +1) = by, X1 (t,1) + by X1 (t—d,i)

bilij

+by e, (1,0)+ by e (t—d,i—1)
Fig. 5 MATLAB/SIMULINK state variable diagram
for transfer for blocks a;;(w) and b (w) .
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02 . 12 .
Aoy Xy 5, (1,1 + ageX, 5, (t —d,i)

Xyp (@t i+1) =
02 . 12 .
gy Xy, (10 +aX,,,(E—d, i)
(t,i)+aye,(t—d,i—1)

. 012 . 112 .
Xy (01 +1) =boy"x, 5, (8,0) + by X, 5, (2 —d, 1)

02
+aye,

012 . 112 .
+ by X5, (80 Dy x5, (0 —d, D)

+b5e, (1,i) + bl e, (t—d,i—1)

022 122

Xyt i+ 1) =byy X, 5, (1,0) +byy x5, (t —d, i)
022 . 122 .
by X5, (1) + by X, ,,(E—d, D)

+bye, (t,i)+ by e, (t—d,i—1)

. . 011
Y1 (t,l) = X212 (l, l) + b()]

+be (1 —d,i—1) + x, 5, (1)
+ D x5, (8,0) + b\ x, 5 5 (2,1)
+b%%e, (1,0) + b1 %e, (1 —d,i —1)

Yo (t,0) = Xy 5 (1,0 + by; x, (1,0) + b e, (8,0)

+b/]e (t—d,i—1)+x,,,(t,i)

. 011 .
X1, (&0 + by, e (2,0)

where

022 . 022 .
by X5, (,0) b x5, (8,0)

(24)
+byPe, (t,i)+bye, (t—d,i—1)
where
e, (t,0) = ag x,,, (t,0) + x, , (t,0) +u, (t,0)
e, (t,0) = ag x5, (t,0) +ayy X, () + X, 5, (t,0)
+u,(t,0)
e(t—d,i-D=agx, (—d,i)+x,,,@ti-)  (25)

+u,(t—d,i-1)
e(t-di-1)= a(())lz'xl,Z,l (t=d,i) +a1012x1,1,2(t —d,i)
+ Xy, (Li=D +u,(t—d,i-1)
Step 4.

Substituting (25) into (24) and taking into account
(18) — (21), the desired realization of (22) has the form

AO — Aloll O Al — Allll 0
11 02’ 11 120
| 0 Ay 0 A,
o_[An 0] i _[an 0
Al2 = 021’ Al2 - 12
| 0 A 0 Aj 26)
oA 0] [ o
21 I O Aglz_’ 21 O A;% >
o _[a% o] . _[al o
Ap = 02 | Ap = 2|
| 0 Ay 0 A
ISBN 978-3-901608-32-2 11

B 0
B0 = BY 0 ’
0 B”
| 0 BY
_Cm
0 _ 0 _
Cl - C1()2i|’ C2 |:
L%~
Cll
1 1 _
C, _{CEZ} C,=
b()ll b012
A
bll b21
a(?ll 0
A= 0 0
| 0 ag;
000
AL=10 0 0 O
10 0 0 1
agm 0
By 0
5021 O
Agl: o —02
0 foo
0 by?
| 0 by
4% 0 0
byt 0 0
AL = by' 0 0
0 00
0 00
0 00
(0 0 0
A, =|0 0 0},
0 0 0
(0 0 0 0
AL,={0 0 0 0
0 0 00
a0
by' O
Al — b()lo21 0
21 0 a2
_00
0 by’
| 0 by?
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o o O o O

—12
Qo

7. 112
blO

7122
by i

[ pll
B,
11
B,

0

| O

111
=|:bll
121
bll

I o o o

S O O O O O

S O O O o O

0
0
g2l
1
B2
2

112
b21

122
b2l

|

(26)

27)
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[ 00 0 00
B0 0 0 0 0
AL = b2 0 0 (1)2 0 0f
0 00 a2 00
0 00 b 00
10 00 b2 0 0
1 0] [0 0]
ag 0 ag 0
by 0 by 0
by 0 by 0
B°= 0 0| B'=|0 0]
0 1 0 0
0 ay 0 ay
0 by’ 0 by
| 0 by L 0 by
o[ B A
_b()l b()l bn
cr o bl:l: 10 b%z 1 0} on
b0 1 b 0 1
Cl _ E(il” E(;llz Ellllz:|
Colar ar ar)
C B0 B 10
Z_L;? 01 b2 0 1}’
D0={b101“ b&”} Dl{bfl” béiz}
bt by | b by
and @ =at’ +allalt, B =BE +alibh

ot =al' b for k=01,...h; r=12,..,p;

i T Yim Py

1=12,m; i=01...n,—1; j=01,....m—1.

5 Concluding remarks

A method for computation of a positive realization of
a given proper transfer matrix of 2D hybrid linear
system with delays has been proposed. Sufficient
conditions for the existence of a positive realization of
a given proper transfer matrix have been established.
A procedure for computation of a positive realization
has been proposed. An open problem is formulation of
the necessary and sufficient conditions for the
existence of solution of the positive realization
problem for 2D hybrid systems in the general case.
Extension of those considerations for 2D hybrid
systems described by models with structures similar to
the 2D general model [14] or the 2D second
Fornasini-Marchesini model [18] are also open
problems.
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