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Abstract

Simulation of physical systems using digital computers continues to play an ever increasing
role in all aspects of today’s technological society. In general the basis for simulation resides
in mathematical models of the systems being simulated. In the case of continuous dynamic
systems these models consist of either nonlinear ordinary or partial differential equations. The
simulation of these systems and hence the simulation of the corresponding mathematical mod-
els can be accomplished by numerical integration of the differential equations.
An original mathematical method which uses the Taylor series method for solving differential
equations in a non-traditional way has been developed. Even though this method is not much
preferred in the literature, experimental calculations have shown and theoretical analyses have
verified that the accuracy and stability of the Taylor series method exceeds the currently used
algorithms for numerically solving differential equations.
It is the aim of the paper to adapt power-series integration (Taylor series) to real-time simula-
tion. In real-time digital simulation the numerical integration step sizeh is almost always fixed.
The same is expected from corresponding power-series integration.
Actually, it may be difficult to apply the power series method to real time simulation, since
the required higher derivatives of the real-time inputs will not in general be available. Further-
more, many real-time simulations involve derivative functions that are represented by multi-
dimensional data tables rather than analytic functions. In this case the required state-variable
derivatives do not exist.
Adapting power-series integration to real-time simulation in this paper is based on a model rep-
resentation. The real system is driven by the model and all the control is specified in the model.
Next step how to speed up simulation is to use a special digital hardware.
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1 Modern Taylor Series Method

A large number of integration formulas have been pub-
lished especially for solving special systems of differ-
ential equations. In general, it is not possible to choose
the best method but for a subclass of tasks defined by
similar properties the most suitable method could al-
ways be found. The ”Modern Taylor series method”
has proved to be both very accurate and fast. It is based
on a direct use of the Taylor series.

The main idea behind the Modern Taylor Series Method
is an automatic integration method order setting, i.e.
using as many Taylor series terms for computing as
needed to achieve the required accuracy. Methods of
different orders can be used in a computation.

Obviously, the more Taylor series terms are used the
higher is the achieved accuracy. The main problem
connected with using Taylor series is the need to gen-
erate higher derivatives. This is in fact the reason
why Runge-Kutta formulas of various orders have been
used.

If we succeed, however, to obtain the terms with higher
derivatives, the accuracy of calculations by Taylor se-
ries method is extreme (it is in fact only limited by the
type of the arithmetic unit used). This is typical, in
particular, for the solution of the technical initial prob-
lems. Technical initial problems are defined as initial
problems where the righthand side functions of the sys-
tem are those occurring in the technical practice, that
is functions generated by adding, multiplying and su-
perposing elementary functions. Such systems can be
expanded into systems with polynomials on the right-
hand sides of the equations. In such a case the Taylor
series terms can easily be calculated.

Fig. 1 Solutions fora = 1

The Modern Taylor Series Method has been imple-
mented in II/2007-TKSL software. The high accuracy

of the TKSL is demonstrated on the following system
of equations

y′ = a · y · cos(t) y(0) = 1 (1)

x′ = −a · x · cos(t) x(0) = 1 (2)

z = x · y (3)

In Fig. 1,x (blue),y (violet) andz (green) as functions
of time are shown in the course of the computation (for
a = 1).

The system of equations (1), (2), (3) was deliberately
designed for the variable z to characterize the accuracy
of the computation.

For the test functionz = x · y we havez = 1 since
the exact solution of (1) isy = ea·sin(t) and the exact
solution of (2) isx = e−a·sin(t).

The accuracy of the computation is preserved even if
the variables reach values of10443 and10−435 by order
of magnitude. The numerical solution of the system (1)
(2) reaches these values fora = 1000 (Fig. 2).

Fig. 2 Solutions fora = 1000

However, since the Modern Taylor Series Method
(power series method) is a single-pass method, it is pos-
sible that it will execute much faster per overall integra-
tion step than the multiple-pass Runge-Kutta methods.

On the other hand, if the derivate functionf = dx/dt
is a complex analytic function, the calculation of the
derivatives off may be very intensive, especially for a
large orderk of integration algorithm. This will slow
down the power series method, so that it is not easy
to draw general conclusions on which method will be
faster.

The speed tradeoff will be very problem dependent.
Note also that it may be difficult, if not impossible, to
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apply the power series method to real time simulation,
since the required higher derivatives of the real-time
inputs will not in general be available. Furthermore,
many real-time simulations involve derivative functions
that are represented by multi-dimensional data tables
rather than analytic functions. In this case required
state-variable derivatives do not exist. Nevertheless,
power series integration methods can be very efficient
for simulating particular types of differential equations.

2 ”Real-time” system P
There are many examples of digital simulations involv-
ing real-time inputs and outputs, including spacecraft
simulators, land vehicles simulators, ships simulators,
process control simulators, power plant simulators, etc.
As in the flight simulator, the hardware in the loop may
be a human operator, in which case the simulator can
be used for mansystems development and evaluation,
or for the training of human operators.

As an example, first order differential equations (4), (5)

u′ = 500 · z − 51 · u − 50 · y u(0) = 0 (4)

y′ = u y(0) = 0 (5)

z = 1 (6)

describe the ”school” system P. Functiony (green) to-
gether with time functionu (violet) and order of method
ORD (blue) is in Fig. 3.

Fig. 3 Time functionsy, u,ORD

3 Closed-loop controller 1
A common closed-loop controller architecture is the
PID controller. The output of the systemy(t) is fed
back to the reference valuer(t). The controllerC then
takes the errore (difference) between the reference and
the output to change the inputsu to the system under

C
+r

P
e w y

-

Fig. 4 Closed-loop controller 1

controlP . This is shown in the Fig. 4.
The Fig. 4 is described by

e = r − y

w = kp · e + ki · e + kd · e

Fig. 5 Solutiony

An example of the solutiony for kp = 0.9, ki =
0, kd = 0, r = 1 is in Fig. 5.

4 Closed-loop controller 2
Similar example for the closed-loop controller architec-
ture in Fig. 6 is described by

e = r − w

w = kp · y + ki · y + kd · y
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Fig. 6 Closed-loop controller 2
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Solution ofy for kp = 0.9, ki = 0, kd = −0.05, r = 1
is in Fig. 7.

Fig. 7 Solutiony

5 Model representation
Adapting power-series integration to real-time simula-
tion is based on a model representation (Fig. 8).
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Fig. 8 Model representation

PM is the ”Taylor” model of the real systemPS .
ControllerCM generates proportional, integration and
derivate part ofyM .

The real systemPS (using either 1st, 2nd, 3rd or 4th or-
der integration formulas) is driven by the model and all
the control is specified in the model. ModelPM uses
Taylor series integration method (power series integra-
tion).

Actually, this is the main idea of adapting power-series
integration to real-time simulation - complicated re-
quired high order derivatives are not computed from the
real systemPS but they are indirectly generated from
the model (PM , CM ).

If parameters of the model and the real system are the
same, step responsesyM , yS are the same, of course,
and corresponding curves are the same as in Fig. 7.

Fig. 9 and Fig. 10 show the step response and error
Err for different perturbations of a real system (Err =
yM − yS).

Fig. 9 Different parametrs of the model and real system

Blue function in Fig. 9 represents error of solutionErr,
brown function gives step response (coeficient50 in
equation (4) has been changed to value40), green re-
quired function gives step response described in Fig. 7.

Fig. 10 Different parametrs of the model and real sys-
tem

Similary, blue function in Fig. 10 represents error of
solutionErr, brown function gives step response (co-
eficient50 in equation (4) has been changed to value
40 and coeficient51 in equation (4) has been changed
to value41) and green required function gives step re-
sponse described in Fig. 7.

Final representation of adapting power-series integra-
tion to real-time simulation is in Fig. 11. A special
feedbackCKKI in real system derived from difference
Err gives us a possibility to eliminate different coeffi-
cients of model and real system (Fig. 12). Again, blue
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curve representsErr; different parameters are those
described in Fig. 10.
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Fig. 11 Final model representation

Fig. 12 Result of feedbackCKKI

6 Digital-to-analog and Analog-to-digital
conversion

Some of the inputs and outputs for the model repre-
sentation in Fig. 11 are in continuous or analog form.
In this case the continuous inputs must be converted to
digital form using A to D (Analog to Digital) convert-
ers. The output of the A to D converter is then a data
sequence, usually with a fixed time intervalh between
samples of the analog input. In this caseh usually (but
not always) becomes the step size for the numerical in-
tegration. Similarly, the outputs, in the form of data
sequences, are converted to continuous form using D
to A (Digital to Analog) converters. Influence of D to
A and A to D will be discussed during the conference,
together with a possible corresponding time delay.

7 Taylor Series Numerical Integrator
It should be noted that integration method uses a fixed
integration step size because of the real-time require-
ment. It may also be true that the use of very efficient
fixed-step integration algorithms may actually speed up
many simulations.

Next step how to speed up simulations is to use a special
digital hardware, mainly specially designed arithmetic
logical units.

We outline the design and implementation of an FPGA-
based numerical integrator that will form the basis of
our FPGA-based parallel hardware. Curently, our pro-
cessor uses the Taylor series numerical integration al-
gorithm to solve the ordinary differential equations and
can be used as a part ofPM andCM for final model
representation (in Fig. 11).

The basic part of our system is the arithmetic logic unit
(ALU) designed for Taylor series numerical integration
algorithm. We have analyzed mathematical operations
and following operations are required:

• addition

• subtraction

• multiplication

The architecture of our fixed-point processor is ”serial”
in communication and ”parallel” in computation (Fig.
13).

Fig. 13 Arithmetical logic unit

Our numerical integrator consists of the following well-
known blocks:

• SUM - Summer

• ACC - Accumulator

• MPX - Data multiplexer

• RN - Registr of integration step

• RV - Registr of initial condition

• BNEG, BLOK - Circuits for Booth algorithm
(multiplication)

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM



• SR - Communication registr

• Additional neccesary logic

A field programmable gate array (FPGA) is used for
the design of our processor. Some results of testing of
our processor are in Fig. 14, for those interested in the
detail function.

Fig. 14 Simulation of ALU

8 Summary
All computations have been completed by II/2007-
TKSL software.

Details together with influence of AD, DA converters
and more sophisticated systemPM will be presented
during the conference.

We will continue to study the application of power-
series integration to real-time simulation and continue
to discover major problems and advantages with it. It
appears to us that the main attraction of power-series
integration for non-real-time simulation is the large in-
tegration time step.
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