
SIMULATING DISTRIBUTED APPLICATIONS

IN AN ACTIVE NETWORK

Tomas Koutny and Jiri Safarik

University of West Bohemia, Faculty of Applied Sciences

Univerzitni 8, 306 14 Plzen, Czech Republic

txkoutny@kiv.zcu.cz (Tomas Koutny)

Abstract

Continuous development of network architectures emphases two related characteristics:

dynamic protocol deployment and utilization of free resources. Active networks present such

network architecture. Unlike tradition networks, packets are superseded by capsules, which

contain a custom code performing specific activities, each time a capsule visits a node. The

dynamic protocol deployment involves a custom code injection at remote nodes and its

subsequent execution to implement desired behavior of the network. As the custom code

executes, it consumes resources such as processor, memory, bandwidth, etc. In this paper, we

present a simulator of active network in use with a computation-intensive distributed

application and a heterogeneous hardware. The simulator provides a virtual active network,

where no application-specific behavior is coded into the network and each node closely

models a behavior of a scheduler of a real, non-simulated, operating system. Into such

network, we inject a virtual distributed application and observe utilization of resources

available in the network. It is possible to enter a number of parameters, which affects the size

of simulated network including the variety of used hardware, behavior of the distributed

application comprised of thinking and waiting times, code branching probabilities,

communication, migration rules and random number generators. As an example, we give an

output of the simulator with input parameters, which we measured on a real, non-simulated,

distributed application.

Keywords: active, network, simulator, distributed computing, heterogeneous

environment.

Presenting Author’s Biography

Tomas Koutny. He started his PhD on Faculty of Applied Sciences at

University of West Bohemia, at the Department of Computer Science

and Engineering. Nowadays, he has a full time contract at the

department. His research activities are oriented toward distributed

systems. His PhD thesis addresses the load redistribution in a

heterogeneous environment. His current research focuses on active

networking, development of active server, deployment and development

of new services and protocols. This paper represents a part of his current

research.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 General

Recently, we undertook a research project on load-

redistribution in a heterogeneous distributed

environment [1, 2]. As an implementation platform,

we used active network. To verify behavior of

proposed method, we developed a simulator of

computation-intensive distributed application in an

active network. There are number of options, which

could be used to set specific characteristics of the

network and the application, so it is possible to use it

for a simulation within other research projects.

In traditional networks, all packets have fixed header

and payload. The header stores information such as

destination address and routers use this information to

forward or discard individual packets. On contrary, the

packet in the active network [3, 4], called capsule, is

associated with a particular code that runs every time a

capsule visits a node. The node that is capable to run

capsule’s code is an active node. This code may

perform various tasks such as custom routing, network

management, injecting of applications or collecting

specific information such as performance snapshot.

Active application is a process that runs at the active

node and uses capsules to transfer data among the

nodes. A distributed application consists of possibly

many active applications. The active application has to

use capsules for its migration, while the active node

directly supports the capsule’s migration.

Each capsule or an active application is isolated from

others within active node’s execution environment,

where it runs. Nevertheless, it is possible to use

primitives, such as global state for instance, for a

communication between active applications and

capsules at a single node. As an active application or a

capsule runs, it consumes resources. As a resource,

processor time, memory, bandwidth, time to live, etc.

is considered.

Second section discusses simulation of active

network, while the third section presents its

parameters. Next, we give overview of simulator’s

architecture and implementation in section four. Fifth

section provides simulation results, which can be

obtained using the simulator. Section six states the

conclusion and outlines future work.

2 Simulation

The intention is to create a simulation, which reflects

current architectures of operating systems, execution

environments and distributed applications in the

environment of active networks. The active network

simulation is based on our reference implementation.

The simulator conforms to following needs:

• It provides a virtual active network, no

application-specific behavior is coded into

active nodes.

• Network addressing and routing is the same

as in the reference implementation.

• Each active node is programmed to behave

like a real node running applications without

any priority changes to benefit the distributed

application.

• Active applications and capsules are

described with a code that reflects the

reference implementation; some portion of

the code is even shared.

• The virtual active network and injected

distributed application are configurable via

input parameters.

• Simulation results are acquired from states of

nodes, not from the state of a running

distributed application; the state of the

network is periodically sampled and

visualized.

• Each node of simulated network provides the

same features as the reference

implementation. This applies mainly to the

scheduling of capsules, active applications,

resources, global states and routing tables.

The network-addressing scheme is the same as in the

reference implementation including the routing. The

simulator uses the grid topology, because a significant

number of various topologies can be mapped onto it.

Applications accessing routing table of particular node

see node’s neighbors only like in the real network.

The code that simulates the real active node manages a

list of applications and capsules running there. There

is API implemented at each simulated node, which

provides access to node’s services – for instance the

access to underlying network. In addition, the node

allocates resources to applications and capsules to

control their runtime. The node picks up no particular

application or capsule for a performance boost.

There are two approaches to discrete-time simulation

[5]: event interpretation and pseudo-parallel processes.

Main part of the event-interpreted simulation is an

event handler, where all events are generated and

processed. This usually leads to a non-trivial complex

event handler and a centralized approach as the

handler acts as a main controlling entity. Since we

simulate network, where each node is a standalone

entity executing active applications and capsules, we

chose the pseudo-parallel processes approach.

2.1 Scheduler

In the real, non–simulated, operating system, the main

component determining an execution of particular

processes is the scheduler. Therefore, the main

component of our simulated node is the scheduler too.

In the discrete time simulation, the time is measured

with an integer variable. When some entity simulates

computation, so called thinking time, it is suspended

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

and then resumed on a given discrete time. While it

may be enough for a general simulation of processes

scheduling, we decided rather to follow the real

behavior of a scheduler.

The real processor is able to execute a fixed amount of

the same set of instructions per given interval.

Similarly, our simulated node is able to execute a

fixed amount of virtual instructions per single step of

the discrete simulation time. This way, we specify a

computational performance of the simulated node. As

a simplifying condition, we assume that overhead of

scheduler, and the rest of system processes, is covered

within the performance of simulated node. According

to our reference implementation, each active

application and each capsule runs in its own execution

environment. The scheduler is responsible for

allocation of processor-time quanta [6, 7] to these

environments. Operating system of the simulated node

maintains a context for each running execution

environment. Beside information such as

environment’s state, this context contains a number of

virtual instructions to be executed – expressing the

length of thinking time.

Thus, instead of specifying a fixed discrete time, for

which an entity has to remain suspended, we assign a

fixed number of virtual instructions to be executed on

behalf of a given process/environment. With the

advance of simulation time, each node decreases this

number of virtual instructions. The maximum, by

which it can decrease this number, is determined by

the performance of the node. Thus, the number of

instruction for execution is not decreased for all

environments at a particular node.

Moreover, the scheduler may reorder the schedule of

execution environments to ensure that all

environments execute in a given number of recent

steps of the simulation. This leads to possible race

conditions just like in real operating system. The total

time of an execution of a single environment depends

on the total number of execution environments at the

node, not on a fixed number only. Therefore, when the

simulation entity goes to thinking mode, the exact

time, for which it would remain thinking, cannot be

set. When the thinking time is over, the node calls a

pre-defined method of the simulation entity that

makes the decision on entity’s life.

2.2 Communication Clusters

Usually, only a subset of all processes of a distributed

application communicates together during an

application’s runtime [8, 9]. We call such subset a

communication cluster [10]. There is at least one

communication cluster per distributed application, or

their number is equal up to the number of processes.

Generally, they may change dynamically, but from the

design of distributed applications, we know that this

does not occur often, if ever, during the runtime.

For each process, the simulator picks a number of

processes in order of their creation. This way, the

simulator forms communication clusters.

2.3 (ode API

As a real operating system exposes its services to

applications via a set of predefined application

Figure 1. Simulation Parameters

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

programming interfaces (API), our simulated node

does the same to simulated entities, which act as

active applications and capsules. API of simulated

node covers following areas:

• Environmental access – access to the

simulated network, routing information

• Access to simulation – generators of random

numbers, the simulation time

• Caching – for a limited time, storing of data

standing out of the application/capsule

address space

• Rendezvous – allowing capsules and

applications to meet and coordinate their

actions

• Capsule manipulation – modification of

header, data load abstraction

• Control operations – forward and discard

operations over capsules, injecting of

capsules and applications, change of the

entity state

Functionality of APIs provided to applications and

capsules is classified this way:

• Functionality available to application as well

as to capsules

• Functionality available to applications only

• Functionality available to capsules only

3 Parameters

To affect the behavior of the execution environments

as well as applications and capsules, we introduced

following simulation parameters – see Fig.1.

3.1 The underlying distributed environment

• Width and height of the grid – simulated

nodes are connected into a regular grid,

because almost any topology can be mapped

onto it by declaring particular nodes as

virtual

• Link speed – bandwidth of connections

between two nodes in full duplex

• GradeAddrAny – during the initialization of

the simulation, processes of distributed

application are injected to this address; this

can be either one node to simulate start of the

application, or it can be random address to

simulate an already running application.

• Maximum TTL – time to live for all capsules

• Capsule pipelines – number of capsules,

which can run simultaneously; lower number

means a shorter execution time of a single

capsule, but higher number means more

parallelization

• Node performance – number of virtual

instructions, which a simulated node can

execute in a fixed time interval

3.2 Application-specific features

• Processes – number of processes of a

distributed application

• Thinking Time

• Waiting Time

• App Branching Probabilities – probabilities,

with which a simulated application will

perform computing, thinking, waiting for an

event or sending message after a previous

action

• Process Mate – a cooperating process in a

communication cluster

3.3 Capsule-specific features

• Thinking time – interval a capsule spends in

mode, which simulates active processing

such as routing at give node; an analogy to

thinking time of an application

• Message size – size of a data message sent

from one process to another; the size affects

the time that a capsule spends in the node,

while passing through

3.4 Specific features of the load-redistribution
method

• Migration interval

• Weighmaster – approaches to the evaluation

of nodes’ performance:

o Average CPU Load

o Average number of applications

o Average load of individual threads

(takes unused CPU into account)

o Average load of individual threads

extrapolated for remote node (SMP

design - SMP stands for symmetric

multi-processor systems)

o Average CPU utilization by single

thread (fits single and SMP designs)

• Minimum node-weight gain – based on a

performance snapshot of a given node, its

performance weight is computed as a real

number; to evaluate a node as a possible

migration target, its performance must be at

least equal to the performance of the local

node multiplied by this parameter

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

There are four types of probability distributions,

which are offered for generating the random numbers:

• None – a constant is always returned

• Uniform – each value has the same

probability

• Poisson – Poisson distribution

• Gauss – Gaussian distribution

“Mean Value” and “Variance” parameters are used to

set valid parameters for a chosen distribution.

4 Architecture and Implementation

As depicted in Fig. 2, there are three hierarchy levels

in the simulator’s architecture:

• Core

• Network Nodes

• Applications and Capsules

The core of the simulator is responsible for the global

simulation time and for handling the common

functionality such as random number generators. It

maintains the set of simulated network nodes, which

compose the grid. The core calls the “life” method of

every node in each step. The “life” method is firstly

called for each node, and the node calls the method for

capsules and applications, which run at the given

node.

Simulated network node is responsible for:

• Maintaining a list of applications and

capsules running there via calls to their “life”

methods

• Performing scheduling of applications and

capsules

• Running applications and capsules

• Keeping connections to other nodes

• Providing services to applications and

capsules

• Encapsulating access to services provided by

the core such as a random number generator

• Providing functionality described in section 2

Applications and capsules carry out operations, which

simulate the run of a distributed application. They

create message flow and utilize virtual processors –

i.e. they consume available resources. As they run on

the top, all other entities provide services to them.

However, the rest of entities, nodes and core, affect

their runtime.

Firstly, the user interface thread is created to get

simulation parameters from the user. Subsequently, it

creates an executive thread, running the executive part

described above, and passes the parameters, so that the

core can create the simulation entities. In the first

place, it creates nodes and connects them. Then, it

injects pre-defined number of applications, which will

later generate capsules. Finally, the core runs the

simulation.

Core

Applications and Capsules at Nodes

Network Nodes

Time Progress,
Random Number Generators

and Parameters

Capsules

Apps

Node11
Node12

Node1M

Node22
Node21

NodeN1

NodeNM

Figure 2. Executive Part of the Simulator

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

The entire simulation application runs in three threads:

• User interface – processing of the input from

the user and provides the output to the user

• Executive part – main simulation described

above

• Visualization – periodically samples state of

the executive part and creates a visualization,

which is presented via the user interface

Entire simulation terminates on a user request received

via the user interface thread.

5 Simulation Results

For the demonstration of the simulator, we pick a set

of parameters that corresponds to our reference

implementation, in active network, of a parallel prefix

sum computation [11], which uses synchronization

primitives and its processes communicate together.

var a[1:n]:int

 sum[1:n]:int

 old[1:n]:int

 d:int=1

//initialize elements of sum

sum[i:1..n]::

 sum[i]:=a[i]

barrier

{SUM: sum[i]=a[i-d+1]+…+a[i]}

while d<n do

 //save old value

 old[i]:=sum[i]

 barrier

 if (i-d)>=1 then

 sum[i]:=old[i-d]+sum[i]

 barrier

 d:=d*2

end while

The parameters were obtained from a log of the

reference implementation ran on Intel Core Duo

1.86GHz. Link speed corresponds to 100Mb/s link at

full duplex. Fig. 3 depicts the network. VI stands for

Virtual Instructions, while ST stands for a simulation

time unit – i.e. the simulation step. The execution

speed 100VI/ST corresponds to Intel Core Duo

1.86GHz. Migration interval expresses minimum

work needed, before a migration may occur.

Application Specific Parameters

Working Time Poisson, 62700 VI

Waiting Time Poisson, 540 VI

Working Probability 85%

Waiting Probability 7%

Sending Probability 8%

Processes 12

Migration Interval 627 VI

Capsule Specific Parameters

Working Time Poisson, 10 VI

Size Uniform, 304B – 504B

Link Speed 100B/ST

00
88 VI/ST

01
93 VI/ST

11
94 VI/ST

20
109 VI/ST

21
104 VI/ST

10
88 VI/ST

Figure 3. Testing Network

We have used Poisson distribution of probability as

the measured data conform to it. There is a similar

work aimed at the performance analysis in a

heterogeneous environment [12], which uses the same

distribution for simulation.

The simulator records following per node:

• Time progress

• Number of active applications

• Number of capsules

• Processor time consumed by applications

• Processor time consumed by capsules

• Total processor time available per simulation

step

• Network traffic – stored internally only

Fig. 4 to 9 depict the load of individual nodes in a

testing network during the runtime of distributed

applications. The primary process was injected at node

11, where it injected remaining processes, which

spread into the network.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10000 20000 30000 40000 96509 271663 449201

Simulation Time

P
ro
c
e
s
s
o
r
U
ti
li
z
a
ti
o
n

0

2

4

6

8

10

12

N
u
m
b
e
r
o
f
A
p
p
li
c
a
ti
o
n
s

Capsules

Applications

Number of Applications

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10000 20000 30000 40000 96509 271663 449201

Simulation Time

P
ro
c
e
s
s
o
r
U
ti
li
z
a
ti
o
n

0

2

4

6

8

10

12

N
u
m
b
e
r
o
f
A
p
p
li
c
a
ti
o
n
s

Capsules

Applications

Number of Applications

Figure 4. Node 00

Figure 5. Node 10

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10000 20000 30000 40000 96509 271663 449201

Simulation Time

P
ro
c
e
s
s
o
r
U
ti
li
z
a
ti
o
n

0

2

4

6

8

10

12

N
u
m
b
e
r
o
f
A
p
p
li
c
a
ti
o
n
s

Capsules

Applications

Number of Applications

Figure 6. Node 20

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10000 20000 30000 40000 96509 271663 449201

Simulation Time

P
ro
c
e
s
s
o
r
U
ti
li
z
a
ti
o
n

0

2

4

6

8

10

12

N
u
m
b
e
r
o
f
A
p
p
li
c
a
ti
o
n
s

Capsules

Applications

Number of Applications

0%

20%

40%

60%

80%

100%

0 10000 20000 30000 40000 96509 271663 449201

Simulation Time

P
ro
c
e
s
s
o
r
U
ti
li
z
a
ti
o
n

0

2

4

6

8

10

12

N
u
m
b
e
r
o
f
A
p
p
li
c
a
ti
o
n
s

Capsules

Applications

Number of Applications

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10000 20000 30000 40000 96509 271663 449201

Simulation Time

P
ro
c
e
s
s
o
r
U
ti
li
z
a
ti
o
n

0

2

4

6

8

10

12

N
u
m
b
e
r
o
f
A
p
p
li
c
a
ti
o
n
s

Capsules

Applications

Number of Applications

Figure 7. Node 01

Figure 8. Node 11

Figure 9. Node 21

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

Active applications have not migrated right at the

beginning, as there was no guarantee that it will result

into better a usage of available resources. Later, when

it seemed profitable, the migrations started.

During the runtime, we can see several peaks in the

number of processes running at particular nodes. This

relates to the fact that all nodes are overloaded and the

load redistribution method tries to enhance the

performance by reorganizing active applications

placement to reduce the communication delays.

The simulator randomly generates a virtual topology

even during the runtime, because we were interested

in a response to such changes. This is another cause of

the peaks in number of processes. As it is apparent

from presented graphs, it was possible to prevent mass

migration of the majority of all processes.

6 Conclusion and Future Work

We have designed and implemented a simulator of

active network running a generic model of a

distributed application with the load redistribution

algorithm.

Using the simulator, we are able to predict a behavior

of a distributed application on almost any network

topology and then track down the usage per a single

node. As the examples, we can mention the study of

new network protocols and load prediction algorithm

[13].

Future work would include a network topology editor

along with extending the scope of output statistics to

e.g. individual capsules and active applications.

7 Acknowledgment

The work was sponsored by the Ministry of

Education, Youth and Sport of the Czech Republic -

"University spec. research - 1311".

8 References

[1] T. Koutny and J. Safarik, “Gradient Method with

Topology Discovery for Load-Balancing in Active

Networks”, 11th IEEE International Conference and

Workshop on the Engineering of Computer-Based

Systems (ECBS'04), Brno, Czech Republic, 2004, pp.

75 – 85

[2] T. Koutny and J. Safarik, “Load Redistribution in

Heterogeneous Systems”, The Third International

Conference on Autonomic and Autonomous Systems,,

Athens, Greece, 2007

[3] D. L. Tennehouse and D. J. Wetherall, "Towards

an Active Network Architecture", Proceedings of the

DARPA Active Networks, Conference and Exposition

(DANCE.02), 0-7695-1564-9/02

[4] AN Node OS Working Group, "NodeOS Interface

Specification", January 10, 2001

[5] R. M. Fujimoto, “Parallel and Distributed

Simulation Systems”, Wiley, 2000

 [6] D. Solomon, “Inside Windows NT”, Microsoft

Press, 1998

[7] D. P. Bovet and M.Cesati, “Understanding the

Linux Kernel; 2nd Edition”, O’Reilly, 2002

[8] G. R. Andrews, "Foundation of multithreaded,

parallel, and distributed programming", Addison

Wesley, 1999

[9] N. Lynch, “Distributed Algorithms”, Morgan-

Kaufman, 1997.

[10] T. Koutny and J. Safarik, ”Maintaining

Communication Channels for Migrating Processes in

the Environment of Active Networks”, Proceedings of

the IASTED International Conference on Parallel and

Distributed Computing and Networks - PDCN 2005,

Innsbruck, Austria, 2005, pp. 100 – 106

 [11] G. R. Andrews, “Concurrent Programming:

Principles and Practice”, The Benjamin/Cummings

Publishing Company, Inc., 1991

[12] B. Javadi, M. K. Akbari and J. H. Abawajy,

“Performance Analysis of Heterogeneous Multi-

Cluster Systems”, 2005 International Conference on

Parallel Processing Workshops (ICPPW'05), Oslo,

Norway, 2005, pp. 493 – 500

[13] S. F. Bush and A. B. Kulkarni, “Active Networks

and Active Network Management – A Proactive

Management Framework”, Kluwer Acedemic/Plenum

Publishers, New York, 2001

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM

