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Abstract  

Continuous development of network architectures emphases two related characteristics:  

dynamic protocol deployment and utilization of free resources. Active networks present such 

network architecture. Unlike tradition networks, packets are superseded by capsules, which 

contain a custom code performing specific activities, each time a capsule visits a node. The 

dynamic protocol deployment involves a custom code injection at remote nodes and its 

subsequent execution to implement desired behavior of the network. As the custom code 

executes, it consumes resources such as processor, memory, bandwidth, etc. In this paper, we 

present a simulator of active network in use with a computation-intensive distributed 

application and a heterogeneous hardware. The simulator provides a virtual active network, 

where no application-specific behavior is coded into the network and each node closely 

models a behavior of a scheduler of a real, non-simulated, operating system. Into such 

network, we inject a virtual distributed application and observe utilization of resources 

available in the network. It is possible to enter a number of parameters, which affects the size 

of simulated network including the variety of used hardware, behavior of the distributed 

application comprised of thinking and waiting times, code branching probabilities, 

communication, migration rules and random number generators. As an example, we give an 

output of the simulator with input parameters, which we measured on a real, non-simulated, 

distributed application. 

Keywords: active, network, simulator, distributed computing, heterogeneous 

environment.  
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1 General 

Recently, we undertook a research project on load-

redistribution in a heterogeneous distributed 

environment [1, 2]. As an implementation platform, 

we used active network. To verify behavior of 

proposed method, we developed a simulator of 

computation-intensive distributed application in an 

active network. There are number of options, which 

could be used to set specific characteristics of the 

network and the application, so it is possible to use it 

for a simulation within other research projects. 

In traditional networks, all packets have fixed header 

and payload. The header stores information such as 

destination address and routers use this information to 

forward or discard individual packets. On contrary, the 

packet in the active network [3, 4], called capsule, is 

associated with a particular code that runs every time a 

capsule visits a node. The node that is capable to run 

capsule’s code is an active node. This code may 

perform various tasks such as custom routing, network 

management, injecting of applications or collecting 

specific information such as performance snapshot.  

Active application is a process that runs at the active 

node and uses capsules to transfer data among the 

nodes. A distributed application consists of possibly 

many active applications. The active application has to 

use capsules for its migration, while the active node 

directly supports the capsule’s migration. 

Each capsule or an active application is isolated from 

others within active node’s execution environment, 

where it runs. Nevertheless, it is possible to use 

primitives, such as global state for instance, for a 

communication between active applications and 

capsules at a single node. As an active application or a 

capsule runs, it consumes resources. As a resource, 

processor time, memory, bandwidth, time to live, etc. 

is considered. 

Second section discusses simulation of active 

network, while the third section presents its 

parameters. Next, we give overview of simulator’s 

architecture and implementation in section four. Fifth 

section provides simulation results, which can be 

obtained using the simulator. Section six states the 

conclusion and outlines future work. 

2 Simulation 

The intention is to create a simulation, which reflects 

current architectures of operating systems, execution 

environments and distributed applications in the 

environment of active networks. The active network 

simulation is based on our reference implementation. 

The simulator conforms to following needs: 

• It provides a virtual active network, no 

application-specific behavior is coded into 

active nodes. 

• Network addressing and routing is the same 

as in the reference implementation. 

• Each active node is programmed to behave 

like a real node running applications without 

any priority changes to benefit the distributed 

application. 

• Active applications and capsules are 

described with a code that reflects the 

reference implementation; some portion of 

the code is even shared. 

• The virtual active network and injected 

distributed application are configurable via 

input parameters. 

• Simulation results are acquired from states of 

nodes, not from the state of a running 

distributed application; the state of the 

network is periodically sampled and 

visualized. 

• Each node of simulated network provides the 

same features as the reference 

implementation. This applies mainly to the 

scheduling of capsules, active applications, 

resources, global states and routing tables.  

The network-addressing scheme is the same as in the 

reference implementation including the routing. The 

simulator uses the grid topology, because a significant 

number of various topologies can be mapped onto it. 

Applications accessing routing table of particular node 

see node’s neighbors only like in the real network. 

The code that simulates the real active node manages a 

list of applications and capsules running there. There 

is API implemented at each simulated node, which 

provides access to node’s services – for instance the 

access to underlying network. In addition, the node 

allocates resources to applications and capsules to 

control their runtime. The node picks up no particular 

application or capsule for a performance boost. 

There are two approaches to discrete-time simulation 

[5]: event interpretation and pseudo-parallel processes. 

Main part of the event-interpreted simulation is an 

event handler, where all events are generated and 

processed. This usually leads to a non-trivial complex 

event handler and a centralized approach as the 

handler acts as a main controlling entity. Since we 

simulate network, where each node is a standalone 

entity executing active applications and capsules, we 

chose the pseudo-parallel processes approach. 

2.1 Scheduler 

In the real, non–simulated, operating system, the main 

component determining an execution of particular 

processes is the scheduler. Therefore, the main 

component of our simulated node is the scheduler too. 

In the discrete time simulation, the time is measured 

with an integer variable. When some entity simulates 

computation, so called thinking time, it is suspended 

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM



and then resumed on a given discrete time. While it 

may be enough for a general simulation of processes 

scheduling, we decided rather to follow the real 

behavior of a scheduler.  

The real processor is able to execute a fixed amount of 

the same set of instructions per given interval. 

Similarly, our simulated node is able to execute a 

fixed amount of virtual instructions per single step of 

the discrete simulation time. This way, we specify a 

computational performance of the simulated node. As 

a simplifying condition, we assume that overhead of 

scheduler, and the rest of system processes, is covered 

within the performance of simulated node. According 

to our reference implementation, each active 

application and each capsule runs in its own execution 

environment. The scheduler is responsible for 

allocation of processor-time quanta [6, 7] to these 

environments. Operating system of the simulated node 

maintains a context for each running execution 

environment. Beside information such as 

environment’s state, this context contains a number of 

virtual instructions to be executed – expressing the 

length of thinking time.  

Thus, instead of specifying a fixed discrete time, for 

which an entity has to remain suspended, we assign a 

fixed number of virtual instructions to be executed on 

behalf of a given process/environment. With the 

advance of simulation time, each node decreases this 

number of virtual instructions. The maximum, by 

which it can decrease this number, is determined by 

the performance of the node. Thus, the number of 

instruction for execution is not decreased for all 

environments at a particular node.  

Moreover, the scheduler may reorder the schedule of 

execution environments to ensure that all 

environments execute in a given number of recent 

steps of the simulation. This leads to possible race 

conditions just like in real operating system. The total 

time of an execution of a single environment depends 

on the total number of execution environments at the 

node, not on a fixed number only. Therefore, when the 

simulation entity goes to thinking mode, the exact 

time, for which it would remain thinking, cannot be 

set. When the thinking time is over, the node calls a 

pre-defined method of the simulation entity that 

makes the decision on entity’s life. 

2.2 Communication Clusters 

Usually, only a subset of all processes of a distributed 

application communicates together during an 

application’s runtime [8, 9]. We call such subset a 

communication cluster [10]. There is at least one 

communication cluster per distributed application, or 

their number is equal up to the number of processes. 

Generally, they may change dynamically, but from the 

design of distributed applications, we know that this 

does not occur often, if ever, during the runtime.  

For each process, the simulator picks a number of 

processes in order of their creation. This way, the 

simulator forms communication clusters. 

2.3 (ode API 

As a real operating system exposes its services to 

applications via a set of predefined application 

Figure 1. Simulation Parameters 
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programming interfaces (API), our simulated node 

does the same to simulated entities, which act as 

active applications and capsules. API of simulated 

node covers following areas: 

• Environmental access – access to the 

simulated network, routing information 

• Access to simulation – generators of random 

numbers, the simulation time 

• Caching – for a limited time, storing of data 

standing out of the application/capsule 

address space 

• Rendezvous – allowing capsules and 

applications to meet and coordinate their 

actions 

• Capsule manipulation – modification of 

header, data load abstraction 

• Control operations – forward and discard 

operations over capsules, injecting of 

capsules and applications, change of the 

entity state 

Functionality of APIs provided to applications and 

capsules is classified this way: 

• Functionality available to application as well 

as to capsules 

• Functionality available to applications only 

• Functionality available to capsules only 

3 Parameters 

To affect the behavior of the execution environments 

as well as applications and capsules, we introduced 

following simulation parameters – see Fig.1. 

3.1 The underlying distributed environment  

• Width and height of the grid – simulated 

nodes are connected into a regular grid, 

because almost any topology can be mapped 

onto it by declaring particular nodes as 

virtual 

• Link speed – bandwidth of connections 

between two nodes in full duplex 

• GradeAddrAny – during the initialization of 

the simulation, processes of distributed 

application are injected to this address; this 

can be either one node to simulate start of the 

application, or it can be random address to 

simulate an already running application. 

• Maximum TTL – time to live for all capsules 

• Capsule pipelines – number of capsules, 

which can run simultaneously; lower number 

means a shorter execution time of a single 

capsule, but higher number means more 

parallelization 

• Node performance – number of virtual 

instructions, which a simulated node can 

execute in a fixed time interval 

3.2 Application-specific features 

• Processes – number of processes of a 

distributed application 

• Thinking Time 

• Waiting Time 

• App Branching Probabilities – probabilities, 

with which a simulated application will 

perform computing, thinking, waiting for an 

event or sending message after a previous 

action 

• Process Mate – a cooperating process in a 

communication cluster 

3.3 Capsule-specific features 

• Thinking time – interval a capsule spends in 

mode, which simulates active processing 

such as routing at give node; an analogy to 

thinking time of an application 

• Message size – size of a data message sent 

from one process to another; the size affects 

the time that a capsule spends in the node, 

while passing through 

3.4 Specific features of the load-redistribution 
method 

• Migration interval 

• Weighmaster – approaches to the evaluation 

of nodes’ performance: 

o Average CPU Load 

o Average number of applications 

o Average load of individual threads 

(takes unused CPU into account) 

o Average load of individual threads 

extrapolated for remote node (SMP 

design -  SMP stands for symmetric 

multi-processor systems) 

o Average CPU utilization by single 

thread (fits single and SMP designs) 

• Minimum node-weight gain – based on a 

performance snapshot of a given node, its 

performance weight is computed as a real 

number; to evaluate a node as a possible 

migration target, its performance must be at 

least equal to the performance of the local 

node multiplied by this parameter 
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There are four types of probability distributions, 

which are offered for generating the random numbers: 

• None – a constant is always returned 

• Uniform – each value has the same 

probability 

• Poisson – Poisson distribution 

• Gauss – Gaussian distribution 

“Mean Value” and “Variance” parameters are used to 

set valid parameters for a chosen distribution. 

4 Architecture and Implementation 

As depicted in Fig. 2, there are three hierarchy levels 

in the simulator’s architecture: 

• Core 

• Network Nodes 

• Applications and Capsules 

The core of the simulator is responsible for the global 

simulation time and for handling the common 

functionality such as random number generators. It 

maintains the set of simulated network nodes, which 

compose the grid. The core calls the “life” method of 

every node in each step. The “life” method is firstly 

called for each node, and the node calls the method for 

capsules and applications, which run at the given 

node. 

Simulated network node is responsible for: 

• Maintaining a list of applications and 

capsules running there via calls to their “life” 

methods 

• Performing scheduling of applications and 

capsules 

• Running applications and capsules 

• Keeping connections to other nodes 

• Providing services to applications and 

capsules 

• Encapsulating access to services provided by 

the core such as a random number generator 

• Providing functionality described in section 2 

Applications and capsules carry out operations, which 

simulate the run of a distributed application. They 

create message flow and utilize virtual processors – 

i.e. they consume available resources. As they run on 

the top, all other entities provide services to them. 

However, the rest of entities, nodes and core, affect 

their runtime. 

Firstly, the user interface thread is created to get 

simulation parameters from the user. Subsequently, it 

creates an executive thread, running the executive part 

described above, and passes the parameters, so that the 

core can create the simulation entities. In the first 

place, it creates nodes and connects them. Then, it 

injects pre-defined number of applications, which will 

later generate capsules. Finally, the core runs the 

simulation.  

 

 

Core

Applications and Capsules at Nodes

Network Nodes

Time Progress, 
Random Number Generators 

and Parameters

Capsules

Apps

Node11
Node12

Node1M

Node22
Node21

NodeN1

NodeNM

Figure 2. Executive Part of the Simulator 
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The entire simulation application runs in three threads: 

• User interface – processing of the input from 

the user and provides the output to the user 

• Executive part – main simulation described 

above 

• Visualization – periodically samples state of 

the executive part and creates a visualization, 

which is presented via the user interface 

Entire simulation terminates on a user request received 

via the user interface thread. 

5 Simulation Results 

For the demonstration of the simulator, we pick a set 

of parameters that corresponds to our reference 

implementation, in active network, of a parallel prefix 

sum computation [11], which uses synchronization 

primitives and its processes communicate together. 

 

var a[1:n]:int 

    sum[1:n]:int 

    old[1:n]:int  

    d:int=1 

//initialize elements of sum 

sum[i:1..n]:: 

  sum[i]:=a[i]        

barrier 

{SUM: sum[i]=a[i-d+1]+…+a[i]} 

while d<n do 

  //save old value 

  old[i]:=sum[i]             

  barrier 

  if (i-d)>=1 then  

     sum[i]:=old[i-d]+sum[i]  

  barrier 

  d:=d*2 

end while 

 

The parameters were obtained from a log of the 

reference implementation ran on Intel Core Duo 

1.86GHz. Link speed corresponds to 100Mb/s link at 

full duplex. Fig. 3 depicts the network. VI stands for 

Virtual Instructions, while ST stands for a simulation 

time unit – i.e. the simulation step. The execution 

speed 100VI/ST corresponds to Intel Core Duo 

1.86GHz. Migration interval expresses minimum 

work needed, before a migration may occur. 

 

 

 

Application Specific Parameters 

Working Time Poisson, 62700 VI 

Waiting Time Poisson, 540 VI 

Working Probability 85% 

Waiting Probability 7% 

Sending Probability 8% 

Processes 12 

Migration Interval 627 VI 

  

Capsule Specific Parameters 

Working Time Poisson, 10 VI 

Size Uniform, 304B – 504B 

Link Speed 100B/ST 

 

00
88 VI/ST

01
93 VI/ST

11
94 VI/ST

20
109 VI/ST

21
104 VI/ST

10
88 VI/ST

 

 

Figure 3. Testing Network 

 

We have used Poisson distribution of probability as 

the measured data conform to it. There is a similar 

work aimed at the performance analysis in a 

heterogeneous environment [12], which uses the same 

distribution for simulation. 

The simulator records following per node: 

• Time progress 

• Number of active applications 

• Number of capsules 

• Processor time consumed by applications 

• Processor time consumed by capsules 

• Total processor time available per simulation 

step 

• Network traffic – stored internally only 

Fig. 4 to 9 depict the load of individual nodes in a 

testing network during the runtime of distributed 

applications. The primary process was injected at node 

11, where it injected remaining processes, which 

spread into the network. 
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Figure 4. Node 00 

Figure 5. Node 10 
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Figure 6. Node 20 
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Figure 7. Node 01 

Figure 8. Node 11 

Figure 9. Node 21 
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Active applications have not migrated right at the 

beginning, as there was no guarantee that it will result 

into better a usage of available resources. Later, when 

it seemed profitable, the migrations started.  

During the runtime, we can see several peaks in the 

number of processes running at particular nodes. This 

relates to the fact that all nodes are overloaded and the 

load redistribution method tries to enhance the 

performance by reorganizing active applications 

placement to reduce the communication delays. 

The simulator randomly generates a virtual topology 

even during the runtime, because we were interested 

in a response to such changes. This is another cause of 

the peaks in number of processes. As it is apparent 

from presented graphs, it was possible to prevent mass 

migration of the majority of all processes. 

6 Conclusion and Future Work 

We have designed and implemented a simulator of 

active network running a generic model of a 

distributed application with the load redistribution 

algorithm. 

Using the simulator, we are able to predict a behavior 

of a distributed application on almost any network 

topology and then track down the usage per a single 

node. As the examples, we can mention the study of 

new network protocols and load prediction algorithm 

[13]. 

Future work would include a network topology editor 

along with extending the scope of output statistics to 

e.g. individual capsules and active applications. 
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