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Abstract

Plankton dynamics is a fascinating and interesting subject of research. There are lots of aspects
influencing plankton dynamics. Approximately 7% of the phytoplankton species are known
to form large-scale blooms, dramatically affecting marine communities [1]. These blooms are
formed because of the formation of different patches/ colonies by the phytoplankton population.
Various studies have demonstrated that the formation of colonies/ patches by green alga offers
considerable protection against grazing by zooplankton [2]. The potent neurotoxin production
by many microalgal species may have some direct or indirect effect in forming a patch and might
be perceived by its grazer as group defense. The defense strategy and patch formation of toxin
producing phytoplankton (TPP) may give a possible answer to the evergreen crucial ecological
question of why do many microalgal species produce neurotoxins. In the present paper we
propose a simple model of TPP-zooplankton interactions in which the former is assumed to
be able to detect the presence of zooplankton and counteract it by forming colonies or patches
and releasing some toxic chemicals in the surrounding water. We observe that the fraction
of TPP population that aggregates to form colonies or patches, and the number of colonies
or patches they form, plays an important role in the recurrent bloom phenomenon. We also
observe that the formation of patch by the TPP decreases the grazing pressure of zooplankton
resulting in stronger coupling between the interacting species determined by the fraction of the
phytoplankton population that aggregates to form colonies or patches and also on the number
of patches.

Keywords: Phytoplankton-Zooplankton, toxic chemicals, patch, recurrent bloom, coexis-
tence.
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1 Introduction
Toxic or otherwise Harmful algal blooms (HAB) are in-
creasing in frequency worldwide [3, 4] and have nega-
tive impact on aquaculture, coastal tourism and human
health [5]. The appearance of a bloom can have devas-
tating implications. But, Jansen and coworkers [6] re-
marked that bloom forming phytoplankton species are
not harmful and serve as energy resource at the base
of the food web. The complex and inconsistent inter-
actions between toxin producing phytoplankton (TPP)
and their grazers may be due to the level and solu-
bility of toxicity. However, knowledge about interac-
tions between TPP and their potential grazers are only
rudimentary [7, 8]. Also, we know a little about how
phytoplankton bloom occurs. There are lot of theo-
ries available to explain the bloom phenomenon. Some
of them use ‘top-down’ mechanism [9, 10, 11, 12] to
explain the bloom, i.e., according to them the occur-
rence of phytoplankton bloom depends on their graz-
ing pressure, while some use ‘bottom-up’ mechanism
[13, 14, 15, 16], i.e., according to them the occur-
rence of bloom depends on the availability of the nutri-
ent. Some researchers use simultaneous effect of both
top down and bottom up mechanisms to explain the
bloom phenomenon [17]. Quite a good number of stud-
ies [18, 19, 20] with the above mentioned mechanisms
have considered TPP as an important factor to explain
the recurring bloom formation which can be used to
control bloom in aquatic systems [21, 22]. But, none
of the above studies have taken into account the forma-
tion of patch by TPP which then demands more in depth
studies.

The toxin liberated by the phytoplankton may be re-
garded as an anti-grazing strategy [23]. Among the
various other anti-grazing strategies observed so far
for phytoplankton, cell morphology [24], presence of
gelatinous substances, or the formation of colonies [25]
and filamentous structures [26] are widely recognized.
Since phytoplankton in the ocean are small relative to
their predatory enemies, they will not survive an en-
counter with a grazer. But, phytoplanktons are not
defenseless food-particles that are easily harvested by
the consumers. Several algal species are able to ad-
just their phenotype (colony formation, spines, size) in
such a way that it results in a reduced grazing pressure
[27]. The anti-grazing strategy is not only important for
the existence of the phytoplankton species but also for
many zooplankton species. It is largely determined by
the ways in which the species of phytoplankton can re-
sist mutual extinction due to competition or persistence
despite grazing pressure from zooplankton [28]. This
coupled defense mechanism through patching and poi-
son release then results in the coexistence of the inter-
acting species. Huisman and coworkers [29, 30] have
used the coexistence of the species for explaining the
plankton paradox and biodiversity.

It is now known that increased spine length and cells
in a colony of members of a phytoplankton species
(like genus Scenedesmus), when zooplankton grazing
is intense, helps in reducing zooplankton filtering rates,
the effect of these defense mechanisms at the popula-

tion level has been observed in few studies [28]. The
study of the defense mechanism through the forma-
tion of colonies or patches becomes more important
if such colonies or patches have the ability to release
toxin chemicals, like in case of dinoflagellate [32].
Toxic chemicals released through chemical signals by
aquatic organisms may have indirect and cascading ef-
fects on the ecology of entire community and ecosys-
tems. These signals between microbial predators and
prey may contribute to food selection or avoidance and
to defense, factors that probably affect trophic structure
and algal blooms [23]. For example zooplankters, like
Copepods being highly selective often can avoid eating
the toxic phytoplankton and thus escape its adverse ef-
fects [33]. In such cases do the level of toxicity and
the fraction of the phytoplankton population that ag-
gregates to form patches enhance the strength of cou-
pling between interacting species? We are also inter-
ested to find out the role of colonies/ patches and the
toxic chemicals in the recurrent bloom phenomenon.
As such, this unknown mechanism offers considerable
intellectual challenges to the theoretical and experimen-
tal ecologists.

The present paper is devoted to understand such dynam-
ics by proposing a toxic phytoplankton–zooplankton
system modeling where the phytoplankton populations
are assumed to aggregate into patches as a defense
mechanism. With these preliminaries in mind it is our
interest to assume that the predator response function is
not necessarily a monotone increasing function of prey
density, but rather it is only monotonically increasing
up to a certain threshold density and then becoming
monotone decreasing. We will also assume that the
release of phycotoxins have a negative impact on the
growth of zooplankton.

2 The mathematical model
We consider a two population predator-prey system in
which the prey is able to detect the presence of the
predator and to act in self defense by grouping together
and releasing toxin chemicals. The latter is assumed to
diffuse in the surrounding water bed through the surface
of the patch.

Let P (t) and Z(t) denote the toxin producing phyto-
plankton (TPP) and zooplankton population sizes re-
spectively. Assume that the TPP population follows the
law of logistic growth and the zooplankton consume
phytoplankton for their growth. The dynamics of the
latter shows positive growth due to predation, then we
must account for natural mortality µ, and finally we in-
clude the poisoning effect.

The sketch of the model is then

Ṗ = growth - predation (1)

Ż = predation - natural mortality - poisoning

We assume also that only a fraction k of the phytoplank-
ton aggregates to form N patches. For the predation
term the Holling type-II functional form is taken over
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the fraction 1− k of the “free” phytoplankton. We pro-
pose a more complicated mechanism for the release of
poison. Notice that the population in each patch will be
1
N kP . Let us introduce a new parameter ρ ≡

(
k
N

) 2
3 . If

the 3D patch in the ocean can be assumed roughly to be

spherical, its radius will be proportional to
[

1
N kP

] 1
3 , so

that its surface is proportional to
[

1
N kP

] 2
3 = ρP

2
3 . We

assume that the phytoplankton can detect the presence
of zooplankton and release the poison in self defense
through the surface of the patch. We are then led to the
following equations

Ṗ = rP − bP 2 − c(1− k)ZP

a + γP
≡ F1(P,Z) (2)

Ż =
e(1− k)ZP

a + γP
− µZ − eρP

2
3 Z ≡ F2(P,Z)

where all parameters are nonnegative and 0 ≤ k ≤ 1.
We also assume c ≥ e. ρ may be defined as the measure
of the toxicity.

Positive invariance

By setting X = (P,Z)T ∈ R2 and F (X) =
[F1(X), F2(X)]T , with F : C+ → R2 and F ∈
C∞(R2), equation (2) becomes

Ẋ = F (X), (3)

together with X(0) = X0 ∈ R+
2. It is easy to check

that whenever choosing X(0) ∈ R+
2 with Xi = 0,

for i=1, 2, then Fi(x) |Xi=0≥ 0. Due to the lemma
of Nagumo [34] any solution of equation (3) with
X0 ∈ R+

2, say X(t) = X(t;X0), is such that
X(t) ∈ R+

2 for all t > 0.

3 Equilibria and stability analysis
The system (2) has only three equilibria Ei =
(Pi, Zi), i = 0, 1, 2: the origin E0, the boundary
equilibrium point E1 =

(
r
b , 0

)
and another feasible

non boundary equilibrium E2. Its positive coordi-
nates are found in the P − Z phase plane by solving
the nonlinear system e(1−k)P

a+γP − µ − eρP
2
3 = 0 and

r− bP − c(1−k)Z
a+γP = 0. Solving these two equations we

find Z2 = (r−bP2)(a+γP2)
c(1−k) , where P2 is the positive real

root of the following equation,

φ(P ) ≡ γ3e3ρ3P 5 + 3aγ2e3ρ3P 4

−
{
(e(1− k)− µγ)3 − 3a2γe3ρ3

}
P 3

+
{
3µa(e(1− k)− µγ)2 + a3e3ρ3

}
P 2

−3µ2a2 {e(1− k)− µγ}P + µ3a3 = 0.

(4)

From Descartes’ rule of sign, we observe that either
there exist no positive root or more than one positive
real roots for the above equation (2) depending on cer-
tain parametric conditions and if those roots are less

Tab. 1 A hypothetical set of parameter values. Unit of
P and Z is g m−3 and time t is days.

Parameters values Units
r 0.27 day−1

b 0.1 m3 g−1day−1

c 0.3 day−1

e 0.09 m3 g−1day−1

µ 0.1 day−1

k 0.75 –
γ 0.1 –
a 0.1 g m−3

ρ3 0.0225 g m−3

than r
b , then there exist one or more positive equilib-

rium points E2.

For example, let us consider the hypothetical set of pa-
rameter values given in Table 1. The parameter values
are so chosen that the number of patches N = 5. With
this parameter set the equation (4) becomes,

φ(P ) ≡ 0.164× 10−7P 5 + 0.492× 10−7P 4

−0.1904× 10−5P 3 + 0.4704× 10−5P 2

−0.375× 10−5P + 10−6 = 0. (5)

Equation (5) has two positive root 1.423 and 7.71. For
P2 = 1.423, we have Z2 = 0.412 and for P2 = 7.17,
we have Z2 = −5.822. Thus the value of parameters
given in Table 1, gives a unique interior equilibrium
point E2 ≡ (1.423, 0.412).

Boundedness of the solutions

Let us first recall the following lemma [35].

Lemma 1. Let g be a real valued differential function
defined on some half line [a,+∞), a ∈ (−∞,+∞). If
(i) limt→+∞ g(t) = α; | α |< +∞, (ii) g′(t) is uni-
formly continuous for t > a, then limt→+∞ g′(t) = 0.

We shall prove the following key lemma.

Lemma 2. Assume at first that the initial condition
of equation (2) satisfies P (t0) ≥ r

b then either (i):
P (t) ≥ r

b for all t ≥ 0 and therefore as t → +∞,
(P (t), Z(t)) → E1 = ( r

b , 0) or (ii): there exists a
t1 > 0 such that P (t) < r

b for all t > t1. If instead
P (t0) < r

b , then P (t) < r
b for all t ≥ 0.

Proof. We consider first the case P (t) ≥ r
b for all t ≥

0. From the first equation of (2) we get

dP

dt
= rP − bP 2 − c(1− k)ZP

a + γP
. (6)

Hence, for all t ≥ 0, we have that dP (t)
dt ≤ 0. Let

lim
t→∞

P (t) = η. (7)
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If η > r
b , then by the Barbalat lemma [35], we have

0 = lim
t→∞

dP (t)
dt

= lim
t→∞

[
P (t)(r − bP (t))− c(1− k)Z(t)P (t)

a + γP (t)

]
≤ lim

t→∞
[P (t)(r − bP (t))]

= [η(r − bη)] < 0.

This contradiction shows that η = r
b i.e.,

lim
t→∞

P (t) =
r

b
. (8)

Of course, P(t) is differentiable and P ′(t) is uniformly
continuous for t ∈ (0, +∞). Thus, with equation (8)
all the assumptions of the Barbalat lemma are verified,
so that

lim
t→∞

dP

dt
= 0. (9)

Combining then (8) with (2) we have

lim
t→∞

dP (t)
dt

= − lim
t→∞

c(1− k)Z(t)P (t)
a + γP (t)

. (10)

Hence, equation (8), (9) and (10) are in agreement if
and only if limt→∞ Z(t) = 0. This completes the case
(i).

Suppose that assumption (i) is violated. Then there ex-
ists t1 > 0 at which for the first time P (t1) = r

b . From
equation (2) we have

dP (t)
dt

|t=t1=
−c(1− k)Z(t1)P (t1)

a + γP (t1)
< 0.

This implies that once a solution with P has entered
into the interval (0, r

b ) then it remains bounded there
for all t > t1, i.e., P (t) < r

b for all t > t1.

Finally, if P (t0) < r
b , then applying the previous

argument it follows that P (t) < r
b for all t > 0, i.e.

(iii) holds true. This completes the proof.

Lemma 3. Letting l = (r+η)2

4b there is η ∈ (0, µ] such
that for any positive solution (P (t), Z(t))T of the sys-
tem (2) for all large t we have Z(t) < M , with M = l

η .

Proof. Lemma 2 implies that for any (P (t0), Z(t0))
such that P (t0) ≥ r

b , then either a time t1 > 0 exists for
which P (t) < r

b for all t > t1, or limt→∞ P (t) = r
b .

Furthermore: if P (t0) < r
b then P (t) ≤ r

b for all t > 0.
Hence in any case a non-negative time, say t∗, exists
such that P (t) < r

b + ε, for some ε > 0 and for all
t > t∗.

Set W = P (t) + Z(t). Calculating the derivative of W
along the solution of system (2), we find for t > t∗

dW

dt
= rP − bP 2 − c(1− k)ZP

a + γP

+
e(1− k)ZP

a + γP
− µZ − eρP

2
3 Z

≤ rP − bP 2 − µZ, (since, c ≥ e).

Taking η > 0 we get,

dW

dt
+ ηW ≤ (r − bP + η)P + (η − µ)Z

Now if we choose η ≤ µ, then

dW

dt
+ ηW ≤ (r − bP + η)P

≤ (r + η)2

4b
≡ l

It is clear that the right-hand side of the above expres-
sion is bounded. Thus, there exist a positive constant
M , such that W (t) < M for all large t. The assertion
of lemma 2 now follows from the ultimate boundedness
of P .

Let Ω be the following subset of R2
0,+:

Ω =
{

(P,Z)εR2
0,+ : P ≤ r

b
, Z ≤ M

}
. (11)

Theorem 1. The set Ω is a global attractor in R2
0,+

and, of course, it is positively invariant.

Proof. Due to lemmas 2 and 3 for all initial condi-
tions in R2

+,0 such that (P (t0), Z(t0)) does not be-
long to Ω, either there exists a positive time, say T ,
T = max{t1, t∗}, such that the corresponding solution
(P (t), Z(t)) ∈ int Ω for all t > T , or the correspond-
ing solution is such that (P (t), Z(t)) → E1( r

b , 0) as
t → +∞. But, E1 ∈ ∂Ω. Hence the global attractivity
of Ω in R2

0,+ has been proved.

Assume now that (P (t0), Z(t0)) ∈ int Ω. Then
Lemma 2 implies that P (t) < r

b for all t > 0 and
also by lemma 3 we know that Z(t) < M for all large
t. Finally note that if (P (t0), Z(t0)) ∈ ∂Ω, because
P (t0) = r

b or Z(t0) = M or both, then still the corre-
sponding solutions (P (t), Z(t)) must immediately en-
ter intΩ or coincide with E1.

We have proved that the trajectories of (2) are bounded.
Next we shall study the stability property of different
equilibrium points.

The Jacobian matrix of the system (2) has the form

Ji ≡
(

a11 a12

a21 a22

)
(12)

where,

a11 = r − 2bPi −
c(1− k)Zi

(a + γPi)2
, a12 =

−c(1− k)Pi

a + γPi
,

a21 = e

[
(1− k)a

(a + γPi)2
− 2

3
ρP

− 1
3

i

]
Zi,

a22 =
e(1− k)Pi

a + γPi
− µ− eρP

2
3

i

At the origin, the eigenvalues are r, −µ are found
showing its instability. At E1, we have the eigenval-

ues −r, e
[

(1−k)r
ab+rγ −

µ
e − ρ

(
r
b

) 2
3
]
. Thus, E1 is condi-

tionally stable if (1−k)r
ab+rγ ≤ µ

e + ρ
(

r
b

) 2
3 . Finally, at the
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Fig. 1 The figure depicts the local stability of the system
(2) around the interior equilibrium point E2.

interior equilibrium E2

J2 ≡

 r(a+γP2−1)+bPi(1−2(a+γP2)
(a+γP2)

−c(1−k)P2
a+γP2

e
[

(1−k)a
(a+γPi)2

− 2
3ρP

− 1
3

i

]
Zi 0


(13)

Thus the eigenvalues in this case are obtained as
roots of the quadratic λ2 − tr(J2)λ + det(J2) = 0,
where tr(J2) = r − 2bP2 − r−bP2

a+γP2
, and det(J2) =

ec(1−k)P2
a+γP2

{
(1−k)

(a+γP2)2
− 2

3ρP
− 1

3
2

}
. Now, tr(J2) < 0,

iff r < 2bP2 + r−bP2
a+γP2

with P2 < r
b and we find that

the Routh-Hurwitz criterion for stability is satisfied if
det(J2) > 0, i.e. if (1−k)

a+γP2
> 2

3ρP
− 1

3
2 , a condition

which is equivalent to

P2 ≥
8
27

(
ρ(a + γP2)2

1− k

)3

. (14)

Now we are in the position to state the following theo-
rem.

Theorem 2. The positive equilibrium E2 of the system
(2) is locally asymptotically stable if the following con-
ditions hold:

1) r < 2bP2 +
r − bP2

a + γP2
with P2 <

r

b
,

2) P2 ≥
8
27

(
ρ(a + γP2)2

1− k

)3

.

 

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 time

 P
op

ul
at

io
ns

 

 

 TPP
 Zooplankton

Fig. 2 The figure depicts coexistence of all the species
through periodic oscillation.

4 Numerical simulation and discussion
Theorem 2 ascertains that the system (2) is locally
asymptotically stable around the interior equilibrium
point under certain parametric conditions. With the set
of parameter values given in Table 1, we observe that
the system (2) is locally asymptotically stable around
the interior equilibrium point E2 ≡ (1.423, 0.412), see
Figure 1. If we take k = 0.65, retaining the other pa-
rameter values fixed, we observe periodic solution de-
picting the recurrent bloom phenomenon, see Figure
2. Thus, our model shows the recurrent bloom phe-
nomenon too.

Next, we shall study the role of toxin chemicals and the
patches in the formation and termination of the plank-
tonic blooms. We begin with the parameter k. To study
the role of the parameter k which is the fraction of the
TPP population that aggregates to form patches, we do
the bifurcation diagram of both the species with k as the
bifurcation parameter, see Figure 3. To obtain the bi-
furcation diagram we run the system (2) for 10000 time
steps and examined the last 3000 time step to eliminate
transient behaviour. Then we have plotted the succes-
sive maxima and minima of all the species with k as a
function of the control parameter and other parameters
are kept fixed at the level given in the Table 1. We vary ρ
along with k such that the number of patches formed re-
mains same, i.e., N = 5. We observe that for the lower
value of k the solution shows periodic oscillation, see
Figure 3. With an increase in the value of k, the system
becomes stable around the positive equilibrium point.
Finally, for higher values of k, there is a huge increase
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Fig. 3 The figure depicting the bifurcation diagram with
k as the bifurcation parameter.

in the TPP population and the zooplankton population
is washed away from the system. Thus, we may con-
clude that the fraction of phytoplankton that aggregate
to form patches plays an important role in the recurrent
bloom phenomenon and also in the coexistence of all
the species. For stability of the system around the in-
terior equilibrium point, the fraction of TPP population
that aggregates to form patches must be between cer-
tain lower and upper threshold values. If the fraction is
less than that of the lower threshold value, then it may
cause recurrent bloom and if it is higher than the upper
threshold value then it may cause the extinction of the
zooplankton population.

In the above simulation we have considered a fixed
number of colonies (N=5). It is interesting to see what
happens to the to the dynamical nature of the system,
when the number of colonies/ patches N changes. To
observe the role of N , we consider k = 0.75 and vary
ρ so that N always remains an integer, retaining other
parameter values the same as in Table 1. We observe
that if the TPP population forms a single patch it is
very difficult for the zooplankton population to survive.
We also observe that if the number of patches is higher,
then it results in the reccurent bloom. So, we may again
conclude that for the stability of the system around the
interior equilibrium point, the number of patches N has
to be between certain critical values. For example, here
N has to be between 2 ≤ N ≤ 4 for the stability of the
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Fig. 4 The figure depicting the bifurcation diagram with
N as the bifurcation parameter.

system around the interior equilibrium point, see Figure
4.

Our results indicate that the fraction of TPP population
that form patches and the number of patches it forms
determine occurrence and termination of the bloom.
Before ending our article we would like to mention
that our results shows that the formation of colonies or
patches specially by TPP population plays an important
role in the aquatic system and so need special attention
from the experimental biologists.
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