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Abstract 

In the present work the influence of micro-cracking on the effective properties of composite 
materials with heterogenous micro-structure is investigated by using the finite element 
method in conjunction with interface models. Non-linear macroscopic constitutive laws are 
developed by taking into account for changes in micro-structural configuration associated 
with the growth of micro-cracks. Damage evolution is simulated by micro-mechanical 
considerations using fracture mechanics. The strong non-linearity of the macroscopic 
constitutive response results in a progressive loss of stiffness and may lead to failure for 
homogeneous macro-deformations associated with unstable crack propagation. Both the cases 
of a brittle matrix composite with micro-cavities and of a fiber-reinforced composite with 
imperfect interfacial bonding are considered, loaded along extension and compression 
uniaxial macro-strain paths. In the context of deformation controlled micro-structures, three 
types of boundary conditions are studied, namely linear deformation, uniform tractions and 
periodic deformations and antiperiodic tractions. These conditions, which can be incorporated 
by means of Lagrangian multiplier methods, generate three constrained minimization 
problems of homogenization which define the micro-to-macro transition and determine the 
state of the micro-structure in terms of the fine-scale fluctuation field. Micro-crack 
propagation is modeled by using the J-integral methodology in conjunction with an interface 
model taking into account for contact between crack faces. The proposed damage model is 
able to provide constitutive laws for the microstructure with evolving defects and may provide 
a failure model for a composite material undergoing micro-cracking and contact. 
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1    Introduction 
The prediction of the macroscopic constitutive 
properties of various composite materials by taking 
into account for their microscopic behavior, is a 
problem of great importance due to the increasing 
application of composites to practical structures. 
Recognizing explicitly the micro-structure of a 
composite material in the mathematical model, by 
distinguishing the individual phases of a composite 
material, such as the fiber, matrix and interphases, 
requires a large numerical effort. Therefore several 
approaches have been proposed for obtaining the 
macroscopic response of a heterogeneous material. In 
addition to analytical methods [1,2], two basic 
methodologies can be adopted which can be classified 
into the average-field method and the homogenization 
method. The former approach is based on the physical 
evidence that the mechanical properties measured 
during experiments are relations between volume 
averages of microscopically heterogeneous samples 
(see for instance [3,4]). The latter approach formulates 
the relations between micro- and macro-variables on 
the basis of the mathematical procedure of multi-scale 
perturbation assuming a periodic model for the 
microstructure (see for example [5,6]). As shown in 
([7]) these two methods may produce the same overall 
properties when the homogenization theory is 
formulated in a specialized setting, and are often 
applied in conjunction with FEM.  

In many cases damage phenomena may occur at the 
microscopic level, such as void growth, micro-
cracking, imperfect bond between different phases. 
These damage mechanisms affect seriously the 
macroscopic behavior of the composite material. As a 
matter of fact, even if each individual phase follows a 
linear elastic constitutive behavior, the changes in the 
microstructure due to the evolving damage 
mechanisms, give raise to a strongly non-linear 
macroscopic constitutive relationship. The non-
linearity of the macroscopic constitutive response 
results in a progressive loss of stiffness and may lead 
to failure for homogeneous macro-deformations 
associated with unstable crack propagation (a peak 
stress). A realistic micromechanical model should 
give a constitutive law at the macro-level able to 
represent with reasonable accuracy material failure 
mechanisms. 

Many studies have been devoted on the effective 
constitutive behavior of defected composites, with 
reference to both fiber composite materials with fiber-
matrix interfacial debonding (see [8-12] for instance) 
and materials containing voids and microcracks (see 
for instance [13-15]). Since damage in a composite 
material is a non-linear process, the determination of 
stiffness properties evolution with progressive damage 
is a complex but necessary task. Since for a pure 
micromechanical model the evolving configuration of 
damage cannot be predicted, many authors have 

assumed arbitrarily the configuration of damage [8, 9, 
10]. More general approaches are to consider a 
random distribution of interface cracks or debonding 
[11], to include damage evolution effects into the 
macroscopic constitutive law by means of brittle 
interface models [12], or by incorporating fracture 
mechanics based damage evolution law [14]. 

In this work the influence of micro-cracking on the 
effective properties of composite materials with 
heterogeneous micro-structure is investigated by using 
the finite element method in conjunction with 
interface models. Non-linear macroscopic constitutive 
laws are developed by taking into account for the 
progressive changes in micro-structural configuration 
associated with the growth of micro-cracks. Damage 
evolution is simulated by micro-mechanical 
considerations using fracture mechanics. Both the 
cases of a brittle matrix composite with micro-cavities 
and of a fiber-reinforced composite with imperfect 
interfacial bonding are considered. Three classes of 
boundary conditions are studied, namely linear 
deformation, uniform tractions and periodic 
deformation and antiperiodic traction, in the 
framework of deformation controlled micro-structures. 
Micro-crack propagation is simulated by means of the 
J-integral methodology in coupling with an interface 
model taking into account for unilateral frictionless 
contact between crack faces. Results show that, 
besides on the geometries and the properties of the 
individual components which form the representative 
micro-structure of the composite material, the 
macroscopic constitutive law depends on the macro-
strain path and the type of boundary conditions. 

2    Formulation  
2.1  Basic equations 

A representative volume, V=S∪H, of the composite 
micro-structure is considered in Fig. 1, which consists 
of a solid part S and a hole part H, including 
microscopic discontinuities (cracks and interface 
debonding) and/or cavities. The representative volume 
may contain an arbitrary number of individual phases 
imperfectly bonded,  micro-cracks and micro-voids. 
The boundary of the hole part ∂H represents the union 
of micro-crack, including interface crack, and micro-
void surfaces. Let u(x) denotes the displacement field 
of the micro-structure at the material point x, and 
ε(u(x)) the associated microscopic strain field. The 
micro-structure is loaded by tractions only on the 
surface ∂V of the representative volume. The 
microscopic traction field t is assumed to vanish on 
the surfaces of the holes and cracks in the interior of 
the representative volume, namely  t=0 on ∂H. Due to 
the large scale difference between the microscopic 
problem and the macroscopic one, according to the 
classical homogenization theory the macroscopic 
constitutive response of the micro-structure is based 
on a equilibrium state neglecting volume forces, 
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implying that the local stress field σ is divergence-
free, namely Div(σ)=0 in S. 

 
Fig. 1 Representative volume element of a 
heterogeneous micro-structure containing micro-
cavities, micro-cracks and inclusions. 

The macroscopic stress and strain fields are defined in 
terms of boundary data of tractions t and 
displacements u [16] respectively as  

1 1σ t x      ε u ns
V V

dA, dA
V V∂ ∂

= ⊗ = ⊗∫ ∫ ,           (1) 

where ⊗s is the symmetric part the tensor product ⊗ 
and n denotes the outward normal at x∈∂S. The above 
definition of macro-variables coincides with the 
volume average over V for the macroscopic stress and 
only for micro-structures without holes and 
discontinuities for the macroscopic strain. As a matter 
of fact,  application of the integral theorem gives  the 
expression: 

1

1 1
V

s
V H

dV ,
V

dV dA
V V ∂

=

= − ⊗

∫

∫ ∫

σ σ

ε u nε
.           (2) 

Note that in Eq. (2) the term on the boundary 
1/ t x

H

V dA
∂

− ⊗∫  vanishes since the hole is assumed 

traction free and in presence of frictionless contact 
continuity of the traction vector is ensured across the 
crack surfaces undergoing into contact. The local 
displacement field is assumed to be controlled by a 
macroscopic strain ε , and consists of a linear part 
ε x  and a fluctuation field w. The microscopic 
displacement and strain field therefore admit the 
following representation: 

( ) ( ) ( ),u x =ε x+w x    x ε+ ws= ∇ε ,              (3) 

where s∇  denotes the symmetric part of the gradient 
with respect to x. As a consequence of Eq. (1), the 
fluctuation field must satisfy the constraint: 

1 w n 0s
V

dA
V ∂

⊗ =∫ ,              (4) 

which can be satisfied for three alternative boundary 
conditions on ∂V (see [17] for instance): 

1) homogeneous fluctuations w=0; 

2) periodic fluctuations w(x+)= w(x-);                       (5) 

3) homogeneous stress t=σn ;  

where by periodicity of the field w(x) it is assumed 
that all components of w(x) take identical values at 
points on opposite sides of the boundary ∂V, ∂V+ and 
∂V-, with outwards normals n+=-n- at two associated 
points x+ ∈ ∂V+ and x- ∈ ∂V- , which are deduced by 
translation parallel to the directions of the vectors 
spanning V. In the third condition, Eq. (4) is intended 
to be satisfied in a global sense, since the macro-stress 
is not a-priori known but it is understood to be 
calculated for a given macro-strain  ε  by treating Eq. 
(1)2 as the following weak constraint:  

( )1 0σ  ε- σ u ns
V

dA
V ∂

⊗ =∫i i ,                                   (6) 

where the macro-stress tensor acts as a Lagrange 
multiplier. By assuming the anti-periodicity of the 
tractions on ∂V, these boundary conditions satisfy the 
averaging theorem ([16]): 

1 1σ  ε= t u
S V

dV dA
V V

σ ε
∂

=∫ ∫i i i ,                              (7) 

which plays a central role in the definition of 
macroscopic properties of the composite material. It is 
worth noting that the first and third of boundary 
conditions (5) provide upper and lower strain energy 
bounds for representative volume elements (RVEs) of 
irregular materials with a finite size, which converge 
to a common value as the size of the RVE becomes 
infinitely large. On the other hand the second one 
yields exact results for a unit-cell of periodic 
materials, which generates by periodic repetition the 
whole micro-structure of the composite. 

The local constitutive response of the composite 
material is assumed linearly hyperelastic with  tensor 
of microscopic moduli C(x). The homogenization 
condition can be obtained by means of the following 
minimization problem: 

( )
( )

( )( )1inf ,
w

ε u x
A

V

W W dV
V∈

= ∫ε
ε ,                        (8) 

subjected to the above mentioned three alternative 
constraints, providing the macro-stress potential as the 
minimum volume average of the microscopic strain 
energy W with respect to admissible fluctuation fields 
( )εA alternatively satisfying the constraints (5)1, (5)2  

and (5)3. From (8) and (7), it follows that the macro-
stress potential defines the macro-stress and moduli in 
terms of the first and second derivatives of the macro-
stress potential with respect to the macro-strain: 
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2

2,σ   C=W W∂ ∂
=
∂ ∂ε ε

.                                                (9)  

When the local problem (8) is linear, it follows that  

( ) ( )

( ) ( ) ( ) ( ) ( )

1

1 1
V

ijhk ijmn mn
V V

dV
V

dV dV
V V

=

= =

∫

∫ ∫ i

ε ε

ε ε εhk hk ij

σ C x u =C  

C C x u C x u u
, 

               (10) 

where uij is the solution of (8) for a unit prescribed 
macro-strain ij

i jε =e es⊗  with ei unit vectors parallel 
to the coordinate axes xi. Note that the macro-moduli 
tensor (10)2 satisfy the diagonal symmetry as a 
consequence of the assumed hyperelasticity of micro-
constituents. On the other hand, when unilateral 
frictionless contact conditions are taken into account 
at the debonded interfaces or micro-cracks surfaces, 
the variational principle (8) can be generalized by 
appropriate choose of the admissible strain field (see 
[9] for instance) and the macroscopic constitutive 
behavior of the composite turns out to be nonlinear 
but remains hyperelastic (rate- and path- independent). 
As a matter of fact, the contact area is not a-priori 
known and depends on the direction of the prescribed 
macro-strain, and this implies that the tensor of 
macroscopic moduli ( )C=C ε  (Eq. (9)2 is here 
intended as second Gateaux derivative when it exists) 
satisfies ( ) ( )C =Cλε ε  for every positive real λ. On 
the other hand, the macro-stress is positively 
homogeneous of degree one. 

The Euler-Lagrange equations associated with (8) are 
consistent with a local equilibrium state for the 
microstructure with zero tractions on ∂H. In addition 
for the boundary condition 2) the Euler-Lagrange 
equations are associated with antiperiodic tractions on 
∂V. In the case of boundary conditions 3) the stress 
boundary condition must be incorporated by means of 
a Lagrangian multiplier method based on the weak 
constraint (5), and the stationary point determines an 
equilibrium state of the micro-structure with zero 
tractions on ∂H and with homogeneous stress 
boundary conditions associated with the Lagrange 
parameter σ . Moreover for boundary conditions 2) 
and 3) the variational problem (8) gives the solution 
for u except for rigid body motions which can be 
excluded by adding appropriate artificial constraints. 

As shown in [4], if the RVE is not statistically 
homogeneous, the following inequalities hold for 
strain fields corresponding to a common prescribed 
macro-strain ε  and RVE consisting of convex elastic 
constituents: 

C C C≤ ≤i i i(3) (2) (1)ε ε ε ε ε ε ,                                (11) 

where ιC ( )  is the macroscopic moduli tensor 

corresponding to the i-th boundary condition in Eq. 
(5) evaluated with reference to a macro-strain 
direction. 

2.2   Macroscopic constitutive properties 

For a fixed damage configuration of the 
microstructure, the macroscopic constitutive law may 
be calculated by means of Eqs (9) and the resulting 
macroscopic stiffness tensor depends on the crack 
length l  

( )σ C l= ε ,                                                             (12) 

where in the presence of unilateral frictionless contact 
the macroscopic moduli tensor ( )C l  may depend also 
on the direction of the prescribed strain, namely on the 
versor ε̂ =ε/ ε .  

Damage is assumed to be localized at the interface 
between micro-constituents or at crack surfaces, and 
the classical fracture mechanics criterion is used  

( ),      cG l G  then l 0= ≥�ε ,                                      (13) 

where G is the energy release rate associated with the 
crack length l and Gc is the fracture toughness of the 
material (see [21] for instance). From Eq. (13) it is 
possible to derive a non-linear damage evolution 
relation between the prescribed macro-strain and the 
crack length ( )=l l ε . As a consequence, the 
macroscopic stress-strain relation becomes highly 
non-linear and depends strongly on the macro-strain 
history. 

The incremental constitutive relationship, taking into 
account for the evolutionary change in stiffness 
properties with progressive cracking, can be obtained 
by taking the derivative with respect to a time-like 
parameter t (l is a strictly increasing function of t) of 
Eq. (12): 

( )

( ) ( ) ( )ijmn
ijhk ijhk mn

hk

σ D

C
D C

d l(
l(

d

=

= +

�� ε ε

ε)
ε ε) ε

ε

,            (14) 

where a point denotes time derivative, and  l > 0�  is 
assumed. If  l 0≤�  the second term at the right hand 
side of (14)2 vanishes. When approximate approaches 
are used to obtain effective stress-strain relations for 
the defected composite materials and damage 
evolution equations are available in closed form (see 
[14] for instance) then the second term at the right 
hand side of ((14)2 can be obtained by the chain rule of 
differentiation as ( )( )( )ijmn hkCd l( /dl  dl/dε) ε . 

It is worth noting that while the tensor of macroscopic 
moduli ( )C l  must be intended as a tangent moduli 
tensor with respect to the macro-strain when the 
damage configuration remains unchanged, the tensor 
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of incremental macroscopic moduli ( )D ε  is a tangent 
moduli tensor with respect to macro-strain when the 
fracture criterion is imposed. 

3 Model description and numerical 
solution by FEM 
When contact is excluded, the macroscopic moduli 
( )C l  are obtained, for a given damage configuration 

and a given microstructure, by using Eq. (10)2 as: 

( ) ( ) ( )1
ijhk

V

C l C dV
V

ε= ∫ hk
ijmn mnx u .           (15) 

Alternatively, the second expression in Eq. (10)2 can 
also be used. For a prescribed macro-strain path β ε̂ , 
controlled by a parameter β>0 (serving as a load 
factor), the energy release rate for a given crack length 
is obtained by evaluating the J-integral along a closed 
contour enclosing the crack tip by post-processing the 
FEM equilibrium solution of the discretized 
microstructure. Due to linearity the energy release rate 
satisfies the following equation: 

( ) ( )2ˆ ˆ, ,G l G lβε β ε= ,             (16) 

therefore the damage evolution criterion (13) provides 
the critical load factor as  

( )ˆ/c ,G G lβ ε= ,            (17) 

and the moduli ( )C l  can be obtained as functions of 

the macro-strain β ε̂ , when the fracture criterion is 
imposed.  

When crack faces overlap the moduli ion Eq. (12) 
become dependent also on the macro-strain direction 
ε̂ . Therefore the moduli tensor ( )ˆC ε l,  must be 

computed by means Eq. (9)2 involving numerical 
determination. The macro-strain paths examined in the 
present work represent uniaxial 
extension/compression deformation modes in the x1 
and x2 directions, namely ˆ

1 1 1ε = e e± ± ⊗  and 
ˆ

2 2 2ε = e e± ± ⊗ , where the positive superscript refers to 
the extension direction whereas the negative one to the 
compressive direction. 

It must be noted that moduli of kind ˆ
h i jC ε e es

⎡ ⎤ ⊗⎣ ⎦i , 

h=1,2, evaluated by computed as the ij macro-stress 
component (with the minus sign for the negative 
direction) corresponding to a positive or negative unit 
macrostrain ˆ

hε , according to the evidence that moduli 
are positively homogeneous of degree zero and 
depend only on the macro-strain path direction. 

The non-linear macroscopic stress-strain relation (12) 
along the prescribed macro-strain path has been 

determined by calculating the macroscopic strain by 
Eq. (17) and the corresponding stress by Eq. (2)1 as a 
function of the crack length, assuming a monotonic 
growth of damage. In order to simulate crack growth, 
an interface constitutive law has been used able to 
impose displacement continuity in the uncracked 
region and to impose unilateral frictionless contact in 
the cracked one. The interface constitutive law 
involves a stiffness parameter k dependent on the 
spatial coordinate, treated as penalty parameter: 

( )a b ( ) { }
{ } a b a b a b{ }

a b( )

, ,

,

t=k u           k

t=              u
n t

n t n t

n
t n

d d = diag k k ,  

t ,t u u

k0        d =1 1- sign u         d =1
k = ,  k = 2

k       d =0 k       d =0

=

⎧⎧ ⎪
⎨ ⎨
⎩ ⎪⎩

, ,    (18) 

where n and t denote normal and tangential directions 
to the interface, d is a crack parameter assuming the 
value 1 in the cracked region and 0 in the uncracked 
one, t is the traction vector acting on the positive side 
of the normal n to the interface, and a bu  is the 
displacement jump evaluated as the difference 
between the values from the negative and positive 
sides of the material interface. The penalty parameter  
assumes a value sufficiently large to ensure perfect 
adhesion but not too high to avoid numerical 
inaccuracy and unless otherwise stated in numerical 
computations the value kh=1e07Em has been assumed, 
h being the side of the RVE. A continuation strategy is 
used by carrying out a parametric analysis with 
respect to k in which the nonlinear solver adopts the 
solution for the previous parameter value as initial 
guess. 

It is worth noting that the use of fracture mechanics 
implies that crack initiation process is not taken into 
account and for l approaching to zero, an infinite value 
of the critical macro-strain should be attained, since 
energy release rate approaches to zero. Therefore the 
above macroscopic constitutive law has been 
computed with reference to a small initial relative 
crack length l0/h, which in numerical applications has 
been chosen equal to 0.04 for the short fiber 
reinforced composite and equal to 0.0625 for the 
porous matrix material. 

3.1   Computational implementation of the micro-
to-macro transition 

A displacement-type finite element approximation is 
adopted to discretize of the variational problem (7). 
The finite element model has been developed by using 
the commercial software COMSOL 
MULTIPHISYCSTM [20]. Appropriate artificial 
constraints are imposed in order to avoid rigid body 
motions of the RVE in the case of boundary 
conditions (5)2 and (5)3. In the case of boundary 
condition (5)2, in order to exclude possible rigid body 
motions of the RVE, the fluctuation at the corner 
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points of the RVE are set to zero by means of 
constraints on point settings, implying that the corner 
points of the RVE are driven by the homogeneous 
deformation ( )u x = xε . 

The boundary conditions needed to apply the 
homogenization procedure have been imposed by 
means of point-wise constraints. The homogeneous 
fluctuation condition has been imposed by imposing 
the following boundary constraints: 

( )u x = xε . 

Periodic boundary conditions are imposed in the 
homogenization procedure making available the 
displacement field on the opposite boundary faces of 
the RVE, and are implemented by means of the 
extrusion coupling variable methodology [20].  

Coupling variables are defined in two steps. First the 
source, namely the expression to evaluate and where 
to evaluate it, is defined; then the destination, that is, 
the domains within which you want to use the 
resulting variable, is defined. An extrusion coupling 
variable maps values from the source domain to the 
destination domain. Therefore since the domains are 
of the same space dimension, a point-wise mapping is 
obtained and the transformation between the source 
and destination is defined as a linear transformation. 

Periodic boundary constraints are then imposed as 
constraints on the destination boundaries of the RVE, 
once the displacement is extruded as a coupling 
variable, by means of the following equation: 

( ) ( ) ( )+ - - + -u x = u x + x x−ε . 

The homogeneous stress condition has been  
implemented by defining an integration coupling 
variables at some vertex in such a way that it 
represents the value of the integral at the right hand 
side of Eq. (4) to be constrained. The source of the 
coupling variable is the integral of the above 
expression over the RVE boundary. The destination of 
the integration coupling variable is a fictitious vertex. 
Then a point constraint is used to set the coupling 
variables to the desired 0 value. The uniform traction 
condition on the boundary of the RVE is imposed by 
using an integration coupling variables with global 
destination to compute the macro-stress nominal 
tensor according to Eq.(1)1. Then the uniform traction 
condition (5)3 is implemented as a weak constraint on 
the boundary of the RVE. 

A computer code have been built in order to reproduce 
the non-linear constitutive law by using the COMSOL 
SCRIPTTM programming language which is interfaced 
with COMSOL MULTIPHISICSTM. Crack growth is 
simulated by means of the non-linear interface 
constitutive law specified in Eq. (18), imposing 
displacement continuity across crack surfaces in the 
uncracked region and unilateral contact in the cracked 
one. The extension of the cracked region is enforced 

by assuming a discrete variation of the crack length 
with an increment equal to ∆l/h=0.01. 

The macroscopic quantities in Eqs (2) and (10) have 
been calculated by means of integration coupling 
variables. The source of the variable is the integral of 
the appropriate expression over the microstructure 
subdomains or boundaries. The destination of the 
integration coupling variable is the global destination, 
namely the integration coupling variables are available 
on all domains. 

The homogenized moduli have been computed by 
means of numerical derivative using the central 
difference formula from the homogenized stress 
tensor: 

( ) ( )
( ) ( )

ˆ ˆ , ,

ˆ ˆ
               

h k h k

ε ε

ε e e ε -e e
 

ij
ijhk

hk

ij hk ij hk

hk

C l l

2

σ
β β

ε

σ β ε σ β ε

ε

∂
=
∂

+ ⊗ ∆ − ⊗ ∆

∆

�
. 

3.2 J-integral evaluation 

The energy release rate G for a given damage 
configuration and a prescribed macro-strain, is 
calculated by means of the J-integral technique ([18]). 
It has been proved rigorously that for a homogeneous 
hyperelastic body and a straight crack, G is equal to 
the value of the J-integral for any path enclosing the 
crack tip (see [19]). On the contrary for an 
inhomogeneous body, G is the limit value of the J-
integral as the integration path approaches the crack 
tip.  

In order to take advantage from the J-integral 
technique in the case of a micro-structure consisting of 
homogeneous hyperelastic constituents, it is necessary 
to carefully underline some assumptions regarding the 
integration path. The path-independence of the J-
integral is a very attractive property as far as finite 
element analyses are used, since the integration path 
may be chosen sufficiently away from the crack tip 
where the description of the stress and strain field may 
be inaccurate due to the high gradient of the near-tip 
singular elastic field. In fact, numerical integration of 
singular terms contribute strongly to the loss of 
accuracy in the method. Therefore, to avoid 
integration of field quantities near the zone of 
dominance of the crack tip singularity, a path 
sufficiently away from the crack tip must be chosen. 
Studies on the relationship between the energy release 
rate and the J-integral and on the path independence of 
the J-integral for an heterogeneous body containing 
homogeneous micro-constituents, are lacking to the 
authors’ knowledge. By application of the divergence 
theorem extended to region containing discontinuity 
lines (namely the micro-constituents material 
interfaces) and by the classical transport theorem, it 
can be proved that the energy release rate is equal to 
the limit value of the J-integral as the integration path 
approaches the crack tip also for the body containing 
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elastic inclusions, due to the traction continuity 
conditions at the interface between different 
constituents a bn = 0σ . Therefore, the following 
relation holds for the energy release rate at a crack tip: 

( ) ( )
0

lim, e n u nT

D

G l W - ds
δ

δ →
∂

= ∇∫iε σ ,           (19) 

where Dδ is a disc of radius δ centered at the crack 
tip, n is the unit outward normal to Dδ∂ and e is the 
direction of crack propagation. Moreover, the path-
independence of the J-integral can be proved for 
arbitrary paths Γ  surrounding the crack tip which 
begin and end on the crack, individuating with Dδ∂  
and the two faces of the crack a bounded region 
containing only material interfaces aligned with the 
direction of crack propagation e: 

( ) ( ) ( ), , n u nTG l = J l e W - ds
Γ

Γ = ∇∫iε ,ε σ ,         (20) 

where n is the unit outward normal to Γ . 

As a matter of fact, taking into account for material 
interfaces between micro-constituents in the 
application of the divergence theorem to the integral 
over the region R individuated by Γ, Dδ∂  and the two 
faces of the crack of the tensor field W1-∇uTσ, which 
is divergence free inside the regions occupied by the 
homogeneous micro-constituents, gives  

( ) ( )

0

n u n n u n

                                 1 u n

T T

D

T

e W - ds e W - ds

e W - ds
δΓ

γ

∂

∇ − ∇ +

∇ =

∫ ∫

∫

i i

c fi d ge h

σ σ

σ
,    (21) 

where γ denotes the union of the material interfaces, n 
is the unit outward normal to Dδ∂  or Γ  and the 
double brackets indicate the jump of the enclosed 
quantity evaluated as the difference between the 
values from the negative and positive sides of the 
material interface, namely: 

a b - +u u u= − , 

where u+ (u-) is the value of u immediately near the 
material interface at the positive (opposite) side of the 
normal n to the material interface. If the material 
interfaces are aligned with e, the last term in Eq. (21), 
which can be rewritten as  

a b ( ) ( )1 n e u e nW ds
γ

⎡ ⎤− ∇⎣ ⎦∫ c fi ie hσ ,                           (22) 

vanishes since n and e are orthogonal and by noting 
that the directional derivative of u with respect to e is 
continuous across the material interface due to 
kinematical compatibility conditions (only 
discontinuities in the normal derivative ∂u/∂n are 
admitted for the displacement field across the material 
interface). As a consequence, Eq. (20) follows directly 

from Eq. (21). As it will be shown in the following the 
proved restricted path-independence of the J-integral 
is useful in view of applications to fiber reinforced 
composites. 

 
Fig. 2 Representation of contours leading to the path 
independence of the J-integral. 

The J-integral evalution has been performed by using 
integration coupling variables [20] for post-processing 
purpose. The integration coupling variable has been 
defined as the integral expressed in Eq. (20) over the 
closed path Γ with a global destination. 

4 Numerical determination of macroscopic 
constitutive laws of micro-structures  
Two typical two-dimensional microstructures are 
considered as descriptive examples. The first one 
corresponds to a soft matrix containing a circular void. 
The side length of the RVE is denoted as h, and the 
diameter of the void is d=0.5h. The material constants 
are Em=30GPa and νm=0.17. Micro-cracks of length l 
spread symmetrically from the void in the x1 direction. 
In the second example a short fiber-reinforced 
composite is considered with a concentric fiber with 
diameter df and length lf of, respectively, 0.05h and 
0.5h, h being the side of the RVE. The material 
constants are Em=2 GPa, νm=0.2, for the matrix, and 
Ef=30 Em, νf=0.33, for the fiber. The fiber is perfectly 
bonded to the matrix except over a upper interface 
region of length l. Plane strain conditions are assumed. 

The macroscopic moduli ( )C l , and the macroscopic 
stress and strain quantities are independent on the size 
of the RVE provided that the crack length l is scaled 
with respect to the characteristic length of the RVE. 
On the contrary, when the fracture criterion is imposed 
the macroscopic stress and strain, obtained 
respectively by Eq. (2)1 and by Eq. (16) as a function 
of the crack length, become dependent on the 
geometric and material properties of the RVE. As a 
matter of fact, it can be shown that for given Poisson 
ratios, a fixed ratio between Ef and Em and given fiber 
volume fraction and fiber aspect ratio for the short 
fiber reinforced composite or void volume fraction for 
the porous matrix material, respectively, ( )ˆ ,G lε  is 

directly proportional with respect both to Em and to a 
characteristic length of the RVE, denoted as lc (the 
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side of the RVE h, the fiber length lf or the void 
diameter d, for instance) and depends on the relative 
crack length l/h. As a consequence imposing the 
fracture criterion Eq. (17) shows that the 
dimensionless macro-strain /m c cE l Gβ  and the 

dimensionless macro-stress /( )ij c c ml G Eσ   do not 
depend on the size of the RVE, on the matrix material 
longitudinal modulus and on the fracture toughness of 
the material or of the interface for the porous matrix 
material and the short fiber reinforced composite, 
respectively. Moreover the dimensionless energy 
release rate /( )m cG E l  will be used in order to avoid 
dependence on the size of the RVE and on the matrix 
material longitudinal modulus.  

As shown in Fig. 3, both the microstructures are 
discretized by means of an unstructured mesh of 
quadratic triangular elements, with an appropriate 
mesh refinement along the contours used for the J-
integral evaluation. Fig. 3 shows also the contours 
adopted to calculate the energy release rate at each 
crack tip. A typical mesh for the short fiber-reinforced 
composite is arranged in 26,294 triangular elements 
resulting in 106,376 degrees of freedom, whereas for 
the porous matrix material 35,680 elements are used 
giving 147,808 degrees of freedom. 

 

 
Fig. 3 Meshes of the porous matrix material (left) and 
of the short fiber reinforced composite (right), 
incorporating the paths used for the J-integral 
calculation. 

Figs 4 and 5 depict the deformed configurations of the 
extension and compression uniaxial modes for the two 
considered micro-structures and the three boundary 
conditions used in the homogenization procedure: a) 
uniform tractions; b) periodic fluctuations and 
antiperiodic tractions.; c) linear displacements. For the 
sake of brevity a fixed damage configuration is 
considered characterized by relative crack lengths 
l/h=0.125 and l/h=0.24 for the porous matrix material 
and the short fiber reinforced composite, respectively.  

From Fig. 4 it can be noted that for the positive 
directions of the uniaxial deformation modes ˆ

iε
+ , 

i=1,2, crack faces do not overlap except for the 
uniform traction boundary condition and the extension 
deformation mode ˆ

1 1 1ε =e e+ ⊗ , where contact in a 
relatively small region near the void boundary occurs 

for relative crack lengths of about 0≤l/h≤0.2. The 
above contact region decreases as crack length 
increases and disappears for relative crack length l/h 
greater than 0.2. On the contrary, for negative 
directions of the uniaxial deformation modes ˆ

iε
− , 

i=1,2, crack faces always overlap, except for relatively 
small crack lengths for the deformation mode ˆ

1ε
−  

(0≤l/h≤0.07) and uniform tractions boundary 
conditions. For the deformation mode ˆ

2ε
−  crack is 

completely closed, whereas for ˆ
1ε
− and uniform 

traction boundary condition contact occurs only in a 
region near the crack tip (for instance when l/h=0.125 
the region extends for a relative length of about 
0.055). 

In the case of the short fiber reinforced composite the 
situation is less variegated and from Fig. 5 observe 
that contact occurs for the macro-strain directions 
ˆ

1 1 1ε =-e e− ⊗ , ˆ
2 2 2ε =-e e− ⊗  with the crack  completely 

closed.  

 

ˆ
1 1 1ε =e e+ ⊗  

a) b) c) 

ˆ
1 1 1ε =-e e− ⊗  

a)  b)  c) 

ˆ
2 2 2ε =e e+ ⊗  

 a)  b)  c) 

ˆ
2 2 2ε =-e e− ⊗  

a)  b)  c) 

Fig. 4 Deformed configurations of the porous matrix 
material of the extension and compression uniaxial  
deformation modes, for different homogenization 
boundary conditions and for a relative crack length 
l/h=0.125. 
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ˆ
1 1 1ε =e e+ ⊗  

a) b) c) 

ˆ
1 1 1ε =-e e− ⊗  

a) b)  c) 

ˆ
2 2 2ε =e e+ ⊗  

 a)  b)  c) 

ˆ
2 2 2ε =-e e− ⊗  

a)  b)  c) 

Fig. 5 Deformed configurations of the short fiber 
reinforced composite of the extension and 
compression uniaxial  deformation modes, for 
different homogenization boundary conditions and for 
a relative crack length l/h=0.24. 

4.1 Porous matrix material 

The macroscopic stress-strain law for the uniaxial 
macro-strain paths along the x1 direction is depicted in 
Figs 6a and 6b for the three boundary conditions used 
in the homogenization procedure: a) uniform tractions; 
b) periodic fluctuations and antiperiodic tractions; c) 
linear displacements. In the following figures *E  
denotes Em/(1-νm

2). For the sake of brevity only 11σ  is 
shown. The initial linear behavior of the macroscopic 
constitutive law is characterized by the moduli ( )0lC  
computed with reference to the initial crack length l0.  
Numerical simulations have shown that for a 
extension mode ˆ

1 1 1ε =e e+ ⊗ , contact occurs only for 
uniform tractions boundary conditions. In this case 
crack faces undergo contact in a small region near the 
void boundary for relative crack lengths of 0≤l/h≤0.2. 
In compression mode, ˆ -

1 1 1ε =-e e⊗ , contact always 
takes place and crack is completely closed for linear 
and periodic boundary conditions whereas for uniform 
tractions condition contact occurs only in a region 

near the crack tip (for instance when l/h=0.125 the 
region extends for a relative length of about 0.055). 
The energy release rate is plotted in Figs 7a and b as a 
function of the relative crack length. As illustrated in 
Fig 7a, the energy release rate computed for the 
macro-strain direction ˆ +

1ε , ( )ˆ ,G l+
1ε , is an increasing 

function of the crack length for the boundary 
conditions a) and b), whereas for c) a peak value is 
shown. The energy release rate is equal at both left 
and right crack tips.  
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Fig. 6a Macroscopic dimensionless stress 11σ  versus 

macroscopic strain for the macro-strain directions ˆ
1ε
±  

and different homogenization boundary conditions. 

With reference to the compression mode, Fig. 7b 
shows that the energy release rate ( )ˆ ,G l−

1ε  is 

practically independent on the crack length for 
periodic and linear deformations boundary conditions, 
whereas for uniform tractions boundary conditions the 
energy release rate shows a peak value and after 
reduces to zero for crack length greater than 0.06h. As 
a consequence for the extension mode and boundary 
conditions a) and b) crack propagates at decreasing 
values of β and at fixed macro-strain crack propagates 
unstably. This causes a severe snap back in the 
macroscopic constitutive law. Except for very small 
crack lengths, for a prescribed macro-strain and in the 
case of the extension mode the energy release rate for 
periodic boundary conditions is bounded from below 
by that corresponding to linear deformations on the 
boundary and from above by that relative to uniform 
tractions. For the compression mode crack growth is 
neutral and the macroscopic constitutive law does not 
show the snap back for boundary conditions b) and c), 
whereas for boundary conditions a) a small snap back 
occurs with unloading accompanied by increase in 
crack length and after loading with no increase in 
crack length denoted by a dashed line.  

Moduli are scarcely dependent on crack length 
especially for very small crack lengths, as it can be 
observed from Figs 8a and b, especially for the 
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compression mode. Consequently, the unloading 
branch of the macroscopic constitutive law is adjacent 
to the loading one. In the latter case moduli are 
practically a constant function of the crack length 
since crack is completely closed for all crack lengths 
for boundary conditions b) and c), whereas only 
partially for the one a). In the sake of brevity only the 
moduli ij11C  are shown. 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30

l/h

G
/(E

* r) a)
b)
c)

 
Fig. 7a Variation of the energy release rate as a 
function of crack length for the macro-strain path ˆ +

1ε  
and different homogenization boundary conditions. 
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Fig. 7b Variation of the energy release rate as a 
function of crack length for the macro-strain path ˆ -

1ε  
and different homogenization boundary conditions. 

According to Eq. (11) the modulus 1111C  associated to 
periodic boundary conditions is bounded by those 
related to uniform tractions and linear deformations 
for every crack length. Moreover, observe in Figs 7 
and 8 that both moduli and energy release rate are 
strongly dependent on the boundary conditions and, 
consequently, the macroscopic constitutive law is 
notably affected by the kind of boundary conditions 
imposed in the micro-to-macro transition. 
Macroscopic shear stress are absent for the three 
boundary conditions (5), within numerical errors 
related to the finite element discretization. Therefore, 
restricting the analysis to inplane macro-strain 
quantities, the macroscopic constitutive law has 
practically an orthotropic symmetry, since moduli 

12jjC  are practically zero. On the other hand, for ˆ -
1ε  

macroscopic moduli are practically independent on the 

crack length due to the strong influence of contact. 
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Fig. 8a Macroscopic moduli as functions of the crack 
length for the macro-strain direction ˆ +

1ε  and different 
homogenization boundary conditions. 
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Fig. 8b Macroscopic moduli as functions of the crack 
length for the macro-strain direction ˆ -

1ε  and different 
homogenization boundary conditions. 

Fig. 9 illustrates the macroscopic stress-strain law for 
the uniaxial macro-strain paths along the x2 direction 
for the three boundary conditions used in the 
homogenization procedure referred to as in the 
previous case. For the sake of brevity only 22σ  is 
shown. Numerical simulations have shown that for a 
compression mode, ˆ -

2 2 2ε =-e e⊗ , contact takes place 
with the crack completely closed and the energy 
release rate becomes negligible.  On the other hand 
crack faces do not overlap for ˆ +

2ε . As a consequence 
in compression crack does not propagate, and the 
behavior in compression is linear elastic being 
characterized by the undamaged moduli ( )C 0l = l  and 
it is denoted by a dashed line in Fig. 9. 

As it can be noted by Fig. 10, the energy release rate, 
equal for both the left and right crack tips, for the 
macro-strain direction ( )ˆ ,2εG l+  is a monotonic 

increasing function of the crack length only for 
periodic boundary conditions. For boundary 
conditions of linear deformations the energy release 
rate shows a peak value after which starts to decrease, 
whereas for uniform tractions boundary conditions it 
shows a maximum at about l/h=0.07 and, after, a 
minimum at about l/h=0.21. As a consequence crack 
propagates at decreasing values of β and at fixed 
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macro-strain crack propagates always unstably only 
for periodic boundary conditions, whereas for the 
boundary conditions a) and c) the possibility of crack 
arrest may occur. This causes a snap back in the 
macroscopic constitutive law in the case of periodic 
boundary conditions and snap-back and snap-through 
behaviors for the other two boundary conditions. For 
linear deformation boundary conditions the 
macroscopic constitutive law show a minimum after 
which macro-stress starts to increase. For relatively 
small crack lengths, namely 0≤l/h≤0.125, for a 
prescribed macro-strain the energy release rate for 
periodic boundary conditions is bounded from below 
by that corresponding to linear deformations on the 
boundary and from above by that relative to uniform 
tractions. 
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Fig. 9 Macroscopic dimensionless stress 22σ versus 
macroscopic strain for the macro-strain paths in the x2 
direction and different homogenization boundary 
conditions. 
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Fig. 10 Variation of the energy release rate as a 
function of crack length for the macro-strain direction 
ˆ +

2ε  and different homogenization boundary 
conditions. 

Moduli are strongly dependent on crack length 
especially for very large crack lengths, as it can be 
observed from Figs 11a and b. In addition they depend 

on the kind of boundary conditions although in the 
case of boundary conditions b) and c) the differences 
are very small. A large loss of stiffness is shown with 
respect to 2222C . In the sake of brevity only the moduli 

ij22C  are shown. As already noted previously, the 

modulus 2222C  associated to periodic boundary 
conditions is bounded by those related to uniform 
tractions and linear deformations. For ˆ +

2 2 2ε =e e⊗ , 
moreover, observe in Fig. 11a that both moduli and 
energy release rate are strongly dependent on the 
boundary conditions and, consequently, the 
macroscopic constitutive law is notably affected by 
the kind of boundary conditions imposed in the micro-
to-macro transition. As already noted in the previous 
case, macroscopic shear stress are absent for the three 
boundary conditions (5), within numerical errors 
related to the finite element discretization, and  the 
macroscopic constitutive law has practically an 
orthotropic symmetry. On the other hand, for 
ˆ -

2 2 2ε =-e e⊗  macroscopic moduli are practically 
independent on the crack length since crack is 
completely closed for every crack length. 
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Fig. 11a Macroscopic moduli as functions of the crack 
length for the macro-strain direction ˆ +

2ε  and different 
homogenization boundary conditions. 
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Fig. 11b Macroscopic moduli as functions of the crack 
length for the macro-strain direction ˆ -

2ε  and different 
homogenization boundary conditions. 
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4.2 Short fiber reinforced composite 

The macroscopic stress-strain law for the uniaxial 
extension and compression deformation modes along 
the x1 direction is respectively depicted in Figs 12a 
and 12b for the three boundary conditions used in the 
homogenization procedure: a) uniform tractions; b) 
periodic fluctuations and antiperiodic tractions; c) 
linear displacements. As already noted before the 
initial linear behavior of the macroscopic constitutive 
law is characterized by the moduli ( )0lC  computed 
with reference to the initial crack length l0.  Numerical 
simulations have shown that for a compression mode, 
ˆ -

1 1 1ε =-e e⊗ , contact takes place, therefore the 
macroscopic constitutive law show the expected 
dependence on the macro-strain path direction. On the 
contrary crack faces do not come in to contact for 
ˆ +

1 1 1ε =e e⊗ . 
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Fig. 12a Macroscopic dimensionless stresses versus 
macroscopic strain for the macro-strain direction ˆ +

1ε  
and different homogenization boundary conditions. 
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Fig. 12b Macroscopic dimensionless stresses versus 
macroscopic strain for the macro-strain direction ˆ -

1ε  
and different homogenization boundary conditions. 

The energy release rate, which is equal at both left and 
right crack tips, is plotted in Figs 13a and b as a 
function of the relative crack length. As illustrated in 
Figs 10, the energy release rate ( )ˆ ,1εG l∓  is an 

increasing function of the crack length for all the 
boundary conditions and for both the extension and 
compression modes. As a consequence crack 
propagates at decreasing values of β and at fixed 
macro-strain crack propagates unstably. This causes a 
severe snap back in the macroscopic constitutive law. 
With reference to the extension (compression) mode, 
for a prescribed macro-strain the energy release rate 
for periodic boundary conditions is bounded from 
below by that corresponding to linear deformations 
(uniform tractions) on the boundary and from above 
by that relative to uniform tractions (linear 
deformations). 
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Fig. 13a Variation of the energy release rate as a 
function of crack length for the macro-strain direction 
ˆ +

1ε  and different homogenization boundary 
conditions. 
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Fig. 13b Variation of the energy release rate as a 
function of crack length for the macro-strain direction 
ˆ -

1ε  and different homogenization boundary 
conditions. 

In the case of the extension mode, moduli are scarcely 
dependent on crack length especially for very small 
crack lengths, whereas for the compression mode 
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moduli are practically independent on l due to contact 
effects, as it can be observed from Figs 14a and b. As 
a matter of fact, in the latter case moduli are 
practically a constant function of the crack length 
since crack is completely closed for all crack lengths. 
In the sake of brevity only the moduli ij11C  are shown. 
Moreover, observe in Figs 13 and 14 that both moduli 
and energy release rate are scarcely dependent on the 
boundary conditions especially for relatively small 
crack lengths and for boundary conditions b) and c), 
consequently, the macroscopic constitutive law is 
scarcely affected by the kind of boundary conditions 
imposed in the micro-to-macro transition. 
Macroscopic shear stress are practically absent for the 
three boundary conditions (5). Therefore, restricting 
the analysis to in-plane macro-strain quantities, the 
macroscopic constitutive law has practically an 
orthotropic symmetry, since moduli 12jjC  are 

practically zero. The modulus C1111  associated to 
periodic boundary conditions is bounded by those 
related to uniform tractions and linear deformations. 
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Fig. 14a Macroscopic moduli as functions of the crack 
length for the macro-strain direction ˆ +

1ε  and different 
homogenization boundary conditions. 

0.0.E+00

2.0.E-01

4.0.E-01

6.0.E-01

8.0.E-01

1.0.E+00

1.2.E+00

1.4.E+00

1.6.E+00

1.8.E+00

0.00 0.04 0.08 0.12 0.16 0.20 0.24

l/(2h)

C ijhk /E m

a)
b)
c)

C2211/Em

C1211/Em

C1111/Em

Fig. 14b Macroscopic moduli as functions of the crack 
length for the macro-strain direction ˆ -

1ε  and different 
homogenization boundary conditions. 

The macroscopic stress-strain law for the uniaxial 
deformation mode along the x2 direction is depicted in 
Fig. 15 for the three boundary conditions used in the 
homogenization procedure. Numerical simulations 
have shown that for a compression mode, 
ˆ -

2 2 2ε =-e e⊗ , contact takes place with the crack 
completely closed and the energy release rate becomes 
negligible. On the other hand crack faces do not 
overlap for ˆ +

2ε . As a consequence, in compression 
crack does not propagate, and the behavior in 
compression is linear elastic being characterized by 
the undamaged moduli ( )C 0l = l  and it is denoted by 
a dashed line in Fig. 15.  Moreover, as illustrated in 
Fig. 16, the energy release rate for the macro-strain 
direction ˆ +

2ε , ( )ˆ ,2εG l+ , is an increasing function of 

the crack length for all the boundary conditions. The 
energy release rate shows equal values  at both the left 
and right crack tips. As a consequence crack 
propagates at decreasing values of β and at fixed 
macro-strain crack propagates unstably. This causes a 
severe snap back in the macroscopic constitutive law. 
Except for very small crack lengths, for a prescribed 
macro-strain the energy release rate for periodic 
boundary conditions is bounded from below by that 
corresponding to linear deformations on the boundary 
and from above by that relative to uniform tractions. 
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Fig. 15 Macroscopic dimensionless stresses versus 
macroscopic strain for the macro-strain paths in the x2 
direction and different homogenization boundary 
conditions.  

As illustrated by Figs 17a and b, moduli are scarcely 
dependent on crack length especially for very small 
crack lengths and in the compression mode. In the 
sake of brevity only the moduli ij22C are shown. For 
ˆ +

2ε  moreover, observe in Figs 16 and 17a that both 
moduli and energy release rate are scarcely dependent 
on the boundary conditions especially for relatively 
small crack lengths and for boundary conditions b) 
and c), and, consequently, the macroscopic 
constitutive law is scarcely affected by the kind of 
boundary conditions imposed in the micro-to-macro 
transition. Similarly to the previous case macroscopic 
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shear stress are practically absent for the three 
boundary conditions (5), and the macroscopic 
constitutive law has practically an orthotropic 
symmetry. It is worth noting that, in line with Eq. (11)
, the modulus 2222C  associated to periodic boundary 
conditions is bounded by those related to uniform 
tractions and linear deformations. 
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Fig. 16 Variation of the energy release rate as a 
function of crack length for the macro-strain path ˆ +

2ε  
and different homogenization boundary conditions. 
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Fig. 17a Macroscopic moduli as functions of the crack 
length for the macro-strain path ˆ +

2ε  and different 
homogenization boundary conditions. 

0.0.E+00

2.0.E-01

4.0.E-01

6.0.E-01

8.0.E-01

1.0.E+00

1.2.E+00

1.4.E+00

1.6.E+00

1.8.E+00

0.00 0.04 0.08 0.12 0.16 0.20 0.24

l/(2h)

C ijhk /E m

a)
b)
c)

C2222/Em

C1122/Em

C1222/Em

Fig. 17b Macroscopic moduli as functions of the crack 
length for the macro-strain path ˆ -

2ε  and different 
homogenization boundary conditions. 

5 Conclusions 
The influence of micro-cracking and crack faces 
contact on the effective properties of composite 
materials with heterogeneous micro-structure, is here 
investigated by means of the finite element method 
and interface models. When the changes in micro-
structural configuration associated with the growth of 
micro-cracks and crack faces contact are taken into 
account, the macroscopic constitutive law turns out to 
be strongly non-linear. The non-linearity of the 
macroscopic constitutive law, often accompanied by 
severe snap backs and snap through, results in a 
progressive loss of stiffness which may lead to failure 
for homogeneous macro-deformations associated with 
unstable crack propagation. Damage evolution is 
simulated by micro-mechanical considerations using 
fracture mechanics. Both the cases of a brittle matrix 
composite containing micro-cavities with micro-
cracks spreading from the cavity walls and of a fiber-
reinforced composite with imperfect interfacial 
bonding are considered, loaded along extension and 
compression uniaxial macro-strain paths. The micro-
structure is assumed to be controlled by the 
macroscopic deformation and three types of boundary 
conditions are studied, namely linear deformation, 
uniform tractions and periodic deformation and 
antiperiodic traction. Micro-crack propagation is 
modeled by using the J-integral methodology in 
conjunction with an interface model taking into 
account for contact between crack faces. 

Results show the notable influence of damage and 
contact evolution, the type of boundary condition used 
to obtain effective properties in the context of macro-
strain controlled microstructures and of the macro-
deformation path, on the constitutive response of the 
homogenized material. In particular the effective 
properties of the porous matrix material are strongly 
dependent on the boundary conditions used in the 
micro-to macro transition. On the contrary, for the 
short-fiber reinforced composite the effective 
properties are scarcely affected by the boundary 
conditions, especially for small crack lengths. 
Moreover, generally speaking contact increases the 
macroscopic strength of the homogenized material by 
limiting the loss of stiffness. The proposed damage 
model is therefore able to give constitutive laws for 
the microstructure with evolving defects and to 
provide a failure model for a composite material 
undergoing micro-cracking and contact. 
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