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Abstract  

Delamination mechanisms strongly affect the material integrity of composite structures, 
especially when the crack growth is generated by impact or dynamic loading conditions. In 
this framework, experimental observations have been shown that high speeds crack 
propagation characterizes the composite structures leading to catastrophic failure 
mechanisms. In this paper, the dynamic behavior of composite structures in the framework of 
steady-state crack growth is investigated. The proposed methodology considers the laminated 
structures as composed by first-order shear deformable plate elements interconnected by 
interface elements, whose constitutive relationships are based on fracture and contact 
mechanics. Analytical solutions of the relevant governing equations are proposed and closed 
form expressions for energy release rates (ERRs) are provided, emphasizing the influence of 
the beam formulation and the kinematic modeling on the crack tip solution. In particular, 
analytical expressions for total energy release rate and its mode components at the 
delamination front are provided in terms of the interface variables or the beam stress resultant 
discontinuities, emphasizing the influence of the inertial contributions on the ERRs. By means 
of these expressions the influence of transverse shear on interface fracture analysis is 
discussed and comparisons with other beam-based delamination models adopted in the 
literature are established. A parametric study, developed for mixed mode loading condition, is 
proposed to evaluate the effects produced on the ERRs by the inertial description of the 
structures and the speed of the crack tip front.   
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growth. 
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1 General 
Composite materials in the form of laminate structures 
are widely utilized for strategic applications in both 
mechanical and aerospace engineering fields. 
However, substantial experimental evidences have 
shown that delamination phenomena dramatically 
affect composite structures by means of catastrophic 
failure modes. During the last decades many efforts 
have been spent, mainly, to analyze static fracture 
behavior, giving rise to several studies devoted to 
predict the energy release rate and to simulate the 
crack growth phenomena. However, dynamic fracture 
in multilayered composite structures has not 
extensively investigated, because several complexities 
arise to identify properly the local crack tip behavior 
at high strain rate during the crack advance.  

In the literature many works have been focused 
mainly on quasi static crack propagation for both 
monolithic or composite structures [1]. However, 
during the last decades, new advances in experimental 
mechanics provided enhanced techniques to analyze 
crack growth behavior at high speed ranges. In this 
context, experimental observations pointed out that for 
mode I loading condition and monolithic materials, 
the speed of the crack growth has been observed to 
attain almost half of the Rayleigh wave speed, because 
the crack branching frequently affects the specimen 
and as a result a reduction of the crack speed is 
observed experimentally [2]. However, this behavior 
has not verified in the context of laminate structures, 
where the interfaces represent weak planes, in which 
the crack growth is made possible along straight paths. 
As a result, elevated speeds of advance can be reached 
also close to the Rayleigh one [3].  

 For mixed-mode or shear (mode II) loading 
conditions, experimental results showed that the crack 
growth is able to exceed the shear wave speed, 
approaching to a stable velocity in the range of 
intersonic crack propagation(i.e. crack tip velocity 
between the shear and longitudinal wave speeds of the 
material). As far as dynamic crack growth is 
concerned, several experimental methods based on 
CGS interferometry and dynamic photoleasticity have 
been proposed [4]. The experimental records referred 
to above have been investigated by means of 
analytical approach developed in the context of 2D 
plane stress assumptions and linear elastic fracture 
mechanics. In particular, asymptotic fields around the 
crack tip have been analyzed, in which it has been 
observed that for mode I loading condition the crack 
growth is physically admissible since the speed 
propagation is theoretically less than Rayleigh wave 
speed [5]. At contrary, crack propagation in mode II 
loading condition is possible also in intersonic speed 
range, in which the shear cracks at first accelerate 
towards a specific speed and subsequently evolve 
under a steady-state crack propagation. The analyses 
referred to above have confirmed the presence of 

finite contact zones as well as stress discontinuous 
rays behind the interfacial crack, known as Mach 
waves, which strongly influence the crack growth 
phenomena [5].  

 In the literature only a limited number of 
analytical studies on the subject of dynamic crack 
propagation in fiber composite materials have been 
reported. Among these, Shahani & Forqani [1] have 
provided analytical expressions of dynamic ERRs in 
the context of mode I loading condition and under 
quasi-static crack growth. Wosu et al. [6] proposed 
specialized expressions for mixed mode open notch 
flexure scheme in the framework of quasi-static 
evolution of the crack. Moreover, asymptotic fields 
around an intersonic propagating crack tip are 
investigated for 2D strain model for both mode I, 
mode II and in mixed mode condition under steady 
state crack advance and remote loading conditions [2]. 
In particular, these analyses explained in detail, 
experimental investigations based on CGS and 
photoelastic fringe patterns developed by Rosakis and 
co-workers [4].  

 In the present paper, dynamic fracture 
mechanics problem has been investigated in the 
context of the interface methodology and the 
plate/beam formulation, which provide an easy 
modeling to derive simple expressions related to the 
ERRs and to the crack advancing conditions. In 
particular, the crack growth is assumed to occur along 
a straight interface between layers, modeled as shear 
deformable beam elements. The use of the interface 
methodology allows to recover ERRs for interlaminar 
crack advance by taking the limit of the strain energy 
per unit interface at the crack tip when the interfacial 
stiffness approach to infinity. However, ERRs are 
obtained directly in terms of both interfacial or 
alternatively in terms of jumps in stress resultants. The 
easily way to analyze the crack tip behavior allows us 
to derive closed form solution of the ERR, by which it 
is possible to investigate the influence on the ERR of 
the speed of the crack front and the inertial effects of 
the laminate structure. The results have been 
illustrated by mean of the J-integral concept, in order 
to emphasize different contributions arising from the 
beam modeling and the cinematic assumptions, by 
which it is possible to verify that the use of the 
classical plate theory based on Eulero-Bernoulli 
formulation strongly underestimates ERRs and crack 
growth behavior. Finally, a parametric study 
developed for mixed mode loading condition is 
proposed to evaluate the effects produced on the ERRs 
by the inertial description of the structures and the 
speed of the moving crack tip front. 

2 Delamination model 
The structural model refers to a laminated structure, 
which is composed by unidirectional fiber reinforced 
plies connected by linear elastic interfaces (Fig.1). The 
delamination modeling is consistent with previous 
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Authors’ works [7-8], mainly developed in the 
framework of quasi-static crack growth and here 
proposed in a generalized context, in which dynamic 
effects under a steady state crack growth are 
introduced in the governing equations. Each layer of 
the laminate is assumed to be homogeneous, 
orthotropic and linearly elastic, with orthotropy axes 
aligned with the global co-ordinate system. The upper 
and lower sublaminates are assumed to be perfectly 
bonded in the undelaminated region, by the use of 
interface methodology. In particular, denoting the 
interlaminar normal and shear stresses as σxy and σyy,  
the constitutive relationships for opening and 
transverse relative displacements, assume the 
following form : 

    ,     ,yy y xz xyk v k uσ σ= ∆ = ∆  (1) 

where ,z xyk k⎡ ⎤⎣ ⎦  are the shear and the tensile stiffness 
of the interface. Consistently with a multilayer 
approach, the lower and the upper sublaminates are 
modeled by using with nl and nu elements, 
respectively. The kinematic of the i-th plate element is 
described in terms of the mid-surface in-plane 
displacements, (uj, vj) and the rotation about z axis 
(ψj), as: 

( ) ( ) ( ) ( )
( ) ( )                                       

i i i i

i i

U x u x y y x

V x v x

ψ= + − ⋅

=
 (2) 

where 1≤i≤nu+nl,. yi is the y-coordinate of the i-th 
plate midplane element. The deformation state is 
described to the first order theory by the membrane, 
curvature and transverse shear strains, defined as: 

i i i i,     ,    i iu vε χ ψ γ ψ′ ′ ′= = = +  (3) 
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Fig. 1 Scheme of the composite structures  

 Moreover, by considering each plate as 
composed by one or several physical fiber reinforce 
plies with their material axes arbitrarily oriented, the 
constitutive relationships between stress resultants and 
corresponding strains are: 

i i i i

i i i i

N A B
M B D

ε
χ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
  (4) 

where Ni is the membrane force resultant, Mi the 
moment resultant and Ti the transverse shear force 
resultant. Finally, the perfect adhesion conditions 
along the undelaminated planes are imposed by the 
use the Lagrange’s method. In particular, the 

displacement continuity requirements between any 
two adjacent plate elements, i.e. i and i+1 (with i≠nl), 
are defined by the following relationships: 

1
1 1

1

0,
2 2

0.   

i i
j j j j j

j j j

t tu u u

v v v

ψ ψ+
+ +

+

∆ = − − − =

∆ = − =

 (5) 

 The equations of motion and the associated 
growth law for the delamination shall be derived using 
a variational approach introducing proper functionals 
related to the strain and the kinetic energies, the 
interface displacements continuity for both 
undelaminated and delaminated planes. As a 
consequence the Hamilton’s principle can be 
expressed as:  

( )
2

1

0
t

t

U T dtδ − =∫   (6) 

where T and U are the kinetic and the potential energy 
of the whole dynamic system, respectively, and t1 and 
t2 define the observation period. Moreover, the 
equilibrium equations at a generic can be easily 
obtained taking the variation respect to the generalized 
cinematic variables: 

( )
2

1

0
t

t

I L W T dtδ Φ + + − − =∫  (7) 

where Φ  is the strain energy of the plate elements in 
both delaminate and undelaminate zones, I is the 
strain energy of the interfaces representing a penalty 
functional, L is the Lagrangian functional related to 
the interface displacement continuity constraints 
between adjoining plate elements and T is the kinetic 
energy of the laminate. In view of the sublaminate 
modeling, the quantities referred to above can be 
expressed by the following relationships: 

( )
1 0

, ,
u l Ln n

i i i i
i

u v dxϕ ψ
+

=

Φ = ∑ ∫   (8) 

( )2 2

,
0

1lim
2y xy

L a

y xyk k
I k v k u dx

−

→∞
= ∆ + ∆∫   (9) 

( )
1

1, 0

u l

i i

l

Ln n

w i u i
i i n

L v u dxλ λ
+ −

= ≠

= ∆ + ∆∑ ∫  (10) 

( )
1 0

, ,
u l Ln n

i i i i
i

T u v dxτ ψ
+

=

= ∑ ∫   (11) 

where [ ]1
2i i i i i iN M Tϕ ε χ γ= + + is the strain energy 

density, ( ) ( )2 2 2
0

1
2i i i iu vτ µ µ ψ⎡ ⎤= + +⎣ ⎦  are the kinetic 

energy densities of the i-th lamina, µ and µ0 represent 
the mass and polar mass moments per unit length. 
The evaluation of energy release rate in dynamic 
framework can be computed in terms of interface 
variables or alternatively by using plate strain and 
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stresses. The equivalence between the approach 
referred to above have been proved in [7,8] and both 
formulations are able to point out a better 
understanding of the mechanics of delamination In 
order to derive analytical expressions of the ERR only 
stress resultants approach is here utilized, because the 
governing equations introduce less complexities and 
consequently are quite suitable to be solved. 
 The energy release rate is defined as the rate 
of mechanical energy flow out of the body and into 
the crack tip per unit crack advance [10]. The model 
used in this work extends the energy balance basis of 
ordinary linear elastic fracture mechanics to the 
dynamic situation by considering the energy 
dissipated at the crack tip at a rate which is primarily a 
material property. Energy not removed at the crack tip 
remains in the system as either strain energy or kinetic 
energy. In particular, according to the Fracture 
Mechanics framework, the crack advance is made 
possible only when the energy released by the body 
during the crack extension is at least equal to that 
absorbed by the extending crack. During the amount 
of crack advance, da at instantaneous speed c, the 
energy available for supporting crack extension is 
given by: 

( )1dU dT dG U T
da da c dt

⎡ ⎤ ⎡ ⎤= − + = − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (12) 

 Assuming a steady state crack evolution and 
by introducing a moving reference system at the crack 
tip front, here identified with the normalized 
coordinate X, with X=xiud-ct or X=xiud-ct-a for i=1,2, 
the dependence from the time variable is practically 
annihilated and all expressions can be written in terms 
of the normalized coordinated X only (Fig.2). 

X,c
2h

h1

delamination crack tip

Mx1

Nx1

Tx1

x2T
x2N

x2M

2x

x11udx

x2ud

 
Fig.2 Two layer scheme – Moving and fixed 

coordinate systems. 

Substituting, Eqs. (8)-(11) into Eq.(12), integrating by 
parts and taking into account equilibrium conditions 
arising from Eq.(7), the following expression for ERR 
has been recovered: 

( ) ( )
1

u ln n

i i i i i i
i

G N u T v M ψ
+

=

′ ′ ′= Φ + Τ− + +⎡ ⎤⎣ ⎦∑  (13) 

where ( ) ( )
X

∂ •′• =
∂

 is the derivative respect moving 

coordinate X, whereas ( ) ( ) + −• = • − • is the jump 
occurring at the crack tip a with the superscripts + and 
– denoting that the function is evaluated a x=a+ and 
x=a-.  

Alternatively to Eq.(13), the ERR can be evaluated in 
terms of interface variables, starting from the 
regularized version of the Hamilton’s functional and 
introducing the perfect adhesion conditions by means 
of the penalty technique. In particular, the limit 
procedure is performed for the interfacial stiffness 
parameters. As a result, the ERR is expressed in a 
decomposed form directly in terms of the interface 
strain energy, as: 

( ) ( )

2 2

0,

2 2

,

1lim
2

1lim 0 0
2

l l
y xy

l l
y xy

u n yx n Xk k

y n xy nk k

G v u

k v k u

σ σ
=→∞

→∞

= − ∆ + ∆ =

⎡ ⎤= ∆ + ∆⎣ ⎦

 (14) 

where ( ) ( )0  and 0
l ln nv u∆ ∆ represent the opening and 

transverse displacements at the crack tip front.  

Energy release rate mode partition is evaluated by 
using a specialized form of the virtual crack closure 
techniques (VCCT). Analytical expressions will be 
obtained concisely recalling only the main equations 
involved in the proof, which are useful in order to 
point out the mechanical parameter involved in the 
computation. According with VCCT the energy 
release rate during the crack advance  is defined as the 
energy required to close the crack between two layers 
adjoining the delamination plane. In particular, based 
on an infinitesimal and virtual increment of crack 
length, the crack closure integral was proposed by 
Irvin [9] to calculate the strain energy release rate. By 
using results concerning the interface methodology in 
the context of strong interface given by Eq.(14), the 
ERR is decomposed by means of the following 
additive form: 

( ) ( )2 2

,

1lim 0 0
2 l l

y xy

I II

y n xy nk k

G G G

k v k u
→∞

= + =

⎡ ⎤= ∆ + ∆⎣ ⎦
 (15) 

 The previous equations can be easily proved 
starting from the J integral concept, which is reported 
in the canonical form by the following expression:  

( ) 1 ij j
uJ c U T n n d
x

σ
Γ

∂⎡ ⎤= + − Γ⎢ ⎥∂⎣ ⎦∫  (16) 

In particular, for a path with vanishing radius centered 
with respect to the crack tip, the expression of the J 
integral specializes to a corresponding one in which 
the terms arising from the kinetic energy, i.e. T, are 
practically zero along the path contour Γ . As a result, 
the J integral coincides with the strain energy of the 
interface elements at the crack tip.  
Alternatively the Eqs.(15), the ERRs mode 
components can be evaluated by the virtue of the 
VCCT concepts expressed in the framework of the 
stress resultants approach. The mode I energy release 
rate component can be calculated as  

1
2I yG d v

a
λ

δ
+= ∆   (17) 
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where yλ  is the Lagrangian multiplier reflecting the 
singularities in normal interface stresses in the limit as 
the interface stiffness parameters approach to infinity 
(Fig.3a). In particular, taking into account the 
equilibrium requirements of an infinitesimal portion 
above or below the crack tip characterized by a 
moving crack tip front, the Lagrangian multiplier is 
defined by the following expression: 

2 2

1 1

l l u

l

n n n

y i i i i i i
i i n

T c v T c vλ µ µ
+

= = +

⎡ ⎤ ⎡ ⎤′ ′= − + = +⎣ ⎦ ⎣ ⎦∑ ∑  (18) 

whereas the corresponding interlaminar separation can 
be expressed as  

 1ln nd v daγ γ+
+∆ = −   (19) 

Substituting Eqs.(18),(19) into (17), after some 
algebraic manipulations the following expression is 
recovered: 

1

1
2

l un n
I

I i i i i i
i

G T Tγ ψ
+

=

⎡ ⎤= − + Γ⎢ ⎥⎣ ⎦
∑  (20) 

with ( )2 21
2

I
i c vµ ′Γ =  representing the term in the 

kinetic energy related to vertical direction. It is worth 
noting that Eq.(20) corresponds to a generalization in 
the contest of steady stated crack growth of the closed 
form expressions previously developed by Author’s 
work in the context of quasi-static delamination [7-8]. 
 An analogous calculation gives the mode II 
energy release rate component as: 

1
2II xyG d u

a
λ

δ
= ∆   (21) 

where xyλ , similarly to yλ  corresponds to Lagrangian 
multiplier related to relative transverse displacements. 
Taking into account of the equilibrium equations for 
an infinitesimal portion surrounding the crack tip the 
following expression can be derived: 

2 2
0

1

2 2

1

l

l u

l

n

xy i i i i i
i

n n

i i i i i
i n

N c u c

N c u c

λ µ µ ψ

µ µ ψ

=

+

= +

⎡ ⎤′= − + + =⎣ ⎦

⎡ ⎤′= + +⎣ ⎦

∑

∑
 (22) 

whereas the relative displacement at the crack tip is 

1
1 12 2

l l

l l l l

n n
n n n n

h h
d u daε ε χ χ +

+ +

⎛ ⎞
∆ = − − + +⎜ ⎟

⎝ ⎠
 (23) 

Substituting Eq.s (22),(23) and  into Eq.(21) the mode 
II energy release rate component assumes the 
following expression: 

1

1
2

l un n
II

II i i i i i
i

G N Mε χ
+

=

⎡ ⎤= + + Γ⎢ ⎥⎣ ⎦
∑   (24) 

with ( )2 2 2 2
0

1
2

II
i i i i ic u cµ µ ψ′ ′Γ = +  corresponding to the 

kinematic energy expression related the bending and 
axial contribution of the i-th layer. 
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Fig.3 a)Lagrangian forces at the crack tip front. b) 

Virtual crack closure methods. 

 

3 Results and discussion. 
The results will be presented starting from pure mode 
I and Mode II loading conditions, whereas a general 
example involving mixed mode will analyzed 
subsequently. A finite crack length is assumed to 
propagate along the fiber direction at constant crack 
tip speed. The formulation refers to a two layers 
scheme, where the main governing equations can be 
handled from analytical point of view. However, more 
accurate results could be derived by the use of the 
multilayer approach, which requires a numerical based 
techniques to solve the main equations [7,8].  
 The governing equations for mixed mode 
loading condition are here summarized, with respect 
to a two layer DCB scheme. In particular, starting 
from Eq.(7) the following relationships describe the 
equilibrium equations in the context of a steady state 
crack growth condition: 
 

Undelaminated zone: X≥0 and X≤L-a 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 2
1 21 2 2

2 2
2 2 21 1 1 2 2 1 2

2
11 11 01 1

2
22 22 02 2

0

0

0

0

A Ac u c u

H c v H c v H H

D c H v

D c H v

µ µ

µ µ ψ ψ

µ ψ ψ

µ ψ ψ

′′ ′′− + − =

′′ ′′ ′ ′− + − + + =

′′− − + =

′′− − + =

(25) 

Delaminated zone  X≤0 and X≥ -a 
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( )
( )
( ) ( )

2

2

2

0

0

0

i ii

i i i i i

i i i i i i

A c u

H c v H

D c H v

µ

µ ψ

µ ψ ψ

′′− =

′′ ′− + =

′′ ′− − + =

with i=1,2 (26) 

 Introducing, boundary conditions at left and 
right ends of the laminate as well as at the 
delamination crack tip front, analytical expressions of 
the displacement fields could be recovered solving for 
the constants introduced from the general solution of 
the differential equations system given by Eqs. (25)
,(26). Subsequently, substituting in Eqs. (20) and (24), 
ERR mode components, not here reported for the sake 
of brevity, can be derived, analytically. 
At first, the equations referred to above are specialized 
for a double cantilever beam scheme (DCB) in a pure 
mode I loading condition with two opening end 
forces, namely F. In particular, a simple symmetrical 
composite structure with the same mechanical and 
geometrical characteristics (i.e. h1=h2=h, D1=D2=D, 
H1=H2=H) is considered. The material and 
geometrical properties of the laminated structures are 
reported in Tab.1.  
In Fig.5, the relationship between dimensionless ERR 
and speed of crack tip front, namely 2 2EBh /G G F=  
and c/csh (with csh  denoting the shear wave speed of 
the laminate) is investigated for different ratios of the 
normalized delaminated length. It is observed that the 
ERR decreases for increasing valued of the crack tip 
front speeds. As far as the speed approaches to the 
Rayleigh one, the ERR denotes a singular behavior. 
This is in agreement with several works in the 
literature, who established that from the molecular 
dynamic simulation of dynamic fracture, the Rayleigh 
speed consists to limiting crack tip velocity in mode I 
crack propagation [11]. Moreover, before to reach the 
Rayleigh speed, the ERR function tends to values 
close to zero, denoting contact phenomena at the crack 
faces. This is confirmed by the results reported in 
Fig.6, where the normalized vertical displacement 
around the crack tip became negative exactly when the 
ERR approach to zero. 
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Fig.5 Dimensionless ERR for different speed of the 
crack front and initial delaminated length.. 

 
Fig.6 Mode I loading conditions: Dimensionless 

relative displacements close to the crack tip front. 

 

Tab. 1 Material properties 

E1 

[N/mmq] 

Gxy 

[N/mmq] 

ρ 

[Kg/mc] 

149.25E3 5.45E3 1500 

a/L h/a  

0.148 0.125  

 

 The effect of the shear deformability on the 
ERR evaluation is discussed in the context of a steady 
state crack growth. In particular, with the aid of the J 
integral concept, assuming a path surrounding the 
crack tip close to the crack itself, the expression of the 
ERR assumes the following form: 

M TJ J J= +   (27) 

with  
2 2

1tip
M

M cJ
DB E

ρ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
  (28) 

( ) ( )

2 2

2 2
2

1 1

1

2
0 1 0

tip
T

tip

T c hJ
HB H

T c c h
B E B

ρ

ρ ρψ ψ

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
⎛ ⎞

− − −⎜ ⎟
⎝ ⎠

 (29) 

in which JM and JT denote the bending, shear terms, 
respectively. An analogous expression could be 
obtained in the context of the classical delamination 
models (CDM), where the shear effects are completely 
neglected by the use of an Euler-Bernoulli (EB) 
formulation. As a result, the expression obtained of 
the ERR assumes the following relationship: 

2 2

1tip
CDM M

M cJ J
DB E

ρ⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
  (30) 

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM



 In order to investigate, the influence of the 
shear effects, comparisons between the proposed 
formulation and that concerning EB assumption is 
proposed in Fig.7, in which the single terms in 
dimensionless form (i.e. ( ) 2 2EBh / ,iJ F= ⋅  

( )with , ,tot M TJ J J⋅ = ) arising form Eq.(27) are 
reported.  
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Fig.7: Mode I loading condition: dimensionless 
contributions in the J-integral expression. 

 

The convergence of the ERR in the penalty procedure 
is investigated in Fig.8, where a logarithmic scale 
(base 10) is used for the horizontal axis. The results 
are proposed for different speeds of the crack front for 
a pure mode I loading condition. Note that the ERR 
denotes a stable and convergent behavior as far as the 
penalty parameter approaches to relatively high 
values. 
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Fig.8 Convergence of the ERRs in the penalty 
procedure. 

 

 Sensitivity analyses have been developed 
with respect to the end loading split configuration 

(ELS), which is well known to produce delamination 
phenomena in pure mode II. The relationship between 
normalized ERR and speed of the crack front is 
reported in Fig.9, for different value of the initial 
delaminated length. Analogously to Mode I case, the 
ERR tends to decrease rapidly for increasing values of 
the speed of the crack front. The antisymmetrical 
loading condition avoids as a result interfacial 
compenetration effects along the crack faces.  
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Fig.9 Mode II loading conditions: Dimensionless 

ERRs for different speed of the crack front. 
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Fig.10 Mixed mode  loading conditions: 

Dimensionless ERRs for different speed of the crack 
front. 

The investigation has been proposed under mixed 
mode loading condition. In particular, In Fig.10, the 
relationships between ERR and speed of crack tip 
front is investigated. An oscillating behavior for the 
ERRs is noted and for increasing values of the speed 
both components approach to zero. It is worth noting 
that the speed of advance influences the mode mix 
ratio, which is strongly altered respect to the static 
case, i.e. c→0 (Fig.11). 
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Fig.11: Mode mix ratio versus speed of the crack 

front. 

Finally, in Figs.12-14 the dimensionless ERRs mode 
components over the maximum value are reported as a 
function of the crack extension. In particular, the 
comparisons denote that as far as the speed of the 
crack front is increased the ERR mode components 
are strongly reduced involving a more oscillating 
behavior during the delamination path.  
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Fig.12 Dimensionless ERR mode components as a 
function of the crack extension: c/csh.=0, static case.  
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Fig.13 Dimensionless ERR mode components as a 
function of the crack extension: c/csh.=0.3  
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Fig.14 Dimensionless ERR mode components as a 
function of the crack extension: c/csh.=0.6  

4 Conclusions 
The dynamic behavior of composite structure is 
investigated in the context of the steady-state crack 
advance. The delamination phenomena in layered 
composite structures has been analyzed by using an 
interface model and appropriate kinematic formulation 
of the layers to achieve an accurate evaluation of the 
Energy Release Rate. The investigations have been 
proposed to point out the influence on the crack 
phenomena of the speed of the crack front and the 
inertial effects of the composite structures. The 
Energy release rate appears quite dependent from the 
speed of the crack. Comparisons between the interface 
model and classical delamination models are proposed 
to point out the influence of the shear effects on the 
Energy release rate evaluation. Moreover, a 
parametric study is proposed for pure mode I, mode II 
and mixed mode loading conditions to investigate the 
influence on the dynamic energy release rate and the 
corresponding mode partition of the crack growth 
speed and the inertial contributions of the laminate 
structure. 
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