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Abstract 

This article presents a general programming model for discrete-time distributed simulation. 
The model uses a shared memory interface that can be used by simulation applications. It 
allows for a description of the whole distributed simulation to be written in XML and 
compiled, generating code that can be used directly by the simulation application, requiring 
only small modifications to parallelize a single computer simulation program into a 
distributed one. The model is language and system independent and does not restrict to a 
single scheme of communication and model time synchronization. It makes use of the 
CORBA framework to achieve inter-operability. The model also enables to incorporate 
already existing simulation programs as well as real-time programs and computer systems. A 
review of time-stepped algorithms for distributed simulations and their possible applications, 
and another review about distributed barrier algorithms are included in the article. A time-
stepped implementation of the model was developed, and a case study included, which uses a 
queuing networks example.  The performance and precision of the developed model were 
evaluated through tests, using the provided case study, and the results were satisfactory, 
showing that by using the proposed model is possible to achieve high parallelization 
performance without loss in precision. 
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1 Introduction 
In a previous paper by the same author [1] the need of 
a general programming model for discrete-time 
distributed simulation was discussed. A survey of 
frameworks for distributed computing showed how 
the Common Object Request Broker Architecture 
(CORBA) could be the best solution for the problems 
of inter-operability between different languages and 
operating systems. A discrete time-stepped simulation 
model was developed and proved by implementation. 
It was shown to be possible to guarantee 
synchronization between different simulation 
instances using a simple prototype based on CORBA 
remote communication.  

In [2], the notion of using CORBA as a framework for 
generic discrete-event distributed simulation is firstly 
introduced. It is claimed that it provides a location-
transparent and language-independent mechanism for 
generic and remote simulations, and proven by a 
simple prototype. As stated by the author, the goal is 
to show the potentialities of CORBA as a possible 
framework for discrete-event simulation. A simple 
prototype was developed by the author to illustrate 
how it could be done. 

In [3] is proposed a web-based network simulation 
framework using CORBA technology. They attempt 
to provide a flexible, extensible, platform and 
language-independent simulation environment, 
suitable for large-scale deployment over the  World 
Wide Web. But it is mainly focused on network 
specific simulations. 

In [4], is presented a CORBA based Time-Warp 
simulator, however, it is specific for the DEVS 
methodology and it only supports Time-Warp as a 
model time synchronization algorithm. 

The High Level Architecture  (HLA) [5] is a widely 
accepted framework for promoting interoperability 
and reusability in the simulation. But it also shows 
some drawbacks that reduce its expected capabilities 
when used for the development of distributed 
simulation applications. The following shortcomings 
can be identified [6,7]: 

1. The responsibility for interoperability
between federates (instances of a distributed
simulation) in different languages is placed
on the RTI (Run Time Infrastructure, the core
of HLA) implementers.

2. The federates are tied to specific
implementations of the RTI.

3. Different RTI implementations do not
interoperate.

This adds a burden to implementing an HLA 
federation in multiple languages since, in contrast to 
CORBA imposing absolutely no overhead whatsoever 
for cross-language compatibility. 

D’Ambrogio and Gianni developed a possible solution 
for the problem, by using CORBA to add further 
interoperability to HLA [7]. In that solution it was 
built an HLA-CORBA Proxy that is used by the 
simulation instances to make their HLA calls. The 
proxies then use CORBA to communicate with a 
CORBA-HLA Server that is placed in the RTI. For 
each language/system a Proxy must be used. 
However, the authors recognize that using a CORBA 
infrastructure to vehicle the HLA requests and 
responses introduces additional overhead and forbids 
the use of some communication features, as 
multicasting and message caching. It is also 
recognized that the use of CORBA is not CPU-
intensive and that further improvements could be 
achieved by reducing the level of interoperability. 

In this article is proposed new a model for discrete-
time distributed simulation. The model is language 
independent and does not restrict to a single scheme of 
communication or model time synchronization. It 
enables to incorporate existing simulation programs 
without significant changes as well as the use real-
time programs and computer systems. It also allows 
the easy exchange of synchronization algorithm in 
use.  

2 A shared memory computation model 
Generally, two major models for data exchange can be 
considered, message passing or shared memory. In 
shared memory models an application programmer 
can access variables using ordinary read and write 
commands. In message-passing models the 
programmer needs to keep in mind the architecture of 
the distributed system, to who and when he is sending 
the data. Usually shared memory models perform less 
well than message-passing, because unless the system 
where they are running uses physical shared memory, 
in the end the data is sent using messages. 
Nonetheless, a shared memory model is usually 
considered to be a more general and easier to use 
paradigm than a message-passing one [8]. 

Other advantage of the shared memory model is that 
in distributed simulations, message-passing models, 
which are typically mapped to event-triggered 
simulation algorithms, require extra mechanisms to be 
integrated in the simulation applications [9,10]. On the 
other hand, shared memory models need no great 
change in the simulation methodology. It requires only 
the definition of which data records are “global”, 
enabling in consequence to use existing model, 
including real-world programs. It also allows 
integrating real-time nodes, either physical or virtual. 
The only modification that must be made is to assure 
that the simulation will run at a faster or equal speed 
of the real-time node. 

Because of these advantages, it was decided that the 
data exchange model should be in abstraction, a 
shared memory model, i.e. a description of shared 
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data, common for all considered communication sub-
models, and a set of rules specifying how any change 
of a single shared data item is communicated among 
distributed simulation processes.  

From a more practical point of view, the data 
exchange can be seen as passing between different 
processes as it would be passed locally, using 
functions like write and read instead of functions like 
send and receive, as in message passing models. In 
this way the middleware implements shared memory 
that contains a data-coded image of the state of the 
whole distributed application. 

Because the model is distributed it makes no sense for 
all the processes to have access to the data from all the 
other processes, since it could increase tremendously 
the communication overhead. It was decided that each 
process should “subscribe” to a set of state shared data 
items, and only the subscribed set is sent to him, 
instead of the whole image. 

3 A data-coded state of the data 
exchange model 
The created model is composed of several (n) logical 
processes (LP, also known as simulation instances or 
simulation nodes), in which an LP is assumed to be a 
conventional run of a simulation application. Each 

! 

LP
i
 

externalizes its state-like data using one or more data 
records, say 

! 

X
i
. These records are “visible” from any 

other LPs. Every LP uses some (global) data records 
owned by other LPs, say 

! 

X
3
,

! 

X
4
. 

All the set of shared records has n members, i.e. 
[

! 

X
1
,

! 

X
n
]. Every record has only and only one owner 

LP who is responsible to update it. Other LPs can read 
it. All the names of global data records are known 
throughout the system, allowing the programmer to 
access easily records from other LPs. 

An abstract description of the general data-exchange 
model can be defined. It should include a definition of 
data types, a definition of the shared memory 
structure, a definition of the distributed simulation 
application, and a set of simulation control 
parameters. 

Each record has a type, say 

! 

Tj
. The record type can be 

a primitive type or a composite one. The syntax of 
CORBA IDL can be used for the definitions of types, 
including primitive and composite types, such as 
structs, unions, and enums. Each type, primitive or 
complex is assigned a type name, within the 
simulation. In Eq. (1) it is possible to see an example 
of data type definitions. The primitive types in use are 
indicated, and the possible composite types are 
defined. 

 

! 

primitive_types {short,long,...}

composite_type T{..};
 (1) 

The definition of the global shared memory structure 
assigns to each simulation instance 

! 

X
i
 a type 

! 

Tj
, as 

shown in Eq. (2), which is an example of global 
shared memory structure definition using three types 
and three state variables, including the composite type 
T created before. 

 

! 

long X
1
;short X

2
;T X

3
; (2) 

The definition of the distributed simulation application 
contains information about the different logical 
processes contained in the global simulation, and the 
data that they import and export, since the model is 
subscription-based. In Eq. (3) is shown an example. 
Each part (process) of the simulation 
(simulation_application_part_i) defines the data that 
exports (i.e. publishes) and that data that imports (i.e. 
subscribes).  

 

! 

simulation_application_part_1{

imported_data{X1,X2},

exported_data{X3,X4}};

simulation_application_part_n{...};

 (3) 

The last part of the abstract description is the 
definition of the control parameters. It contains 
information about the distributed simulation itself, as 
well as the kind of synchronization algorithm to use, 
frequency of updates, as it is possible to observe in the 
example Eq. (4). 

 

! 

synchronization_algorithm = time_stepped; 

update_frequency = 0.2;
 (4) 

4 A multi-layered approach 

 
Fig. 1 Logical layers scheme 

From the abstract description and the data exchange 
model is possible to understand that the global model 
can be viewed as a set of simulation nodes, where 
each node exchanges data with the other nodes. 
Starting from that assumption it is possible to 
decompose each into a set of layers, having each layer 
its own set of competences.  As it is possible to 
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observe in fig. 1, the model is composed of four 
layers: the application layer, the dynamic application 
interface layer, the model time synchronization layer 
and the communication layer. 

4.1 Application layer 

The application layer is where the simulation 
application itself lies. The expected computational 
behaviour is a discrete simulation which proceeds 
from one time point to another.  

In a non-distributed system all the variables are stored 
locally. In a distributed system it is necessary to 
update the variables with their correct values 
throughout the whole system.  

The original simulation application should replace the 
normal data storage with calls to the dynamic 
application interface layer, using a shared memory 
abstraction. 

Any kind of languages can be used with this 
application but during its development it was tested 
mainly with C/C++ and the C-Sim extension [9] as 
well as with Java and the J-Sim extension [10] will be 
used. 

4.2 Dynamic application interface layer 

The layer is responsible for masking the 
communication and control functions of the model 
time synchronization layer, presenting a “cleaner” 
interface that can be used by the simulation 
application programmer. The interface presented 
consists of a group of classes/libraries (one for each 
simulation LP). In fig.2 is possible to see the UML of 
each node that constitutes the layer. 

 
Fig. 2 Dynamic application interface layer UML 

The model time synchronization layer requires some 
information regarding the simulation configuration, as 
the number of simulation LPs, and other similar 
control parameters. Also, it only makes available 
generic methods to update and read data that are based 
on the CORBA Any type. It is clear, that in favour of 
transparency and ease of use, the configuration of the 
simulation and the handling of the data encapsulation 
should be separated from the simulation application 
programming, and the simulation layer should only 
“see” an interface that is tailored for its particular 
necessities, hiding the generic methods made available 
by the synchronization layer, and its configuration 
specificities. On the other side, it allows the 
programmer of the synchronization layer to worry 
only with the algorithm in itself and to not concern 
about the data and configuration issues. 

This layer can be generated automatically, using a 
configuration file, written by the simulation 
application programmer. The configuration file 
extends the abstract description of the simulation, as 
so it must include the definition of types, the 
definition of the shared memory structure, and of the 
distributed simulation application, as well as the 
control parameters. The objective of using such a file 
is to separate the global simulation definitions, from 
the simulation application normal control flow, 
making the integration easier. In this way it is possible 
to tune the simulation outside of the application scope, 
and to test different algorithms and sets of parameters, 
and automatically generate modified code that is ready 
to be used. 

 
Fig. 3 example of an XML configuration file 

It was decided that XML should be used for the 
configuration file. The World Wide Web Consortium 
(W3C) created the Extensible Markup Language 
(XML), which is in nowadays the standard for the 
kind of configuration file necessary. It is widely 
known, and easy to create and understand by both 
Man and machine. Many XML parsers are available, 
in many different languages, making it easy to extract 
the information from the configuration file.  
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The main problem of the XML approach is that it is 
difficult to implement complex data types is the XML 
definition. Because these data types are shared 
through CORBA, they need to be created in IDL and 
compiled using an IDL compiler as well. A possible 
solution would be to create XML structure for 
definition of complex types, but it seems to be simpler 
to keep the IDL syntax when defining the data types, 
and during the processing of the XML file, internally 
compile the IDL code, and generate the data types. 
The created code can then be included in the new 
generated simulation stubs. 

As it is possible to observe in fig. 3, the mapping of 
the shared memory description is quite simple, and the 
XML easily understandable and modifiable. The only 
drawback is that the IDL code is included as text, in 
what is a practical tough not very elegant solution.  

A compiler was built, which processes the global 
configuration file, and generates code that serves as a 
bridge between the application and synchronization 
layer. The compiler was developed as a proof of 
concept so at this time it only compiles for Java and J-
Sim languages. But it could easily be transformed to 
generate code for other languages as well. As part of 
its processing, the compiler converts IDL data 
definition code, into Java source code. This is done by 
simply mapping the data types to Java, when the data 
types are primitive, using the default mappings 
defined by the OMG, or by running an IDL compiler, 
when the types are complex, and then, importing the 
generated classes, since their resulting syntax is 
known a priori. 

The created code must be unique for each application 
instance, supplying methods to write the state of the 
variables owned by the specified instance, and 
methods to read the subscribed variables from the 
other instances, as well as to control the simulation. 
The predefined control parameters are also included in 
the generated code, including the time-step parameter. 
It is also a responsibility of this layer to know when to 
update, according to the specified time-step value. 

Two sets of classes are generated for each simulation 
instance. One is the generic class that can be used by 
any Java program, and the second is a J-Sim specific 
stun. The main task of the generic classes is to insert 
and extract the defined data in a CORBA Any type, 
and to send and receive the data updates. The CORBA 
Any type is the best way to send data from one node to 
the other without knowing exactly what is inside, on 
compilation time. The insertion in an Any can be done 
automatically for primitive types, but requires access 
to “helpers” generated by the IDL compiler for 
complex types. This task is necessary because the 
underlying model time synchronization layer uses 
only Any types, for the available write/read methods.  

The J-Sim classes use the generic ones to mask even 
more the underlying layers. Instead of using write and 
reads the application programmer needs only to 

initialize (use the constructor) the given J-Sim object, 
passing references to the shared variables.  

Fig. 4 illustrates the compilation of the configuration 
file example shown on fig. 3. It is possible to see the 
CORBA generated classes, the generic classes, and the 
J-Sim classes. 

 
Fig. 4 Example of generated classes 

4.3 Model time synchronization layer 

The model time synchronization layer main 
responsibility is to manage the data exchange between 
different simulation nodes, guaranteeing that a 
consistent (i.e. synchronized) state image of the whole 
system is presented to the upper layers. 

 
Fig. 5 Interfaces implemented by the model time 

synchronization layer 

This layer uses two interfaces that have to be 
implemented, as can be seen in fig. 5. On one side is 
the interface that supplies to the upper layers, a 
shared-memory interface. This interface contains 
functions that allow writing and reading of data, and 
control functions that allow configuring the 
synchronization behaviour. Any implementation of 
this layer needs to implement the common shared 
memory interface model, independently of the 
underlying model time synchronization algorithm. 

The other interface is defined using the CORBA 
Interface Description Language (IDL). It can change 
depending on which is the synchronization algorithm 
in use. What is defined is the internal communication 
between different synchronization nodes. This duality 
allows that either time-stepped or event-driven 
algorithms can be used, using the same shared-
memory interface but different internal 
communication schemes, simply by replacing the 
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whole model time synchronization layer. In figure 5, 
both the IDL operations interface and the private 
callbarrier method are specific to the time-stepped 
implementation. 

 Has it has been said before, simulation applications 
written in different languages, or running in different 
operating systems should be able to be used together. 
The main requisite for this to happen is the porting of 
the synchronization layer to the desired language. The 
design of the communication between nodes made in 
IDL is easy to use, includes many kinds of data 
structures, including unions, sequences, structs, a 
generic type, Any, and of remote interaction modes. 
Because all the nodes implement the IDL interface, 
the porting of the layer is easy. 

4.4 Communication layer 

 
Fig. 6 Communication layer UML 

This layer is tightly coupled with the model time 
synchronization layer. Its main responsibility is to 
provide a framework for the communication needed 
by the synchronization layer, and thus by the whole 
model.  

This layer is strongly based on the CORBA 
communication model. By using the available IDL 
language and compiler it is possible for the upper 
model time synchronization layer, to develop its own 
communication model, and subsequently generate 
skeletons and stubs that connect single applications 
with this layer. 

As it is possible to observe in fig. 6, it includes 
methods to initialize an ORB, register and retrieve 
CORBA objects (in the case, nodes of the model time 
synchronization layer), and to shutdown the ORB in 
the end.  

5 Using a time-stepped synchronization 
algorithm 
The created model can use different kinds of model 
time synchronization algorithms, but the algorithm 
that maps better the shared memory model is a time-
stepped algorithm.  

5.1 What are time-stepped algorithms? 

In a time-stepped simulation all the participating 
entities in a simulation are at the same time step at any 
point in wallclock time. Typically the entire span of 
simulation can be seen as divided into equal-sized 
time-steps, with the simulation advancing from one 
time step to the next. Events that happen in the same 
time step are considered simultaneous and assumed 

not to have an effect on each other. This is important 
because it allows actions occurring within each time 
step to be executed concurrently by different 
computers. In this paradigm, if two actions have a 
causal relationship, that has to be modelled in the 
simulation, which means that, those actions must be 
simulated at different time steps.  

At each 

! 

i
th  step, the algorithm simulates all the events 

that occur in the time interval 

! 

[(i "1)#,i#], where 

! 

"  
is a design parameter [13,14]. If 

! 

"  is too small, the 
efficiency of the method degenerates, since barrier 
synchronization is wasted on intervals that cannot 
contain any events. On the other side, if the value of 

! 

"  is too large, the simulation becomes coarse-
grained, as all the events in the interval are simulated 
as occurring simultaneously. The value given to 

! 

"  is 
important because it determines how precise is the 
simulation and consequently its results, so, 

! 

"  should 
be chosen large enough so that a LP has several events 
to process in any given interval 

! 

[(i "1)#,i#], but not 
too large or the precision will be affected. 

A commonly used technique in time-stepped 
synchronization algorithms is to use a barrier 
primitive. When a process invokes the barrier 
primitive, it will block until all other processes have 
also invoked the barrier primitive. When the last 
process invokes the barrier, all processes can proceed 
further in simulation time. Each time step is separated 
from the next by using the barrier primitive. 

It is possible to use variations of time-stepped 
algorithms in real-time and scaled real-time 
simulations. In these cases, the simulation must 
control advances in its simulation time to be 
synchronized with the real-time or scaled real-time 
sub model. In a normal time-stepped simulation, a 
new system state is computed after each time step. 
The real-time version is similar, except that the 
computation for each time step must be computed 
before wallclock time advances to the next time step 
or the simulation will lag behind wallclock time. 

5.2 Possible applications 

There are many kinds of large-scale simulation 
applications that can be parallelized using a time-
stepped approach: 

• Large-scale queuing networks, e.g. urban traffic 
systems. Single parts of a distributed simulation 
contain models of network parts. Local discrete 
time flow in parts is synchronized with a global 
time step and data values influencing another part 
(e.g. a density of traffic on parts connecting 
routes) are interchanged among the parts.  

• The same for weather simulations and many other 
similar problems based on numerical solving of 
partial differential equations. The geographic 
areas correspond to single parts of distributed 
simulation model. After a properly chosen global 
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time step, data values (e.g. wind direction and 
strength) on a part boundary are exchanged.  

• Simulation of population development from 
system biology: every part of model simulates a 
separated sub-population of (possibly different) 
biological objects. Values from one part 
influencing another part can be imported/exported 
after every global-time step.  

• Logical systems:  part models of a system are 
synchronized after every clock period (global 
time step as well) and signal values on parts 
connections are interchanged. Here the time-
stepped approach is quite natural.  

• A part of distributed simulation system is a real-
world part. Time-stepped approach can be used 
conveniently, assuming we can guarantee that all 
local simulations (in model time) run faster than 
real time, so they can be synchronized after a real 
time tick with real-world parts. 

A main advantage of using a time-stepped simulation 
is that simulation sub-models forming a distributed 
simulation program (i.e. programs residing in single 
nodes of distributed system) need not to be changed 
substantially. On the other side, event-driven 
programs usually force the application programmer to 
change the way the program was originally designed. 

5.3 Implementing a time-stepped algorithm 

In the developed time-stepped model, a time step was 
defined as a common property of all simulation 
instances. On each time step global data exchange 
happens, synchronized with a chosen application-
dependent model-time interval. Each single 
application simulation keeps its own updated state and 
at each time step, the data updates can be written, and 
sent to the other simulation applications. For the 
developed case study the application instance uses C-
Sim.  

The simulation instances using the tailored methods 
made available in the dynamic application interface 
layer. Each simulation instance can use an individual 
class/library, with methods specifically generated for 
itself. As it was possible to see in the UML design 
(fig. 2) there are two kinds of methods available: start 
and shutdown, to control the simulation; write and 
read, to pass and obtain the shared data. There can be 
more than one write or one read available, depending 
on the definition of shared memory. The time-step 
value is used in this layer, and the data is only passed 
to the next layer according to its value.  

At the level of the model time synchronization layer, 
there are available methods to read and write, but 
using a generic Any type. Each call to write contains 
the instructions to update (send) its variable state 
throughout the system. The call to the update is 
surrounded by two barrier calls. The distributed 
barrier is called firstly with each update called by the 

application, thus guaranteeing that all the LPs (logical 
processes) are in the same time step, and again after 
the update, to ensure that all the updates are over, and 
that the whole shared memory state is stable. 

 
Fig. 7 Time-Stepped IDL 

In terms of communication between the nodes of the 
model time synchronization layer it was necessary to 
define an IDL communication interface. As it is 
possible to observe in the fig 7, two remote methods 
are used: the method updateState, which is used to 
deliver its updates of the variable state, and the 
auxiliary barrierRound method, which is part of the 
barrier synchronization algorithm. 

During the initialization of the synchronization node, 
the application must indicate to which synchronization 
nodes its update data will be sent. Then, during each 
update round, the data is “multicasted” only to the 
nodes that need it. 

Upon completion of the update round, the write calls 
unblock, and the simulation application instances can 
proceed to reading the variable states that they 
subscribed, being that they are already updated and in 
a stable state in the synchronization node. 

When the application instances want to finish their 
computation, a shutdown call is made. This call also 
uses the distributed barrier to guarantee that all the 
nodes have completed their work, and that the 
simulation can be safely ended. 

In fig. 7 is shown the IDL interface used in the 
internal communication. The interface corresponds to 
the IDL operations interface shown on fig. 5. An IDL 
compiler is used to process that IDL code. The IDL 
compiler generates skeletons that are implemented by 
the nodes of the model time synchronization layer. By 
implementing those interfaces they become CORBA 
objects. 

The communication layer makes available generic 
methods to register and retrieve CORBA objects, and 
those methods are used to register the model time 
synchronization nodes. 

The nodes are registered in a CORBA name service, 
which has to be running. There are several methods to 
locate the CORBA name service, and at the moment 
the communication layer uses a remote reference file 
to find the service. 

All the layers developed are reusable and can be 
changed independently of the others. For purpose of 
testing, the model implementations in C and Java were 
made. 
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5.3.1 Choosing a distributed barrier algorithm 

The proposed time-stepped synchronization algorithm 
makes use of a barrier mechanism. This is a 
mechanism that causes all the processes to wait at a 
certain point for all the others. The barrier is only 
broken when all of the processes have arrived. In the 
first implemented prototype [1], a centralized barrier 
was used, which made the implementation of the 
barrier quite easy. But, centralized architectures cause 
bottlenecks and should not be used. It was decided 
that a distributed barrier should be used.  

In related work [15] a comparison of different barrier 
implementations was made, and its performance 
compared. It is possible to observe how centralized 
algorithms do not scale very well, and that the 
Dissemination Barrier has a fairly good performance. 
In another survey [16] several distributed barrier 
algorithms are examined, and it is concluded that a 
dissemination barrier is the more appropriated for a 
kind of distributed architecture like CORBA, which is 
based on remote-calls, that can be seen as message-
passing, rather than a shared memory architecture, 
despite that the interface provided on a higher 
abstraction layer is a shared memory one. The used 
algorithm was originally written as a shared-memory 
algorithm. As so, some modifications to the original 
algorithm are required. The implementation of the 
algorithm both in C and in Java was based on an MPI 
implementation of the Dissemination Barrier, which 
was developed in [17]. 

 
Fig. 8 Dissemination barrier 

The Dissemination Barrier, originally introduced by 
[18] is mostly an improvement of another barrier 
algorithm, the Butterfly Barrier, for non-power of two 
process counts. In each round 

! 

s each process 

! 

pi  
synchronizes with 

! 

p j
 where 

! 

j = i + 2
s
mod p. Each 

process is waiting for the cyclically next to set its flag 
and for his own flag set by a circular previous process. 
The algorithm is similar to the one used in the 
Butterfly Barrier but with different partners. While in 
the Dissemination algorithm the synchronization 
occurs in a circular way, in the Butterfly algorithm 
each process A synchronizes with B, and B with A, 
changing the pairs in each round. As a result of these 
modifications, the Dissemination Barrier improves the 
Butterfly Barrier, and has 

! 

O[log2(N)] (being N the 
number of processes) concurrent network transactions. 

Figure 5 shows an example of synchronization using a 
dissemination barrier. 

6 Case study: queuing networks 
6.1 Testing application 

A testing application was constructed in order to 
verify a level of usefulness of the presented distributed 
simulation computational model and methodology. 
The application serves like a benchmark aimed to test 
as many designed concept properties as possible.   

The chosen application was a queuing network 
example contained as a part of the C-Sim (OQN 
example) distribution package. This queuing network 
consists of two n-channel serving nodes with n-
channel nodes and infinite FIFO queue. The network 
has two input streams of transactions and two output 
streams. The structure of the network is depicted at 
figure 9. 

 
Fig. 9 Queuing network 

Assuming exponential pdf of interarrival time of 
transactions within input streams as well as 
exponential distribution of serving times within the 
servers and channels, the queuing network can be 
solved analytically. Using 

! 

"
1
, 

! 

"
2
, 

! 

µ
1
 and 

! 

µ
2
 as the 

model parameters, we can obtain numerical results 
like mean frequency of internal streams, mean number 
of transactions within the system, mean time that a 
transaction stays within the system, and others. 

 
Fig. 10 Queuing networks scheme 

The application should be generic and scalable. These 
properties can be reached by connecting number N 
instances of the given network in a cascade. i.e. 
outputs of the ith member of the cascade are connected 
to the inputs of the ith+1 member. The final structure 
of the modelled queuing networks is illustrated by fig. 
10. 

It is possible to observe that output 1 (o1) of each 
queuing network Q connects to the input 2 (i2) of the 
next queuing network, the same for output 2 (o2) of 
the first, and input 1 (i1) of the next. Output 1 of the 
last member is connected to the input 2 of the first 
member. The input 1 of the first member has firmly 
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set λ input rate (stream of transactions from the 
modelled system environment) and output 2 of the last 
member goes outside (i.e. it models a stream of 
transactions leaving the modelled system). 

This kind of network can be used, for example, as a 
model of transportation system like a system of roads 
and crossings within a large town, transactions are 
abstract models of cars and single instances of the 
basic queuing network corresponds to parts (i.e. 
suburbs) of the town transportation system. 

The entire generic network can still be solved 
analytically (i.e. mathematical solution can be 
obtained for every n), so there is the possibility to 
check a precision of simulation results. 

Also, it enables the measurement of performance 
parameters, especially the speedup when we split a 
large simulation model into several communicating 
instances. 

6.2  Organization of the tests 

The queuing network model was written in C/C++ 
(the original examples from the standard distribution 
of the C-Sim simulation package have been slightly 
modified for the given purpose) representing a single 
instance involved within the distributed simulation 
program. The distributed simulation program is 
composed from N communicating instances. 

Communication is transparent from the side of single 
instance simulation program, i.e. the communication 
is provided by the underlying middleware layers, what 
means that no great modifications were need on the 
original simulation program. 

Single instances from the distributed simulation 
composition exports three simple data items: 

• 

! 

"
1
- Mean frequency of the first input stream 

• 

! 

"
2
- Mean frequency of the second input 

stream 
• Mean response time - time taken by a 

transaction since it arrives at the queuing 
network until it leaves. 

The data exported by each instance i is then imported 
by the i+1 instance (following instance in the cascade 
of instances), so the exported data record has the same 
structure as the imported data record. These data items 

are updated within the simulation instance with a 
chosen period. Internally actualized data are 
periodically exchanged among simulation instances 
within the time step synchronization action. 

It is possible to observe in figure 3 an example of the 
XML file used for definition of the simulation global 
data exchange. The case shown uses two instances. 

As a global result of the simulation, the mean time 
response (i.e. the mean passing time of transactions) 
for every member of the network cascade (sub-
network) is computed. 

The tests were run in a single computer, using two 
versions of the test program. In the first one, 
communication between the instances is simulated 
(i.e. the data exchange is done by simple assignment), 
being this test equivalent to running the simulation on 
a single computer, i.e. non-distributed version of 
simulation. The second version uses the developed 
CORBA framework for communications, in a single 
computer, in a concurrent way.  

The tests were intended to measure two parameters. 
The first test was made to measure the communication 
overhead and find out whether a speed-up happens 
and how that speed-up would vary. For this first test 
runs with both versions were executed using a fixed 
time-step of 5000 and varying the number N of 
simulation instances. 

The second parameter that it was intended to test was 
the precision of results compared with the simulated 
ones. Runs of both versions were made, using a fixed 
number of instances (in the case, four), and by varying 
the time-step. By measuring the final average mean 
time response according to different time-steps it is 
possible to evaluate the precision obtained, and also 
which is the best time-step for the chosen model. 

The numerical parameters of the model were set in a 
way, that the mean value of every lambda within the 
network should be 0.4 (i.e. 0.4 passing transactions 
per model-time unit in average) and the time response 
(i.e. mean passing time of transactions) for every sub-
network then should be 10.0. 

In both test the maximum simulation time was set to 
one million units of the model time.
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6.3 Results

 
Fig. 11 Chart illustrating speed-up and duration of simulation depending on the number of instances  

 
Fig. 12 Chart illustrating precision and elapsed time depending on value of time-step 
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6.3.1 Speed-up 

In fig. 11 it is possible to observe the elapsed time 
for the version with simulated communication and 
for the version with real communication, using the 
developed framework. 

It is possible to observe that the difference between 
the duration of the version with simulated 
communication and of the version with real 
communication is not too big. It is expected to be 
smaller when the computation ran in a network, 
since most of the communication would be parallel 
and not serialized as when it is run concurrently on 
a single computer. 

Speed-up was calculated as 

! 

n
t
sim

t
real

, being n the 

number of instances. It is possible to observe in the 
table in figure 11 that the speed-up achieved grows 
almost linearly according to the number n of 
instances.  

6.3.2 Precision and time-step 

In the fig. 12 it is possible to observe how the 
average mean time response of the simulation 
instances varies according to the chosen time-step. 
The theoretical value of the mean time response 
computed from side-staying mathematical model is 
exactly 10.0. 

The time-step values that yield the best precision in 
the version with simulated communication were the 
values of 5000 and 6500 (value of time-step 
simulation time). For the version with real 
communication the values were not so clear as with 
the simulated communication but the best time-step 
tested was about 6500. 

The result puts the version with distributed 
communication in a similar level of precision as the 
version with simulated communication. 

It is also noticeable that very small values of the 
time-step (<2000) are prohibitive, since both the 
elapsed time and the precision are not good. For too 
big values of the time-step (>10000) the simulation 
runs faster but the precision is lost. There is a trade-
off between performance (smaller elapsed time) and 
precision: except for very small time-step values, a 
shorter time step means better performance but 
worse precision 

7 Conclusion 
The proposed general programming model for 
discrete-time distributed simulation has several 
important advantages: 

The developed multi-layered scheme allows 
integrating single simulations in an easy and 
transparent way. It also makes possible easily 
exchanging or modifying the synchronization 
model in use. It brings the possibilities of testing 

multiple kinds of synchronization algorithms. 
Moreover, allows the model to be not only a 
platform to build distributed simulation program 
but also a basis of a framework aimed to develop 
and study synchronization algorithms.  

The fact that all the distributed simulation data 
exchange configuration can be specified in one 
place, and allowing the generation of tailored code 
ready to be used by the application ready to be 
integrated, simplifies in a great way the creation of 
a complex distributed simulation program. 

Several advantages come from using the CORBA 
communication model. It gives the model the 
possibility that different simulations, written in 
different languages, and running in different 
systems can easily be integrated, thus achieving 
inter-operability. Another advantage of the 
developed model is its reusability, once the model 
is implemented in one programming language, it 
can be used without modifications of the 
communication framework.  

The tests conducted shows that the developed 
model allows the parallelization of a simulation 
application with significant gains in performance, 
and without loss of precision, namely when the 
simpler (time-stepped) algorithm of model-time 
synchronization is utilized. 
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