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Abstract

Simulators are important components of operational decision support systems (ODSS). By
running a simulator in parallel with the real process more accurate information of the process
state can be achieved for the ODSS. However, in continuous use the properties of the system
may change which may cause parameters to drift and thus cause inaccuracy to the simulator
estimates and forecasts. In this paper we introduce a systematical method to update model
parameters through reference measurements, such as laboratory analyses, of the output state.
Updating  is  based  on  Bayesian  estimation  of  parameters.  Information  about  parameters  is
described as probability densities and thus takes into account also the uncertainty of the
information. For linear models parameter updating is a well-known and rather simple
operation because all the relevant probability densities are Gaussian and updating is Bayesian
tracking of their means and covariance matrices. For nonlinear models the distributions are
non-Gaussian which makes the task more complex. In this work we have approximated
nonlinear distributions with Gaussian mixture models (GMM). GMM is a linear combination
of several Gaussians and enables to describe more complex distributions keeping still the
calculations manageable. We demonstrate the method in this paper with a plug-flow reactor
which is an example of a dynamic and nonlinear process. We have simulated a bleaching
tower process in papermaking as an example of the plug-flow reactor.
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1 Introduction
An application area of simulation with particularly
high economic potential is within operator decision
support systems (ODSS), enabling dynamic
optimization. In decision support the uncertainty of
simulator estimates and predictions must be known as
decisions hinge both on predicted values and their
uncertainty, see e.g. [1].  The challenge in applying
simulation models within ODSS is that the model
parameter validity and the related uncertainty must be
continuously monitored and parameters updated.

Simulation model in an ODSS is a soft sensor which
estimates present process state or predicts future state
evolution.  As  the  parameters  of  this  soft  sensor  are
uncertain, also the uncertainty of the estimate needs to
be determined. If the uncertainty is not considered
important component of information in decision
making is neglected.

Uncertainties of parameters are described as
probability densities see e.g. [2]. By describing the
parameter information as probability densities, both
the estimates and the uncertainty of the estimates can
be assessed.

Model parameters are initialized with history data of
the process. As time evolves, the properties of the
system may drift due to changes in conditions not
included in the model: the model parameters are no
longer valid. Knowledge about the system decreases
over time and the uncertainty of the parameters
increases unless reference measurements about the
model output are obtained to update the parameter
information. In this paper we assume parameter
drifting to be unbiased and thus describe the parameter
information degradation as a random walk process.

This paper is organized as follows. In Section 2 we
review the general case of dynamic parameter
validation method and the update mechanism for the
parameters in general. We shall also discuss the
degradation of parameter information over time. In
Section 3 we present Gaussian mixture model (GMM)
to describe nonlinear probability densities and define
the  method  of  dynamic  validation  with  GMMs.  In
Section 4 we apply the method to a simple plug-flow
reactor  model  which  is  used  as  an  example  of
bleaching tower in mechanical pulping. The case is
nonlinear and dynamic and we show through
simulations how the extent, accuracy and frequency of
the reference data affect the quality of the model.

2 Dynamic validation
The method of dynamic validation consists of three
stages. The output state information is estimated
according to the process model always when input
data  is  available.  The  growth  of  parameter  and  state

uncertainties between the measurement instants are
described as a stochastic process. The parameter
information is updated if reference measurement of
the output state is available.

Let the process model to be
,xFy ,  (1)

where Ry  is the output, nRx  the input data

vector  and mR  the parameter vector. The
uncertainty of the model is described by
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covers all finite-impulse response models with proper
choice of input variables.

2.1 Diffusion process

In this paper we assume that if no new reference
information about the model output y becomes
available, the knowledge about the model parameters
 decreases via a random walk or diffusion process
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in which f  is the probability density of the parameter
vector, and the symmetric diffusion matrix D
determines the speed for the degradation. For
Gaussian distributions diffusion process keeps the
mean constant but the covariance grows as

11 nnnn ttDtt . The choice of D depends on
the process. It can be understood either as a tuning
parameter or identified from the data.

2.2 Validation of parameter distribution

In the beginning, parameter distribution is determined
on the basis of history data and/or expert knowledge
of  the  system.  As  far  as  no  new  information  of  the
output state become available, the information
degrades through the diffusion process.

If a reference measurement of the output state
becomes available, the parameter distribution can be
updated using Bayesian inference [3]
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2.3 Validation of output distribution

For output estimate, information can be updated
always when input data measurement measx  is
available at tn. Then the distribution for the output
estimate is
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which can be combined with a priori information, and
the distribution of the output is
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Similarly to parameter information, we assume the a
priori information to be based on earlier output
estimates and it to degrade through a scalar diffusion
process characterized by diffusion constant DY. Hence
Eq. (6) introduces a filtering on output predictions –
possibly nonlinear and with irregular sampling
interval.

If the reference information of the output state is
available,  it  can  be  combined  with  the  Eq.  (6)  in
Bayesian fashion.

3 Gaussian mixture model
If the model is linear, all the probability densities
introduced in Section 2 are Gaussian and the
parameter validation is straight forward: updating of
probability densities reduces to updating of mean
vectors and covariance matrices [2]. If the model is
nonlinear the probability densities will not in general
be Gaussian. In this paper the probability densities are
approximated with Gaussian mixture models (GMM)
[4] that are linear combinations of Gaussians:
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where is a collection of the distribution parameters
(ci,, i, i) and I is  the  number  of  Gaussians  in
probability density approximation. The probability
density parameters are identified with Expectation
Maximization (EM) algorithm [4, 5] from data or
histograms.

GMMs are particularly attractive for parameter
validation as their diffusion is solved analytically as
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This is shown in the Fig. (1).

Fig. 1 An example of diffusion for GMM. The
original GMM consist of three Gaussians which are

shown in the upper figure on the left. The combination
of those is shown on the right. The lower figures

shows the distribution after time steps t = 1 and t = 2.

Furthermore, if the likelihood and a priori density in
Eq. (3) are GMMs, then the posteriori density is also,
although of higher order. The growth of the order can
be prevented by estimating posterior density with a
GMM of the desired order.

3.1 Identification of distribution parameters

Let us assume that the histogram distribution of the
variable x is known as

hhXh
hist
X xVxfxf , (9)

where hx  is the center of histogram bar and hxV  the
volume of it. This distribution is approximated using
Gaussian mixture model. Kullback-Leibler (KL)
divergence [4] is used as a measure of the difference
between these distributions. By minimizing the KL-
divergence, the distance of the real and the
approximated distribution is minimized
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This  can  be  solved  using  the  well-known  EM-
algorithm [4, 5]. The target of the EM-algorithm is to
find optimal values for the parameter vector  of
GMM, Eq. (7).

In the beginning of the EM-algorithm the initial values
of parameters of the Gaussians are chosen, e.g.
randomly. Then in E-step the probability pkj that data
point xj belongs to the Gaussian k is
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where Ik . The superscript (-) indicate values
calculated in the previous iteration step and (+) the
new values.
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In M-step the parameters are updated using the
probabilities calculated in E-step
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These steps alternate until convergence to the optimal
values.

The  growth  of  the  GMM  order  when  combining
information in Eq. (3) and (6) can be prevented by
using direct histogram-based algorithm instead of the
regular EM-algorithm. In direct histogram-based
algorithm the center of the each histogram bins are
the  means  for  the  Gaussians  in  GMM  (Fig.  2).  The
height of the histogram defines the height of the
Gaussian. The covariance matrix is chosen by a user
between the means of the Gaussians. This method is
not as accurate as the EM-algorithm, and the number
of Gaussians is larger, but it requires less computation
and the order is not growing.

Fig. 2 An example of histogram based method for
GMM. The dotted line represents the center of the

histogram bar. The GMM of the histogram is shown in
the right.

3.2 Validation of parameter distribution

If the reference measurement of the output state is
available, the likelihood function of the parameters
(Eq. 4) can be identified and approximate with the
GMM as
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By combining that with a priori information
I

i
iiinap

ap Nctf
1

)( ,|;|  (14)

we get a posteriori distribution as
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As a product of two Gaussians is a Gaussian form the
a posteriori distribution is also a Gaussian mixture and
can thus be written as

I

i

J

j
ijijijnpost

post Nctf
1 1

)( ~,~|
~~;| , (16)

where the parameters are related through

111

11
,

1

2/12/

~

~~
2
1exp

det2~

jiij

jjiijiij

jiji
T

ji

ji
d

jiij dcc

(17)
and the probability density is properly normalized by
choosing
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If the means are fixed, i.e. the distribution parameters
are identified using histogram-based algorithm, only
the heights and covariance matrices need to be
calculated. When regular GMM is applied, the
expression (Eq. 16) is truncated to prevent increase of
GMM order. The truncation may be based on full
reduced-order GMM identification or elimination of
terms by minimizing the KL-distance between the full
and truncated probability densities.

4 Case: plug-flow reactor
We demonstrate the method of dynamic validation
with a simulated plug-flow reactor model. The plug-
flow  reactor  is  a  pipe  where  the  flow  is  through  the
reactor. It assumed that there is no mixing in the axial
direction or in the radial direction. The chemical
reaction  in  the  pipe  is  of  type  A+B  C and that
continues throughout the reactor.

Let us denote the position in the flow direction in the
reactor by x. The chemical reactions at each position
are described with simple kinetic equations
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where ci(x) are the amounts of the components at
position x. The model parameters of interest are the
kinetic coefficients k1 and k2.

The movement of material is described by writing the
mass balance in the form

Vdttf
t

tt
tot ')'(

)(

, (20)

where ftot is the total volumetric flow and (t) is the
residence time of material coming out of the reactor.

4.1 Bleaching tower in mechanical pulping

The plug-flow reactor model can be applied e.g. to
describe the pulp bleaching tower in the pressurized
ground wood (PGW) process in papermaking In the
PGW bleaching water, fiber (component A) and
bleaching chemical (B) are fed into the reactor.  In the
tower the fiber and the chemical react increasing pulp
brightness, but at the same time produce organic
substances (C). Typically, such organic substances
exist  also  in  the  inflow.  In  the  ODSS the  target  is  to
estimate the amount of the total organic carbon (TOC)
after the bleaching. The TOC is of interest because
high levels cause disturbances to the process.

TOC-concentration cannot be measured online.
Laboratory measurements of TOC are expensive and
available infrequently. By estimating TOC using
online measurements of other variables the expensive
laboratory measurements are needed rarely.

4.2 Behavior of the reactor

The  behavior  of  the  reactor  is  demonstrated  by  a
simulation with constant parameters. In this
simulation the input flow measurements are assumed
to be exact.

Before the simulation starts, the reactor inflow has
been 0.97 volume units/time unit (VU/TU) of water,
0.03 VU/TU fiber and 0.001 VU/TU total organic
carbon (TOC). No chemical has been fed to the
reactor prior to the zero time of the simulation. The
volume of the reactor is 30 VU. The model parameters
are k1 = 0.01 1/(TU·CVU) and k2 = 2 1/(TU·VU). The
simulation runs 500 TU.

Three actions are made on the bleaching tower during
the simulation period. At t =  0  chemical  flow  of  1
chemical volume units/time unit (CVU/TU) is
introduced into the inflow while all the other
conditions the same. At t = 250 chemical flow is
increased to 2 CVU/TU, and at t = 450 inflow is
increased by 2/0.97. The amount of TOC out of the
reactor is shown in the Fig. 3.

Fig. 3 Example of the PGW-simulator. The amount of
TOC out of the reactor in VU/TU when parameters are

kept constant k1 = 0.01 1/(TU·CVU) and k2 = 2
1/(TU·VU).

4.3 Simulation with drifting parameters

Fig. 4 represents the validation method for PGW-
simulation when the parameters are not constant.

Fig. 4 Scheme of parameter validation method. Thick
lines indicate operations when input measurements

become available. Thin lines indicate operations when
reference output measurements become available.

When online input measurements of the system
become available (thick lines), output estimate is
updated using the input measurements and process
model, and the uncertainty of the parameter
probability density is increased through the diffusion
process. When the output reference measurement
becomes available (thin lines), the likelihood function
is calculated and combined with the a priori
probability density.

It turns out that the parameter probability density
cannot be properly updated using only the reference
measurement of the output TOC, but also the
reference measurement of the outcoming chemical
concentration is needed. If the chemical reference
measurement is not used, the parameter distribution
spreads which make the parameter and thus the output

PGW-
model

L( )=
exp(-(TOCmeas–TOCpred( ))2/(2* 2))

f( )

Scan f( )*L( )

Normalize

TOCmeas

TOCpred

f(TOCpred)
x

D
PGW-
model
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estimates useless. Fig. 5 and Fig. 6 show the
parameter distribution with and without the reference
measurement of the outcoming chemical
concentration.

Fig. 5 The parameter distribution without the
reference chemical concentration measurement.

Fig. 6 The parameter distribution with the both
chemical and TOC reference.

5 Results
We studied the general method with the plug-flow
reactor by having one simulation model to represent
the true behavior with known parameter values,
drifting over time. Another simulator was acting as
that in ODSS. It had originally correct parameters and
a given parameter uncertainty, but the ODSS
simulator was able to track the parameter drift only
through reference measurements of TOC and chemical
concentrations, and parameter updating of Section 2.

The parameter uncertainties for the simulation model
were set to 5

1 101,2k  and 4
2 101,2k . The

diffusion  matrix  for  the  GMM  in  ODSS  was

8

10

1016,40
0106D .

The model uncertainty was set to 0005.0mod kg/s.
The uncertainty for the reference measurement of
TOC was 50TOC mg/l and for chemical reference

02.0chem kg/s. The diffusion coefficient used for
the output estimate in ODSS was DY = 10-7.

Fig. 7 shows the effect of the parameter uncertainty on
estimated value of the TOC-concentration, predicted
at each point with earlier model input history. The
upper figure illustrates the true (black) and the
estimated (grey) TOC-concentration at the output and
the lower figure the uncertainty of the prediction due
to parameter uncertainty described as standard
deviation of the output GMM. Black circles represent
the instants when the output reference values are
available. Uncertainty increases between the reference
measurements, but decreases discontinuously with a
new reference measurement.

Fig. 7 Top: the true (black) and the estimated (grey)
concentration of component C in output. Bottom: the
uncertainty of the estimate as the standard deviation.

Black circles show points of the reference
measurement.

Fig.  8  shows  the  expectation  value  and  the  GMM
variance of the parameter k1.  The true value is showed
by black and the estimated value by grey. Parameter
estimates are constant between the reference
measurements (circles). The parameter k2 is updated
similarly (Fig. 9).

Fig.8 The expected value (top) and the uncertainty
(bottom) of the parameter k1.

Fig. 9 The expected value (top) and the uncertainty
(bottom) of the parameter k2.
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6 Conclusions
This paper reports a practical dynamic parameter
validation method for nonlinear dynamic models. The
validation is based on Bayesian estimation and
information is described as probability densities. In
this paper the parameter probability densities have
been approximated with GMMs. The method is
demonstrated in a case of simulated plug-flow reactor.

In  this  study  the  uncertainty  of  the  process  model  as
well as the uncertainty of the reference measurements
has been taking into account. As a consequence the
parameter information and output state estimate
became uncertain. However the uncertainty of the
input measurements has not been taking into account.
This  does  not  change  the  basic  idea  of  dynamic
validation, but keep the method simpler. If both the
uncertainty of the input and the parameters are taken
into account the output state estimate would not be
Gaussian any longer.
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