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Abstract

The multi-server queueing system with a finite of an infinite buffer, with semi-Markovian input
flow (for positive and negative customers) and with Markovian Service Process (for positive
customers) whose the number of the states of the process and the intensities of the transitions
between phases depend on the number of the customers in the system is considered. An arriving
negative customer Kkills the one positive customer at the end of the queue. The relations and
algorithms for computation of the steady-state probabilities and for calculation of the steady-
state distribution of waiting time of positive customer are received. It is shown how the multi-
server queueing system with semi-Markovian input flow, the servicing of the phase type and
the above mentioned order of act of the negative customers can be bring to the general queuing
system.
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1 Introduction

In the course of operation of the inforcommunication
systems, an arriving customer may discharge unserved
from the buffer. This may happen because of different
circumstances. For example, a customer may be un-
served because of a virus penetrating the system.

The queuing systems and queuing networks with neg-
ative customers have gained wide use as the analytical
models of the infotelecommunication systems allowing
for such effects. The notion of negative customer was
introduced to the queuing theory by E. Gelenbe [1, 2].
In the traditional sense, the effect of a negative customer
arriving to the queuing system or a node of the queuing
network lies in that it “kills” (destroys) one ordinary
(positive) queued customer following which both cus-
tomers immediately discharge the system, the number
of waiting positive customers, if any, being reduced by
one. Later on Gelenbe (see, for example, [3]) extended
the notion of negative customer to the case where it
can kill a group of customers or empty the queue com-
pletely (disaster). The notions of the flip-flop pushing
the positive customer from one network to another and
the signal which with the given probability can be either
a traditional negative customer or a flip-flop [3] were in-
troduced in the queuing network. A vast bibliography
of the publications on the queuing networks and queu-
ing systems with negative customers or the so-called
G-networks and G-systems including the existing gen-
eralized notions of the negative customer can be found
in the reviews [4, 5].

The existing studies on the G-networks are confined
mostly to the class of the BCMP-networks [6] and their
modifications assuming the Poisson flows of both posi-
tive and negative customers and enabling one to deter-
mine the multiplicative form of the stationary probabil-
ity distributions of the system states. Since for the G-
systems the assumption of Poisson distribution and spe-
cial form of the servicing time distribution functions are
not mandatory, the publications on them consider queu-
ing systems with more complicated processes of arrival
of both the positive and negative customers, as well as
sufficiently general servicing processes. The present
paper analyses the multi-server G-system. Therefore,
we confine ourselves to a brush treatment of the multi-
server queuing systems with negative customers.

In [7] consideration was given only to the one-server
queuing system with finite buffer and repeated cus-
tomers to which a flow of the type of marked Markovian
arrival process (MMARP) arrives, the servicing times be-
ing distributed exponentially. We note that servicing of
the repeated customers is similar in a sense to servicing
in the multi-server system. An approximate method of
calculation of the stationary probability distribution of
the system states was obtained in [7] with regard for the
two types of negative customers and disasters. The sta-
tionary probability distribution of the system states was
determined and the nonstationary mode under high load
and disasters was studied in [8] for the M /M /n/0 sys-
tem with repeated customers under the assumption that
the negative customer kills a random number of cus-
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tomers. The multi-server queuing system with a finite
buffer, recurrent input flow, and Markov servicing pro-
cess of all customers was considered in [9]. At that,
the number of process states and the inter-phase transi-
tion intensities depend on the number of the customers
in the system. It is assumed that the flow of negative
customers is Markovian. At that, the arriving negative
customer removes a group of positive customers at the
queue head. For this queuing system, a recurrent matrix
algorithm to calculate the stationary state probabilities
was developed in [9].

Paper [10] considers the multi-server queuing system
with infinite buffer, Markovian input flow of positive
and negative customers, and Markovian (general) ser-
vicing process similar to that discussed in [9]. In dis-
tinction to [9], the arriving negative customer kills here
one positive customer at the end of the queue. We note
that the Markov process can be used with some loss
of generality as compared with [9] for analysis of the
queuing system at the passage from the recurrent flow
to the Markov flow. This spares us the need for bulky
calculations of the matrices required for analysis of sys-
tems by means of the embedded Markov chain intro-
duced in [9]. Thereby, the matrix algorithm obtained in
what follows is much more efficient than that of [9].

In the present paper, the multi-server queuing system
with infinite buffer, semi-Markovian input flow of pos-
itive and negative customers, and Markovian (general)
servicing process is under consideration. The arriving
negative customer “kills” here one positive customer at
the end of the queue.

The main performance characteristics of the system
which is a generalization of systems considered in [9]
and [10] are determined. We have to note that algo-
rithms developed in the paper could be applicated for
practical numerical calculations if one will use expo-
nential models and matrix power series (see, for exam-
ple, [11]).

2 Description of the Queueing System
with Infinite Buffer

First, let us consider a multi-server queueing system
with an infinite buffer, semi-Markovian input flow,
Markovian service process, and negative customers.
Describe the queueing system by the next way.

Semi-Markovian input flow (the generation process) of
customers (SM-flow) is defined below. We have semi-
Markovian process. This process functions in the finite
set of states (phases of servicing) {1,...,1}, I < co.
Distribution of the moments when the process leaps
from the i-th phase to the j-th phase is defined by two
functions: aq;;(x) and agsj(x), 4,5 = 1,1. Under
this condition a,;; () presents itself the probability that
semi-Markovian process leaps from the i-th phase to
the j-th phase immediately during time period of z-
length less and a positive customer (farther we shall
call a positive customer simply by a customer) arrives
also. The arriving of the positive (but not negative) cus-
tomer is the only difference of the function ag;; () from
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a1;5(z). Hereinafter we shall suppose for simplicity
that functions ay;;(x) and ag;;(x) have the derivatives
(the densities) ay;;(x) and ag;;(z). We shall note the

z).
matrices of the elements am (:c), aoij (), ay;;(x) and
ag;; () through A; (z), Ag(z), A (x) and Ay (z).

Let’s introduce the next marks:

1
Z [a145(z) + agij(z)], i =1,1,
Jj=1

o0

- / 2[4} (2) + Ab(2)] de.
0
Also we shall suppose that

A(z) = Ai(2) + Ao(2),
Ak = Ak(OO), k= 0,1,

It is intended that the matrix A is irreducible and non-
periodic, the matrix A; is not zero-matrix and all ele-
ments of the matrix A are finite. Furthermore when we
speak about the steady-state distribution per time we
shall consider that the customer generation times can
not mean jt only, where ¢ is the positive number and
j=0,1,....

It is possible to find the string vector 7gy =
(msmi,---,msmr) of the steady-state probabilities of
the states for embedded Markov chain of the semi-
Markovian input flow from the equilibrium equations
system (EES)

TsMA = Tsum

with the normalization condition
7_T’SI\/I T = 1a

where T = (1,...,1)7 is the column vector of unities
whose dimension is context-dependent (in the case at
hand, it is I).

The steady-state intensities Apos and Apeg Of the input
flows of positive and negative customers are defined by
formulas

1. . 1

Apos = gWSMAlly Aneg = gﬁSMAoly

where @ = 7y Al — the mean time between the ar-
rivals customers (of all types) under the steady-state
regime of semi-Markovian input flow.

Markovian service process (MSP) of positive customers
has the follow sense. There is a positive integer R called
the number of servers. Furthermore there is also a set of
positive integers (numbers of the servicing phases) J,,
r=0,R.

If the system has r, » > R, customers and the servic-
ing process is in the i-th state, ¢ = 1, Jg, then ser-
vicing of one of the R customers will be completed in
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a “small” time A with the probability p1 py1,4;A +
o(A), j = 1,Jg, which is independent on entire
process of system operation, the servicing phase will
change to the j-th one, the first customer from the queue
will taken for servicing, the rest of the customers will
shift with retention of their order. Additionally, the ser-
vicing phase will change to the j-th with the probability
Ho,R+1,i ;A + 0o(A), j=1,Jr, j # i, whichis also
independent on the system operation process, but the
servicing of any customer will not be completed.

The case of 1 < r < R differs from the above case only
that in a “small” time A the probability to complete the
servicing of customer (all customers are in servers now)
is p1ri; A +0(A), i =1,J,, j =1, J,_1, and that the
probability just to change the servicing phase to the j-th
oneis pori; A +o(A), i,j =1,J,, j #1i.

Finally, in the case of = 0 (there are no customers in
the system), the servicing phase can change from ¢-th to
j-thin a “small” time A with the probability oo A +

o(A), i,j =1,Jo, j #ionly.

Additionally, if r, 0 < r < R, customers are in the
system and a new (positive) customer arrives, then the
servicing phase will change from i-th to j-th with the
probability w5, @ = 1,J,, j = 1, 41, The matrix
of the elements w,;; will be denoted by €2,.. We shall
mark that a sum of row elements for matrix €2, is equal
to unity for any r (the matrix €2, is stochastic).

Farther we assume that Jg = J and denote the ma-
trix of the elements p1,4; and pory; r = 1,R, by
M, and My, respectively, the matrices of the elements
11,R+1,5,5 and po ry1,i,5. by My and My respectively,
the matrix of the elements poo;5, by Moo. Also we as-
sume that M = My + M.

We denote a string vector of steady-state probabilities
for the process of changes of the customer servicing
phases by Tysp = (mMmsp1, - - -, TMspy) under the as-
sumption that there is an infinite number of customers
in the system. Then this vector is found from the EES

wmspM = Tmsp
with the normalization condition

Tmspl = 1.

The negative customers act as follows. If there are r >
R (positive) customers in the system, that is, there are
queued customers, then the arriving negative customer
“kills” the last (positive) queued customer, and these
both customers leave the system. If there are r < R
(positive) customers in the system, that is, there is no
queue, then the arriving negative customer just leaves
the system without any influence on the system.

Farther we shall suppose that p < 1, where p obeyed
the formula

/\pos
Aneg + vsp Mi1 '

p:
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is called the system load. Furthermore we shall con-
sider the parameters of Markovian process to be given
by the way that all appearing embedded Markov chains
will be irreducible

3 Steady-State Distribution of the Queue

Let’s denote the notation.

Let us mark by By (x), k > 0, | = 0, min{k, R}, the
matrix, whose element Byy;; (), ¢ = 1,Jg, j = 1,J,
is the conditional probability that there will [ customers
exactly at the moment x in the system and the servicing
phase will the j-th, provided there are k customer at the
moment 0, the servicing phase is the i-th and during the
period of z-length none of customers will have arrived
in the system.

Let Bi(z), k > 0, is the matrix whose element
Byij(z), i,j = 1,.J, is the conditional probability that
exactly k customers will be served during the period of
z-length and the servicing process passes on the j-th
phase, provided there are k + R or more customers at
the moment 0, there is the i-th servicing phase and dur-
ing the period of z-length any customers will not arrive
in the system.

Let By, (), k > 1, is the matrix whose element
Byij(z), i,j = 1,.J, is the conditional probability that
during the period of z-length k or more customers will
be served and at the moment when the k-th customer
complete the servicing the process of the servicing will
pass on the j-th phase provided there are k + R or more
customers at the moment 0, there is the ¢-th servicing
phase and during the period of z-length any customers
will not arrive in the system.

The matrices By (z) and By;(x) satisfy the recurrent
relations

Bkk(lf) = eMOkac, k= O,R,

By (x / Moy M, By 1 (x — y) dy,

0

k=T,R, 1=0k—1,

Bo(ﬂf) = eMO“”,
/ (y) MyeMoE=Vay k> 1,
0

T

By () = /kal(y)Mldya k>1,
0

Bp(z) = /Bk—R—1(y)Mle(x —y)dy,
0

k>R+1, 1=0,R,

and the matrix By, (z) is of form

By (x) = By (z)8.
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To find the steady-state distribution of the customers
number in the queueing system we shall use an embed-
ded Markov chain formed by the numbers of (positive)
customers after the arrivals of any customers directly
and by phases of the customer generation in these mo-
ments.

An element By, k,l > 0, of the matrix B of inter-
phase transitions probabilities for embedded Markov
chain has the form

B =0, k>0, I >k+2,

Bitik+1 =B, k> R+1, 1 >0,

Bk:/A' (z) ® Bi(z)dz, k=0,1,

/A’ m)®Bk )
0
Ap(2) ® Bs(@)] de, k> 2,

Bk,R—H = [All (Z’) & BkR(LE) +

Ay(z) ® Br—p—2(x)] dz, k> R+2,

Binr = / A (x) ® Bug()dz, k=R, R+1,

= [ [4@) 0 B 1(o) + 4y(o) @

Bi_g-1(z) + Aj(z) ® Brr(z)] dz, k> R+1,
Bgrr = / [A}(z) © B gy (2) +
0
A6($) X BRR(Z')] dx,

oo

Bixss = /A’l ()@ Biy(2)dz, k=0 R—T1,

0
Bkl:/
0

) @ Biy_y (¢) + Ay (2) © By()] de,

k>1, I =1,min(R - 1,k),

Byo = /Af)(x) ® Bro(z)dz, k>0,
0

where “®” is the symbol of Kronecker matrix product.

We denote by ., r > 0, the string vector whose co-
ordinates p,,, wheren = 1,1.J, forr = 0, R — 1 and
n = 1,1J for r > R, are the steady-state probabilities
that there are r customers in the system and the phases
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of the processes of customer generation and servicing
are ¢ and j respectively. To apply Kronecker matrix
product farther it is marked here that n = (€] ® €}') 7.,

7, = (1,2,...,1J,)T is column vector of size I.J, or
IJ, and €/ and €/ are the string vectors of sizes I and
J,- or J, where the i-th and j-th coordinates are ones,
the rest coordinates are zeros.

To find of the steady-state probabilities for embedded
Markov chain the EES is of the form

ﬁO = ZﬁrBrOa (1)
r=0
0
pr = Z PnBnr, T=1,R+1, (2)
n=r—1
o
ﬁr = Z ﬁnBr—n—la T > R+ 2:
n=r—1

with the normalization condition
o0
dopl=1 (3)
r=0

Under r > R + 1 the steady-state probabilities p;. is of
the form (see [12])

Py =PraG" L > R4, (4)

where the matrix G is the unique solution of the equa-
tion

G=) G'By, (5)
k=0

whose all eigenvalues are less than one.

Supposing that

Gy =) Gf{._1)Bx
k=0

the equation (5) can be solved numerically by the iter-
ations method. The zero matrix is suitable as the zero
iteration (o). Then the iterative procedure is the non-
decreasing matrix sequence converge to the solution of
the equation (5) i.e. to the matrix G.

The rest unknown vectors p,., r = 0, R + 1, are found
from the equations (1), (2). Then

R
ﬁO = ZﬁrBTO +ﬁR+1B07
r=1

R
Dr = Z ﬁan,r—l +ﬁR+lBr7 r=1,R+1,
n=r—1

where

B,= Y G "B, r=0,R+1
n=R+1
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Herewith the normalization condition (3) takes the form

R
<Zﬁr + PR (1 — G)_1>T: L.

r=0

In conclusion of this section let’s cite the formulas for
calculation of string vector ¥, r > 0, whose coor-
dinates pj,,, where n = 1,1.J, under r = 0,R—1
and n = 1,IJ under r > R, are the steady-state
probabilities in arbitrary moments (per time) that there
are r customers in the system, and the servicing and
generation phases are ¢ and j respectively. Either as
previously it is marked here that n = (€] ® €]')7,,
#. = (1,2,...,1.J,)7 is the string vector of size I.J, or
IJ,and & and €/’ the string vectors of sizes I and .J,. or
J, whose the i—tfl and the j-th coordinates are ones re-
spectively, and the rest coordinates are the zeros. These
formulas have the next form:

L1
B=2 2 P / A“(2) @ By, (x)dz, r=0,R,
n=r 0

(o)

1
Pr = gzpn/A(d)(x)@)anr(fc)dfca r>R+1,
n=r 0

where A(®(z) is a diagonal matrix with the elements
1 — a;(z) on the major diagonal.

4 The Steady-State Distribution of Wait-
ing Time

Primarily let’s define the steady-state probability i
of the (positive) customer “killing”. It should be men-
tioned that that this probability does not depend on what
queued customer will be “killed” by the negative ar-
riving customer. Since the customer is “killed” in the
case only if the negative customer arrives and catches
k > R + 1 customers in the system then on changing
the state of the embedded Markov chain under the con-
dition that 7 > R+ 1 customers had been in the system
at the previous moment when the embedded Markov
chain varied its state the “killing” probability is

r o0

Z /Aé)(x)@)Br—k(x)de:

k=R+1

oo

/[Ag(x)f] ®[1- BT,R(x)l] de, r > R+ 1.
0
Hence with provision for (4) we have

Tkil = 2 Dr /[AB(.Q?)T] ® [T— BT_R(:I:)T] dx =
r=R+1 0

Pri1 Y G" / [AL(2)T] ® [T — Br_g(2)1] da.
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Now let’s consider some abstract auxiliary queueing
system with an infinite buffer and semi-Markovian con-
trol. This system consists of the same semi-Markovian
input flow of positive and negative customers like for
the source system but herewith the positive customers
do not service and merely agglomerate in the system
and each negative customer “kills” exactly one positive
customer.

Via g;;(x), i,j = 1,1, let’s denote the probability that
the busy period (BP) of auxiliary queueing system will
less than x and the customers generation process passes
to the j-th phase after completion of BP provided BP
begins under the ¢-th phase immediately after a positive
customer arrives in the system. Denoting the matrix
with elements g;; () via Q(z) we have

Q'(x) = Ab(x) +
/ A(y) dy / Q)@ —y—2)dz  (6)
0 0

It is necessary to note that if the system load p =
Apos/Aneg is more than one in the auxiliary queueing
system then BP of this system is unowned casual value,
i.e. all coordinates of the vector Q ()T is strictly less
one.

We mark also that using the next notation in terms of
Laplace-Stieltjes transform

QOs) = / e Q (x) de
0

Let’s turn to the source queueing system. The steady-
state probablhty p,F that there will r (positive) cus-
tomers in the system after a (positive) customer will
arrive is of the form

00 o0
it = S p / Al
WSMAI n=r—1 o

B, ,-1(x)dz, r=1,R+1,

1 o0
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We find now the steady-state distribution F'(x) of the
sojourn time in the system for “killed” customer. If
there are » > R + 1 customers in the system after the
arriving of positive customer then the density of the dis-
tribution of the sojourn time for this customer till the
moment of the “killing” is of the form

T

Z [Q'(z) ® By_i(2)] I =
k=R+1
Q@I ®[-Brr@)]i], r>R+1.

Thence we get that the steady-state density of distribu-
tion F' () of the sojourn time in the system for “killed”
customer is given by

Fla) == Y #1Q@e - Ba@]il
1 r=R+1

Let’s turn to definition of the steady-state distribution
W (x) of waiting time for a “non-killed” customer. If
there are 7 > R + 1 customers in the system after the
arriving of positive customer then the density of the dis-
tribution of the sojourn time for this customer is of the
form

(B - Q@) 1] @ [B,_p(«)M T

-

[I- Q@)1 @ [Br—p_1(x)M 1], 7
Thus W (x) is given by

v

R+ 1.

W(z) =

- > ~+/1 Q)T e
ﬂ-kllr R+1 .

[B,—r-1(y)M1T]dy, = > 0.

In particular the steady-state probability 7, that the
arriving “non-killed” customer begins to service imme-
diately is of the form

7rll’l’lI‘I"l - ]' 1 _ 7Tk11 Z

r=R+1
/ [T - Qx)1] ® [By—p_1(x)M, 1] dz
0

5 Queueing System with Finite Buffer

Let’s consider now the same queueing system like ear-
lier, but with a finite buffer of S-capacity. A customer
arriving in the filling system (all servers and the whole
buffer are busy) is lost.

‘We shall not examine the cases of buffer lack and buffer
with one place that are given formulas with some dif-
ferences from the other cases shall intend farther that
S > 1.

The steady-state distribution exists in the system with
finite buffer under any (finite) load p.

Copyright © 2007 EUROSIM / SLOSIM



Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic)

Introducing either as previously an embedded Markov
chain formed by numbers of (positive) customers im-
mediately after the moments when (any) customer ar-
rives in the system and by phases of customers gen-
eration and servicing (now this chain has already a fi-
nite set of states) we get the next EES to calculate the
steady-state probabilities of embedded Markov chain:

R+S
ﬁO = Z ﬁT’BTO?
r=0
R+S
Z ﬁanra r=1,R+1,
n=r—1
R+S
Z ﬁnBr—n—la r= R+2aR+Sa
n=r—1

with normalization condition

R+S

Zpr::

where the matrices By, k,I = 0, R+ S, are defined
by the same formulas like ones were used earlier with
the exclusion of the matrix B4 s r+s having the form

Brys,r+s = B + DBy.

The steady-state probabilities of states at arbitrary mo-
ments are given by the formulas
1 B4

anfA

R+S o0

Zp /A(d ®

B,_,(z)dx, r=R+1,R+S.

x) ® Bpr(z)dx, r=0,R,

The steady-state probabilities my;; of the “killing” of
customer and m,s Of the customer lost due to buffer
overflow are defined by the next formulas

R+S ~
wkll_zpr/A' V1)@ [T - B,— () 1) de,

r=R+1 0

Tos

= Pres / (AL (2) T] @ [Bo(x) T) da-
0

The steady-state probability p" meaning that there are
r positive customers in the system after an arrival of
a (positive) customer is (with provision for phases of
customers generation and servicing at this moment)
R+S
—>+ - - pn / AI I) ®
1

by

7TSMA1 i
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Bn,rfl(x) dl’, r= 13R + 17

R+S
St /
D pn/Al
' ﬂ-SMAl nzr:l

Brfnfl(m)dma r= R+23R+S_ 1,

1
RomAr T

o+

Prys = (ﬁR+s-1 /A'1 (z) ® Bo(x)dx +
0

oo

Pris / (2) ® [Bo(x) + By (2)] d )

0

Let ﬁTn(m), r=1,S, n=0,5 — r, is probability that
a customer will be “killed” moreover till the moment x
provided at the initial moment the customer is the r-th
in the queue and there are n customers after this one in
the queue yet (a record in the form of a column vector
takes into account the phases of customer generation
and servicing at the initial moment). Then

Froe) = [4h(@) T © [T - B,(x) T] +
[ S A B wIF (e dy, 7 =TS,
Fal) = [ SIS BIF s (e-0) dy +
0 k=0
S 145 () © B (& — 9) dy,
0 k=0
r=1,5-2 n=1,8—-r-1
Fiole) = () T @ [T - Bs(a) T] +

/ZA’ (1) ® Ba()|Fs_ (@ — ) dy +

1410 Baw) (e~ ) do,
0
() =
r—1
/2 9) © BeWE s (e —y)dy +
k=0
r—1
/ STAL ) © Be)FL_ g5z — ) dy +
o k=1

/ 4, (5) ® Bo(w)]F'g_ (¢ —y) dy, r=T,5 1.

0
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The steady-state density of distribution F'(x) of so-
journ time for “killed” customer is given by the relation

<ZpR+r rO(m

7Tk11

o0

[ﬁR+Sl /A'1 (y) ® Bo(y) dy +
0
ﬁéo(@)-

Let’s denote via Wyp(z), r = 1,5, n = 0,5 —r,
the probability that a customer will be served (i.e. a
customer will not be “killed” by a negative customer
and will not be lost on account of the buffer overflow)
and will wait to start the service during the time pe-
riod which is less than z provided at the initial moment
this customer occupies the r-th place in the queue and
n customers stay behind it in the queue yet (with provi-
sion for phases of customers generation and servicing at
the initial moment). Then the next relations hold good

o0

DR+S / A

0

y) ® Bi(y) dy

= -

ro(2) = [T = A@)1) @ [By—1 ()M 1] +

/ A5 (4) © By (2 — ) dy +
0 k=0
[ S50 © B sl — ) o

r=1,S-1 n=1,8—-r-1,
® [Bs—1(z)M; 1] +

/ i[A’o(y)®Bk(y)] ik s—r—1(@ —y)dy +
0 k=0
[0 B oo = )y +
o k=1
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/[Au )@ Bo)|Wg_(z—y)dy, r=T.5 1.

0

The steady-state distribution W (z) of waiting time for
served customer is given by formula

W(z) = 1—/ +W’ +
@) 1- 7Tk11—7flos< ER;I 2
[ﬁR—l—S 1/A Z)®B() )dZ+

0
DPR+S / A} (z) ® Bi(z) dZ] Wé‘o(ﬂ)) dy.
0

In particular the steady-state probability 7y, that an
arriving (served) customer begins to service at once has
the form

o0

T =1-/—
e /1 Tkil — TMos (
0

lﬁRJrs 1/A ) ® Bo(2)dz +
0

Zp

=R+1

oY) +

pR+S/A ® Bi( )dZ] Wéo(?/)) dy.
0

6 Queueing System with Phase Distribu-
tion for Input Flow of Positive and Neg-
ative Customers

Now we show how the queueing system with phase dis-
tribution for the input flow of positive and negative cus-
tomers which was considered in [10] can be led to the
system researched here.

Let the new queueing system differs from the sys-
tem examined above only that the arrival input flow
(the generation process) of negative and positive cus-
tomers is Markovian, moreover a matrix whose ele-
ments are the intensities of arrivals of positive cus-
tomers is marked through A1, a matrix whose elements
are the intensities of arrivals of negative customers is
marked through A and a matrix whose elements are the
intensities of states changes of generation process with-
out an arrival of customer is marked through A. Then in
order to lead the new system to the system researched
earlier it is necessary to suppose that

Ap(z) =

ANy, Al(x) = eMA. (7)

The other formulas stays without any changes.

Let the general Markovian input flow of positive and
negative customers is superposition of two independent
Markovian flows (the flow of positive and the flow of
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negative customers) and at the same time the flow of
positive customers is defined by the matrices Apos and

Apos of order I; with elements that are intensities of
phase changes for the generation process of positive
customers with and without an arrival of customer re-
spectively, but the flow of negative customers is defined
by the matrices Ape, and /N\neg of order I, whose el-
ements are intensities of phase changes for the gener-
ation process of negative customers with and without
an arrival of customer respectively. To lead this sys-
tem to the queueing system which is considered above
it should be assumed in this case (see [10]) that

Al = Apos ® EIQ)
AO = Eh X Anega
A= ]\pos @ /N\neg = ]\pos & EIg + Eh & [\nega

and then to apply the formula (7) mentioned above.

It should be noted that the matrix algorithm for the
queueing system with phase distribution of input flow
of positive and negative customers which is obtained in
[10] is greatly more effective than this algorithm pro-
posed here since that one rids of the rather bulky calcu-
lation of matrices that are required under the analysis of
the systems by means of embedded Markov chain.

7 Queueing System with Phase Distribu-
tion for Service of Customers

Let us consider a multi-server (R-server) queuing sys-
tem with the SEMI-Markovian input flow of posi-
tive and negative customers, phase distribution (PH-
distribution) of the customer servicing time, and the
aforementioned order of action of the negative cus-
tomers. We assume that the PH-distribution H (z) of
the customer servicing time by each server is character-
ized by an irreducible PH-representation (h, H) of the
order K (see, for example, [11]).

Let us see how this system can be reduced to the afore-
mentioned general queuing system. To this end, one
can define the initial parameters of the queuing system
in the following way. Let us assume that J, = K7,

J=KR, H* = h® 1 We denote by H(% the diag-
K

onal matrix with the diagonal elements hE?) = hij.
j=1

The matrices of the elements M;y,, My, M; aHd My
are defined as follows

My, =[HY @ Ex ®...® Ex +
Ex @ [HPT®...9 Ex +...+
Ex ®Eg ®...® [HP1], r=1,R,

where the number of addends and the number of multi-
pliers in each addend are equal to r,

M =[HYH)®Ex®...® Ex +

Ex@HYH)®...0 Ex +...+
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Ex @ Eg ®...® [HYH*],

where the number of addends and the number of multi-
pliers are equal to R,

My, =H®Er®...® Eg +

Fk9H®R..QFEk +...+
Fr®FErk®...H, r=0,R—1,

where the number of addends and the number of multi-
pliers are equal to r,

My=HQRFErg®...0 Ex +
FEk@HR®R.. FEgx+ ...+ Egxk @ Fxk ®...Q H,

where the number of addends and the number of multi-
pliers are equal to R,

1
Qr:;(H*®EK®...®EK+

Ex@H*"®...Q Eg + ...+
Exk®Ex®...H"), r=0,R—1,

where the number of addends and the number of multi-
pliers are equal to r + 1.

The total time of customer sojourn in a phase-type sys-
tem is consists of the waiting time and the servicing
time proper. Therefore, the stationary distribution V (¢)
of this time for the serviced customer obeys the formula

V(z) = / W(e - y) dH(y).

‘We note that the above numeration of the states leads to
an extremely great number of states J even for a small
number of servers R. A much more economic method
of numeration can be found in [12].
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