
A HIERARCHICAL FUZZY APPROACH TO
TEMPORAL PATTERN RECOGNITION

Gernot Herbst, Steffen F. Bocklisch

Chemnitz University of Technology, Faculty of Electrical Engineering
D-09107 Chemnitz, Germany

gernot.herbst@etit.tu-chemnitz.de (Gernot Herbst)

Abstract

In this contribution an approach for modelling and recognition of complex patterns in mul-
tivariate time series is being presented. Spatial, temporal and predicate logical elements are
integrated into a model and may be built upon each other hierarchically. Integration of uncer-
tainty and fuzziness as well as seamless interpretability are particularly emphasised. The focus
of interest lies on the treatment of temporal expressions. For this purpose several options for de-
scribing and measuring the fulfilment of temporal requirements are introduced. Finally a novel
generalised temporal measure emerges from these, offering a comprehensive parameterisable
method to express temporal expectations. The classification of multivariate spatial information
by means of the established Fuzzy Pattern methodology forms the basis of the model presented
in this article. Temporal aspects can then be incorporated by analysing the development of
fuzzy truth values over time. For the formulation of temporal requirements a so-called expec-
tation function is introduced. In conjunction with a novel parameterisable measure which is
employed to assess the expectations, this enables the model to describe a wealth of temporal
expressions. The degree of fulfilment of a temporal expectation itself constitutes a new fuzzy
truth value that evolves over time, therefore it can be processed likewise in subsequent steps.
In this way, spatial and temporal elements of the model of a temporal pattern can be nested
hierarchically. Since this approach relies on fuzzy truth values throughout the model, all ele-
ments can be arranged arbitrarily according to the requirements of the user, whilst maintaining
interpretability and transparency. It is shown that verbal knowledge about a temporal pattern
can be transformed to such a model in a straightforward way.

Keywords: Multivariate time series, temporal pattern recognition, fuzzy systems, decision
support systems.
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1 Introduction
How can a complex pattern in a multivariate time series
be characterised? Let us therefor consider the proper-
ties of such a pattern. In technical or medical diag-
nosis, for instance, the development of diverse sensor
values are being evaluated to detect important phenom-
ena such as defects or diseases—provided that the man-
ifestation of a phenomenon can be captured by sensors.
When regarding diseases, our everyday experience tells
us that they are typically being diagnosed from a combi-
nation and sequence of certain ”events“. Such an event
often makes itself perceivable by specific measured val-
ues, and it runs through a distinctive temporal devel-
opment. Differences within this temporal development
can be decisive in distinguishing several diagnoses [1].
A complex diagnosis may now consist of a combination
of these events, some of which must occur (in terms of
a logical conjunction), some may occur (in terms of a
logical disjunction), some in a certain sequence, some
at arbitrary times. Partial diagnoses may furthermore be
incorporated into more specific diagnoses which build
on these.

To summarise, a pattern comprises spatial, temporal
and predicate logical aspects that must be considered.
Fig. 1 depicts a pattern consisting of three subpatterns
(events). The temporal extent of these events must not
be misinterpreted as sharply delimited, since the devel-
opment of an event neither commences nor ceases sud-
denly in most realistic cases. Therefore a sharp descrip-
tion of the temporal relation e. g. by means of Allen’s
interval logic [2] appears unsuitable for practical appli-
cations. Especially for medical issues precise details
are often inappropriate and infeasible [3]. In addition to
the uncertainty of spatial information this must be taken
into consideration when treating temporal information.

t

Event 2

Event 3
OR

AND
Event 1

Fig. 1 Example of a compound temporal pattern

In this article an approach for the description of com-
plex temporal patterns in multivariate time series will
be introduced which combines spatial, temporal and
logical elements. The uncertainty and fuzziness associ-
ated with each of these aspects shall explicitely be taken
into account. It aims at building a system that may serve
for on-line supervision or decision support purposes.

2 A model for temporal patterns
Many approaches to local pattern recognition in time
series confine to spatial information. As soon as new in-
formation (measured data) becomes available, the data
is being compared to all known patterns to deduce a di-

agnostic statement. If derived features are being used
instead of the measured values, relatively complex pat-
terns can be recognised by incorporating powerful sig-
nal processing techniques. But typically the temporal
development of the patterns is not considered, albeit
temporal aspects might implicitely be present within the
features utilised.

A successful approach for describing multivariate pat-
terns within this context is the method of Fuzzy Pat-
tern Classification [4]. Besides the inherently multi-
variate mode of operation, its advantages include the
possibility to incorporate fuzziness in the description
of patterns as well as their compact, parametric repre-
sentation. Fig. 2 shows this method’s flow of informa-
tion from measurements to classification results. Every
set of measures—or optionally features—is assigned a
fuzzy membership grade to each of all known patterns
(classes). This corresponds to a transformation of a
time series of sensor information z(t) or features x(t)
to a time series of continuous membership values µ(t).
The diagnostic problem for phenomena would only be
completed therewith if they underwent no characteristic
temporal development.

The remaining part of this article shall be based upon
the so-generated time series µ(t) to include temporal
and logical elements in the description of a pattern.
µ(t) already represents symbolic knowledge, viz. the
degrees of fulfilment of the spatial requirements of all
known patterns (events). The temporal progression of
these truth values can now be evaluated independently
of the scaling of the measurement data, as there now
exists a time series normalised to [0, 1]. At this point it
is already possible to describe logical relations between
events using fuzzy operators. Hence two of the three
requirements postulated in Section 1 are already imple-
mented: the fuzzy treatment of spatial information and
the use of predicate logic in a fuzzy manner as well.

For the formulation and verification of temporal re-
quirements a combination of a so-called expectation
function or pattern e(τ) and a comparison operation (as
a measure for the fulfilment of an expectation) is being
proposed in this article. The fundamental idea is to treat
the course of a truth value µ—which can stem from spa-
tial classification as well as logical operations—up to
the current point in time t as a fuzzy set containing (po-
tentially all) previous truth values. Their age shall be
termed τ , such that µ(τ = 0) corresponds to the most
current information available. The fuzzy set is therefore
sinistrally bounded by τ = 0. At every point in time t
a new set becomes available, hence it can be referred
to as a time dependent fuzzy set [5] and shall be termed
µ(t, τ). An exemplary set ist shown in Fig. 3.

The expectation function e(τ) forms a fuzzy set as well
and can, for instance, be interpreted as a temporal frame
for the occurance of an event (cf. Fig. 5). Sections 3
and 4 will be dealing with different interpretations of
the expectation pattern and provide measures for the
fulfilment of the respective temporal expectation. At
this time it is important to know that this will result
in continuous truth values as well. So all requirements
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Fig. 2 Information flow from raw sensor data to features and their fuzzy classification (example with two classes
in a two-dimensional feature space)

τ

µ(t, τ)

µµ = 1

Fig. 3 Example of the temporal development of an event
µ(t, τ). Note that the τ axis is displayed mirroredly.
Since τ represents the age of the truth values, the course
from left to right portraits the temporal development up
to time t that way.

of a pattern—spatial, temporal and logical—will be as-
sessed by fuzzy truth values at each point in time, thus
forming time series of their own. Since temporal and
logical expressions are both based on courses of truth
values here, they can be arranged and nested in a hier-
archy, forming a representation of a complex temporal
pattern.

An exemplary information flow employing truth values
of different symbolic meaning can be found in Fig. 4.
Two membership values, that could, for instance, stem
from a spatial classification according to Fig. 2, are
firstly compared to different temporal expectations. Af-
terwards, these degrees of fulfilment are being logically
combined to the total degree of fulfilment of this tem-
poral pattern. The result can lateron be processed by
subsequent temporal or logical operations.

One important feature of the model presented here is
that truth values are being used throughout as soon as
measurement values have been transformed to mem-
bership grades by means of fuzzy spatial classifica-
tion. These truth values can equally well represent ex-
pert opinions. In contrast to traditional decision sup-
port systems, experts may not only use the information
presented at the output of the system, but just as well
bring in their knowledge as additional input during on-
line operation. Thus information which is not or hardly
measurable can be integrated and processed, too.

3 Comparison of temporal expectations
and the actual manifestation

As already mentioned in Section 2, the expectation
function e(τ) may adopt different meanings in the for-
mulation of temporal expectations. The differentiation
takes place in the manner of comparing the truth values
µ(t, τ) of an actual event with e(τ). Three distinctive
interpretations have to be considered and will be de-
scribed in the following.

3.1 e(τ) as temporal frame

In this case, the expectation function e(τ) acts as an
unsharp time frame for the occurrence of an event. De-
pending on the dimensioning of this frame there are still
many degrees of freedom for the actual manifestation
of an event. Of prime importance is that an event takes
place, not how or when exactly. There are no require-
ments regarding the persistence of an event—as long as
it remains within the time frame.

τ

e(τ)
µ(t, τ)

Fig. 5 Exemplary event according to Section 3.1. It
almost completely occurs within the fuzzy time frame
e(τ) (plotted in grey).

As stated before, an event typically does not occur in-
stantly, but rather develops within a certain period of
time (as in Fig. 3) with possibly fuzzy boundaries. Thus
for the assessment of an event, it appears necessary
to consider its complete course of truth values µ(t, τ)
(compare Fig. 5). As a measure of fulfilment of the
expectation ”event occurs within e(τ)“, we therefore
propose the object-based covering ratio [6] as shown in
Eq. 1. This conforms to a classification of a dispersed
fuzzy object µ(t, τ) when e(τ) is being treated as the
corresponding class. It is important to note this simi-
larity in the assessment of temporal and spatial require-
ments by means of fuzzy classification.
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Fig. 4 Information flow from membership degrees to the total degree of fulfilment of one temporal pattern

dof1 =
∫
∩(e(τ), µ(t, τ)) dτ∫

µ(t, τ) dτ
(1)

If an event shifts away from the core area of temporal
attention, this will result in a floating transition from
fulfilment to non-fulfilment of the respective temporal
expectation. As demanded in Section 2, the presented
measure of fulfilment provides a continuous truth value
therewith. This truth value again represents a new,
higher-level symbolic meaning, but keeps signal char-
acter [7]. The underlying temporal information about a
developing process is therefore preserved and may be
furthermore evaluated in subsequent steps.

3.2 e(τ) as reference run

A different interpretation arises if e(τ) is being treated
as a reference run for the truth values of µ(t, τ), there-
fore posing very distinct requirements upon the devel-
opment of an event. e(τ) might represent a prototypic
course gained from a learning process.

τ

e(τ)

µ(t, τ)

Fig. 6 Example of an event according to Section 3.2.
e(τ) acts as reference run that is being reproduced by
the actual event relatively well.

The persistence of the event is now determined by e(τ)
and leaves no degree of freedom, contrary to the case
of Section 3.1. Any deviation from the reference run
should diminish the degree of fulfilment of this tem-
poral expectation. Thus a similarity measure has to be
used as measure of fulfilment now. Here, the gener-
alised covering ration of µ and e (Eq. 2) will be pro-
posed. It is a fuzzy measure and tightly related to Eq. 1.
This relation will be taken advantage of lateron.

dof2 =
∫
∩(e(τ), µ(t, τ)) dτ∫
∪(e(τ), µ(t, τ)) dτ

(2)

3.3 e(τ) as minimum run

A third interpretation finally arises when the persistence
of e(τ) is to be surpassed by an event. Hence e(τ) acts
as a minimum run for the truth values of µ(t, τ). Thus
e(τ) could also be looked at as a testing window during
which the continuous occurrence of the event is being
required (Fig. 7).

τ

e(τ)

µ(t, τ)

Fig. 7 Exemplary event for Section 3.3. e(τ) acts as
testing window for its persistence. The event µ depicted
here fulfils these requirements almost completely.

Comparing to case 1 (Section 3.1) one might note that it
is now e(τ) which has to be contained in µ(t, τ). µ and
e can be said to have changed their roles. Analogously
to dof1 we now propose an object-based covering ratio
as measure of fulfilment which is—contrary to dof1—
applied to e as an object (cf. Eq. 3). A similar measure
is also used by [8] to assess the partial fulfilment of
a temporal expectation. dof3 and dof1 form opposite
measures based on oppositional expectations regarding
the persistence of an event.

dof3 =
∫
∩(e(τ), µ(t, τ)) dτ∫

e(τ) dτ
(3)
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3.4 Discussion

A trivial measure of fulfilment

All interpretations dealt with in Sections 3.1–3.3 regard
an event characterised by its temporal development. A
trivial fourth case emerges if only one truth value of
µ(t, τ) is being used to assess the occurrence of an
event, that is if—in an optimistic manner—only the best
possible realisation of µ within the window e is consid-
ered, as can be seen from Eq. 4. This nonpersistent
measure is, for instance, used by [8, 9].

dof4 = sup∩(e(τ), µ(t, τ)) (4)

Apart from the questionable optimism expressed by
Eq. 4, it makes a system susceptible to possible faults in
the precedent decision process. If an invalid truth value
occurs due to an erroneous measurement, it might be
just this value which is used by Eq. 4 to decide on the
fulfilment of an temporal expectation. All of the other
measures offered here exhibit a more compensatory be-
haviour towards singular errors.

Additionally, dof4 does not guarantee that an event
mainly takes place within a given time frame. In
contrast to this, dof1 penalises events that widely
occur outside of e(τ) by means of normalisation to∫

µ(t, τ) dτ .

Modification of dof1

On closer inspection, the µ-based covering ratio in
Eq. 1 exhibits the following property: If an event de-
scribed by µ(t, τ) occurs completely within the window
given by e(τ), the measure might opt for total fulfilment
of the expectation even if the event’s maximum realisa-
tion is supµ(t, τ) < 1. This depends upon e(τ) and the
T -norm chosen and might be an undesirable behaviour
for some applications.

To avoid this, the maximum truth value could be in-
cluded in the decision, for instance by normalising the
fuzzy set µ(t, τ) (as done in Eq. 5). This corresponds to
a conjunction of the maximum spatial degree of fulfil-
ment given by the precedent decision and the temporal
degree of fulfilment by means of a product operator.

dof1m =
∫
∩(e(τ), µ(t, τ)) dτ∫

µ(t, τ) dτ/ supµ(t, τ)
(5)

However, this affects the robustness of the decision
regarding singular preceeding errors (outliers in the
course of µ) analogously to the measure in Eq. 4. In
this case, smoothing and filtering steps should be intro-
duced to encounter the data with an appropriate degree
of mistrust, so that errors cannot affect the decision pro-
cess as a whole.

Chosing T - and S-norms

Up to now, the set operations (T - and S-norms) used in
the measures dofi have not been elaborated on. They
are a degree of freedom for the user, who has to con-
sider their respective behaviour nonetheless. Especially

in dof1 (Eq. 1) and dof3 (Eq. 3) the use of interactive
fuzzy operators beyond the commonly used min und
max can be beneficial due to the consideration of both
sets’ fuzziness.

On the other hand, when employing e(τ) as reference
run (accordingly using dof2), two identical fuzzy sets
can only lead to a degree of fulfilment dof2 = 1 if
the operations involved are idempotent. In that case,
min and max would therefore constitute an appropriate
choice. Otherwise one would have to consider that even
lower truth values might already represent a higher de-
gree of fulfilment.

4 On the expectation function
In Section 3 the threefold interpretation of the expecta-
tion function e(τ) was introduced. This results from the
way in which the time dependent fuzzy set µ(t, τ)—
describing the manifestation of an event—and e(τ)—
describing an expectation—are set into relation by dif-
ferent measures for the degree of fulfilment. In each
case, e(τ) represents a fuzzy description of a time point
or interval, as used by Dubois and Prade in their tem-
poral logic [10]. The difference here is that the domain
is not the absolute time but rather the age τ which is
defined relatively to the current point in time t. Fur-
thermore the precise meaning of e(τ) is determined
only in conjunction with one of the introduced mea-
sures dof1−3.

For different classes of expectation functions, these dis-
tinctive features can, amongst others, be found: repre-
sentation, normalisation, symmetry and support; some
of which shall be discussed in the following.

Parametric vs. nonparametric representation

In the process of formulation of a temporal requirement
by an expert it is beneficial if the expectation pattern can
be expressed by few interpretable parameters, as found
in trapezoidal or potential functions. On the other hand,
a nonparametric representation can be more suitable if
e(τ) is being used as a reference run (using dof2), for
instance if it was gained experimentally from a learning
process.

Normalisation

Generally speaking e(τ) maps [0,∞) to the interval of
truth values [0, 1]. However, if the fuzzy set e(τ) is
not normalised and its core therefore empty, the differ-
ence 1− sup e(τ) can be viewed as a measure of uncer-
tainty if the respective event shall occur at all [10]. In
the case of dof1, where e(τ) represents a time frame, a
normalisation appears advisable. If e(τ), on the other
hand, depicts a minimum realisation of an event (dof3),
an expectation function with sup e(τ) < 1 can express
less strict requirements regarding the occurrence of an
event.

Infinite support

At first glance, the infinite support of e(τ) appears prob-
lematic when regarding a practical implementation. A
consequence of infinite cardinality is that all available
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information gathered up to the current point in time
t would influence a decision about correspondence of
temporal expectation and realisation. Thus a restriction
to a maximum age τmax of the information considered
is both necessary and also well interpretable: For dof1

and dof2 it determines the temporal distance that an
event can repeat itself with. τmax has not necessarily
to be defined by an expert, but can be automatically de-
termined at least if e(τ) is convex. In that case it should
be chosen so that e(τmax) has sufficiently diminished to
a near-zero value.

When using fuzzy sets with finite support, such as trian-
gular or trapezoidal functions, this problem is bypassed
a priori. But note that it can be difficult for experts to
specify crisp boundaries nonetheless, especially when
modelling unsharp phenomena [11].

5 A generalised measure of temporal ful-
filment

From a crisp point of view, the three cases presented
in Section 3 appear sufficient to describe all possible
relations between a temporal expectation and an actual
event, though each of the measures itself is a fuzzy mea-
sure, of course. But beyond this one can think of in-
between cases, for instance if not an exact match of µ
and e is required (as with dof2), but an a shorter realisa-
tion of an event would suffice as well. In this example
both dof1 and dof2 would be appropriate to a certain
extent. Therefrom arises a need for measures to flex-
ibly assess all conceivable requirements regarding the
persistence of an event that range between the salient
cases presented in Sections 3.1–3.3. In what follows
a generalised measure covering these problems will be
deduced from the present three measures dof1−3.

dof1 dof2 dof3

lower higherequal

Persistency of µ(t, τ) vs. e(τ)

Measure for degree of fulfilment

none above

Fig. 8 Persistence of an event required by the individual
measures

Firstly it must be clarified which of these cases may
superimpose each other. When considering Eqs. 1–
3, the persistence of an event required by these mea-
sures increases in each case (compare Fig. 8). Thus it
would be sufficient to allow nuances between two ad-
jacent measures, respectively, that is between dof1 and
dof2 on the one hand and between dof2 and dof3 oth-
erwise. In contrast, dof1 und dof3 mutually exclude
each other, since a lower and higher persistence cannot
be demanded simultaneously.

The generalised measure of fulfilment shall therefore be
parameterisable with a weighting factor that can be ad-
justed to all nuances between three distintive settings.
Therefore a parameter γ ∈ [−1, 1] is now introduced

so that the three required settings (as well as all gradu-
ations in between) can be reached according to Eq. 6.

γ =

{ −1 case 1, µ(t, τ) within e(τ)
0 case 2, µ(t, τ) matches e(τ)
1 case 3, µ(t, τ) outlasts e(τ)

(6)

When comparing the formulae for the individual de-
grees of temporal fulfilment (Eqs. 1, 2, 3 or Eqs. 5, 2,
3 when using the modified measure dof1m), the differ-
ence is only being reflected in the respective reference
area in the denominator. The idea is now to utilise this
strong relationship between the measures and employ
the parameter γ to implement a combination of the in-
tegrands. In the medial setting of γ, the union of both
sets µ and e is demanded, whereas for the outer param-
eter settings γ → ±1 the integrand has to be merged in
the respective individual sets. This can be achieved by
a bidirectionally parameterisible union operator specif-
ically designed to meet these demands. Such an oper-
ator ∪γ is proposed in Eq. 7. For γ = 0 this opera-
tor exhibits S-norm character. The S-norm employed
there can still be chosen freely according to the require-
ments of the user and the remarks of Section 3.4. For
γ → ±1 the properties of an S-norm (particularly com-
mutativity) do not hold, however, since ∪γ returns the
individual sets then.

∪γ(µA(x), µB(x)) = (1− |γ|) · ∪(µA(x), µB(x)
−min(γ, 0) · µA(x)
+max(γ, 0) · µB(x) (7)

The generalised parameterisable measure for the fulfil-
ment of temporal expectations can now be expressed in
a very compact manner (Eq. 8). The detailed formu-
lation can be found in Eq. 9. If the modified measure
dof1m according to Eq. 5 is to be incorporated into the
generalised measure, ∪γ merely has to be adapted in
a way that it returns a normalised set µ for γ → −1.
Eq. 10 shows the modified generalised measure for this
case in detailed notation.

dof =
∫
∩(e(τ), µ(t, τ)) dτ∫
∪γ(e(τ), µ(t, τ)) dτ

(8)

The effect of the parameterisable union operator ∪γ for
all settings of γ ∈ [−1, 1] is illustrated in Fig. 9 exem-
plarily for two fuzzy sets defined on a domain of τ . In
this figure ∪γ was chosen to be based on the Hamacher
sum (as an example of an interactive operator), which
defines the character of the union for γ ≈ 0. The unify-
ing behaviour can be spotted in Fig. 9 as well as the two
individual fuzzy sets delivered for the outer settings of
γ.

The advantage of this generalised measure for assessing
the degree of fulfilment is firstly that all requirements
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dof =
∫
∩(e(τ), µ(t, τ)) dτ∫

[(1− |γ|) · ∪(e(τ), µ(t, τ))−min(γ, 0) · µ(t, τ) + max(γ, 0) · e(τ)] dτ
(9)

dofm =
∫
∩(e(τ), µ(t, τ)) dτ∫

[(1− |γ|) · ∪(e(τ), µ(t, τ))−min(γ, 0) · µ(t, τ)/ supµ(t, τ) + max(γ, 0) · e(τ)] dτ
(10)

Fig. 9 Results of the parameterisable union operator
(Eq. 7) applied to two exemplary fuzzy sets defined
over the domain of τ for all possible settings of γ

regarding the persistence of an event can be gradually
expressed and evaluated. The three interpretations and
measures of Section 3 are explicitely contained herein.
Secondly, when a description of a temporal expectation
is being formulated (e. g. by an expert), it is no longer
necessary to select a particular measure for its fulfil-
ment, but merely sufficient to specify one single param-
eter. In conjunction with the expectation function e(τ),
this parameter delivers the whole range of temporal ex-
pressiveness dealt with in this article.

6 Case study: a tropical disease
In this section the proposed methodology shall be em-
ployed to model a (purely fictional) tropical disease.
This model could then be used for automatic or sup-
portive diagnosis of the disease. It will be shown that
the process of transforming verbal temporal knowledge
into an hierarchical fuzzy model is transparent and eas-
ily comprehensible. The fictional disease shall exhibit
the following symptoms: “Two or three months after a
visit in a tropical country, the patient suffers from high
temperatures. Additionally, diarrhoea occurs for a pe-
riod of at least three days within two weeks before the
fever appears.”

As can be seen, the diagnosis comprises three aspects:
the fact of having visited a tropical country a certain
while ago, the occurrence of diarrhoea with a specific
temporal profile, and lastly the appearance of fever. All
three facts resp. symptoms shall be described by fuzzy
or crisp truth values: µv(t) contains the information
about the patient’s travels into tropical regions. It is
nonzero for times when the patient visited such a coun-
try. µf (t) reports the temporal development of the pa-

tient’s temperature such that µf → 1 describes fever,
and µf → 0 normal temperature. µf might stem from a
fuzzy classification of measured temperature values or
from verbal description of the patient himself. Finally,
µd(t) contains the information about the occurrence of
diarrhoea, and will typically be given verbally by the
patient as well. Its fuzzy truth value may express the
severeness of this symptom. The temporal model of the
disease is being depicted in Fig. 10.

µv(t)

µd(t)

3 (days)

2 (months)3

τ

τ

ev(τ)

ed1
(τ)

5 1 (weeks)τ

ed2
(τ)

2

“2 or 3 months”

“3 days” “2 weeks”

“and”
µ(t)

dof(e(τ), µ(t, τ))

“for at least”
γ = +1

“within”
γ = −1

“within”
γ = −1

µf (t)

(visit of tropical country)

(diarrhoea)

(fever)

dof(e(τ), µ(t, τ))

dof(e(τ), µ(t, τ))

Fig. 10 A fuzzy temporal model for a fictional tropical
disease

For µv(t), an expectation function ev(τ) was defined
which acts as a temporal frame where the patient’s
travel to a tropical country is expected to happen within.
The actual (mathematical) definition of ev(τ) will be
omitted here for brevity, but it can be seen from Fig. 11
that it matches the verbal expression ”two or three
months ago”. It represents the incubation period of this
disease, therefore its membership values peak around
an interval of two to three months on the temporal axis
τ . The fulfilment of this temporal expectation will be
verified by dof , the generalised measure introduced in
Eq. 9. As ev(τ) shall act as temporal frame, γ = −1
must be used here as the parameter of dof (cf. Eq. 6).

(months)τ 3 2

“2 or 3 months”

ev(τ) 1

Fig. 11 Expectation function ev(τ): a fuzzy set repre-
senting the incubation period of the disease
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The temporal development of µd(t) must be treated
twice, as there are two different temporal aspects:
Firstly, this symptom (diarrhoea) shall last for at least
three days (cf. the first expectation function ed1 in
Fig. 10), and this in turn is being expected to happen
somewhen in a time frame of two weeks (cf. ed2). Thus
ed1 acts as a minimum run for µd(t) (therefore dof
must be employed using γ = 1), and the fulfilment of
this first expectation shall occur within a time frame de-
fined by ed2 (so dof must be used with γ = −1). Fi-
nally, the temporal fulfilment of the developments of µv

and µd are being combined with µf by a fuzzy T -norm
operator, thus forming the truth value µ of this disease’s
diagnosis.

When comparing the verbal description of the disease
with the model of Fig. 10, all elements can be easily
recognised. Furthermore, the verbal description can be
derived back again from the model without effort.

7 Conclusion
After discussing the different aspects of a complex tem-
poral pattern, a method for modelling and recognition
of patterns in multivariate time series was introduced in
this article. Spatial, temporal and logical requirements
and relations can be described in a simple and compre-
hensible manner. The representation and processing of
all aspects of a temporal pattern are interpretable and
transparent throughout the model. Therefore it qualifies
[12] for an application as diagnostic or decision support
system.

The idea of the expectation function e(τ) and its three-
fold interpretation was introduced, and likewise a mea-
sure for assessing the fulfilment of each of these tem-
poral expectations given. Finally a new generalised pa-
rameterisable measure was deduced from these, which
both offers new possibilities in temporal description
and simplifies the design process as well.

The fulfilment of spatial, temporal and logical expecta-
tions is being described by means of fuzzy truth values.
Although each new truth value represents a higher-level
symbolic meaning, it always retains signal character.
Since the processing of temporal and logical knowledge
is based on these courses of truth values and does not
operate on measurement signal level, temporal and log-
ical requirements can be nested hierarchically and build
upon each other to reflect complex patterns. Further-
more, expert opinions can be incorporated as additional
inputs of the decision process.

A subset of the functionality described here has already
been used in the situation recognition module of an au-
tonomous mobile system [13]. Other areas of applica-
tion for the methodology introduced here include intel-
ligent data analysis, e. g. for medical systems, where
efficient and interpretable decision support systems are
increasingly required [12, 14]. In the field of techni-
cal diagnosis, more sophisticated methods are called
for as well [15], so this would be another area of ap-
plication, especially since the rapprochement of techni-
cal and medical diagnostic methods seems appropriate

[16]. The approach presented here recommends itself
through its seamless interpretability and the fact that
modelling of temporal patterns has not necessarily to be
conducted by knowledge engineers [17], but can there-
fore be accomplished by experts of the application area
as well.
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