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Abstract  

In the medium-size factory in production of finally plastics products for household use the 
reconstruction plan was made to improve the utilization of the central automatic pallet 
storehouse using intermediate storage facilities. The locations and capacities of this additional 
storage places should be established considering the existent floor layout, the number and 
capacity of forklifts, the possibility of inter-process storage of half-products and restoring the 
pallets after the production cycle.  
  Linear programming (LP) was used to resolve the machine assignment problem for a set of 
characteristic production plans. Supported with non-delay scheduler program the group of 
human experts then produced the series of Gantt charts as they would be used in job shop 
production environment. The analysis of Gantt charts, with the production plan partitioned 
into appropriate time sections, was made with the optimization program. LP here was used to 
calculate optimal costs for transport alternatives, to locate the storage areas, to determine their 
capacity and in particular the inter-process storage possibilities were taken into account. In 
addition the circular flow of pallets was included into formulation. The results were the part 
of documentation for restructuring the factory. 
  The LP algorithm itself is a variant of transport algorithm, using time sections which 
correspond with the distinct vertical cross-sections of Gantt-charts. The specific task was the 
inclusion of partially full pallets into the way of transport and the treating of emptied pallets 
as well. 
  

Keywords: Production layout, Machine assignment, Inter-storage calculation, Transport 
way alternatives, Linear programming. 
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1 General 
Linear programming (LP) is widely used in 
operational research, the algorithm is recently often 
supported by interior point methods. In the context of 
our paper the  LP techniques for scheduling, layout 
design, assignment and transport are of main 
importance. The broad field of practical solutions for 
these particular problems is reported in monograph 
[1], treating the linear assignment and scheduling, 
with accent on mixed LP. An other common reference 
is [2], also for scheduling. Layout design for chemical 
plants with some similarity to our problem is in [3]. 
The transport problem is structurally very near to the 
idea of LP and the sufficient information can be found 
in quite elementary books, e.g.[4]. The problematic of 
the project then is not in the theory, rather in large 
scale computation matrices. The corresponding LP 
solvers should be used. 

In former project logistcs simulator [5] of factory 
producing domestic devices like vacuum cleaners, 
water cisterns and similar plastic products was 
developed with the goal to define the suitable machine 
pool and stock positioning or rearrange the existing 
locations and capacities. Technically feasible 
production variants were simulated and 
recommendations were provided using the material 
and semi-products transport as the criterion.  Also the 
transport costs were combined with inventory costs in 
weighted object function. This paper presents an 
attempt to solve the same problem as in [5] 
analytically using LP model with objective function, 
which was slightly changed in the formulation to 
correspond with cyclic production. Exact solutions 
were produced for every defined production mix and 
for every machine pool and storage layout. It was 
necessary to solve this program repeatedly for the 
series of real production mixes, with different 
proposals for machine pools and storage allocations.  
Still more, every solution was corrected to eliminate 
the  storages where their capacities were estimated to 
be too small. 

Let first used standard LP models be sketched, for 
storage as well as for transport of goods. 

 For storage design in the simplified model the process 
variables, functions and constants  are: 
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It is easy to guess the first optimal control strategy: if 
one should first not order anything  

and let the inventory fall to zero: thereafter one orders 
only enough to cover the demand. In the more realistic 
model the purchase is possible only at the beginning 
of time sections. In that case the second optimal 
strategy including stochastic is given with 

0 0x > ( )0α =

(1.3). kJ is 
the object function at the beginning of the stage k. 
(1.3) can be solved in recursion. The normal strategy 
then is the mean of the first and second strategy, 
requiring the purchase after the stock is less then the 
given value, the problem can even be solved with LP. 
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The second factor influencing the economy of 
distributed warehouses are the transport costs. The 
classical transport problem is the linear transport 
problem, where the load shall be brought from m 
storehouses to n customers. If the j-th customer orders 
a product unit from the i-th storehouse, the transport 
cost for it is . Then one has the linear program:  ijp

  (1.4) 1 1

1 1
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i j
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In (1.4),  are the initial stocks and are the 
customer demands. The variant of this transport 
problem is  transshipment problem, with the necessity 
to organize transshipment storages.  

ib ia

The more general form of the transport algorithm is 
the transshipment version of it. The transshipment 
nodes are the ‘buffer’ storages, which enable better 
distribution of goods.  

LP programming shall be also applied in  the machine 
allocation program. In the basic form of the problem,  
machines say  shall be operated by 
persons A,B,C,D. In the time unit some person i makes 
on machine 

1 2 3 4, , ,W W W W

jW a specific profit, say . The LP 
formulation is the general transportation algorithm 

ijP

(1.4), the numerical efficiency can be improved by 
using Hungarian method. 

In the paper LP is first applied to the machine-
assignment problem. It is shown, how this results were 
used to simplify the schedule problem. Based on given 
schedule, stock and transport calculations were carried 
out. For the specification we consider not only the 
transport of parts from stock to machines and finished 
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products to stocks, but also the inter-storage transport 
and the transport of empty box-pallets.  

2 Machine assignment 
Let production plan be presented as a set of  product 
types { 1 2, , n}H H H H= … , which will be produced in 

quantities { . Often assignment 
optimization algorithm can be reduced, if some fixed 
assignments exists  because of physical singular 
mapping between parts types and machine subgroups. 
More formally: if there is some subset { }

}1 2, , , nh h h…

rH H∈  and 

any subset { }  and single relation exists 

, then the system 
sS ∈ S

)( ,rs r sR H S ( , )H S  can be 
decomposed into the two classes 
( ) (, , ,r s r r )H R H H S S− − . For each class then an 
independent assignment algorithm can be applied. The 
model tries to distribute the work on machines using 
the following objective function:   

  (2.1) a
ik ik

i k

C c=∑∑ x

In (2.1) i is the machine index and  k is the part index. 
Variable ikx  is the quantity of parts of type kH , 
produced on machine . Coefficient  is the cost of 
production of a single part of type 

iS ikc

kH  on machine . 
Then the machines, which are able to produce, say 
parts of type 

iS

kH , must fulfill the plan . kh

 ;ik k
i

x h= ∀∑ k  (2.2) 

 In practice, the available active time is not equal for 
all devices, as some machines operate in one and 
others in two shifts, they have various set-up times or 
the set-up times are schedule dependent. Let is  be the 
available run time for each machine. To produce parts 
of type kH  on machine  the productivity  is 
required which is generally not equal for all machines 
able to produce the same item. Eq. 

iS ika

(2.3) simply 
describes the fact, that the sum of production times for 
all items, which are to be produced on machine , 
must be less than the available run time 

iS

is .  

 ;ik ik i
k

a x s i≤ ∀∑  (2.3) 

The problem (2.1), together with restrictions (2.2), 
(2.3) is an LP of very moderate size even for monthly 
production plan for the case under study. Some 
remarks shall be given concerning the parameters and 
their influence on the LP- result. One has to run the 
LP several times, first setting the availabilities large 
enough to get the feasible solution. Then is will have 

to be gradually reduced according to additional set of 
technological restrictions until the solution satisfies 
the planning expert. The solution is searched by ‘trial 
and error’ method. One sees at this point, that in LP 
problem parameters are considered to be constant in 
time. If this approximation is too rough, the time axis 
is divided into distinct sections. The parameters in the 
single section must be constant. From factory’s 
integrated data base, for every time section the 
following relations must be retrieved to run an 
appropriate LP-program: 

H S S× →          producing types of parts on machines 

H h→                time section capacity 

S s→                 machine availability plan 

{ }ikH S a× →    production rate on machine per item 

{ }ikH S c× →    production price per item 

In this section the LP program is presented in his 
simplified form: in reality the products are assembled 
on machines and this requires some extra measures to 
be taken, which however are similar to the techniques 
described in section 4. Therefore the detailed 
description of assignment program shall here be 
omitted. 

3 Sequencing and scheduling 
For the scheduling problem the non-delay schedule 
algorithm was applied, the same as programmed in the 
logistic simulator. Normally the monthly production is 
scheduled. The big series of identical products are 
assembled in machine pools, whereby the tardiness of 
series and assembly tree are the main factors 
determining schedule plan. Therefore the schedule 
algorithm can be kept quite simple, after the machine 
assignment problem was solved as described in the 
section above. However, the initial stock conditions 
play the essential role when designing schedule. The 
non-delay schedule was constructed for two types of 
operational conditions. The first type, which 
guarantees the minimal global execution time, is based 
on the assumption, that in the given production cycle 
(e.g. monthly mix) none of the assembly lines ever 
waits for parts, either for parts delivered ‘offline’ from 
external suppliers nor for parts, which are made on 
own machines ‘inline’. The first type schedule can 
easily be realized if the initial stock levels are set 
appropriate high. Let this type of schedule be called 
the ‘maximal production schedule’. For this schedule 
the condition of cyclic production must be fulfilled 
too, which requires, that the stock levels for parts, 
which can be produced ‘inline’, at the end of schedule 
interval are equal to the initial stock levels. The 
second type of schedule starts with ‘offline’ stocks 
filled, but the stocks with ‘inline’ parts are empty. It 
follows for this type of schedule, that first ‘inline’ 
parts must be produced in the proper quantity and then 
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the assembly lines can start. Let this type of schedule 
be called ‘minimal stock inventory schedule’. This 
type of schedule must be cyclic too. As the parts in 
production are transported on pallets ( the single pallet 
carries several tens or even thousand of parts of single 
type), unnecessary delay can occur if e.g. two 
assembly lines are waiting for the same pallet. 
Therefore the program enables the work with splitting 
pallets.  

Before the schedule produced was used for subsequent 
calculation of transport and stock capabilities, it was 
checked by human operators. For the machine 
assigning phase, the most common intervention of him 
was the exclusive assignment of parts to the machine. 
The intervention of operator on schedule was mostly 
the splitting of extensive orders between  two 
machines, having positive effect on schedule make-
span. The Gantt chart produced interactively by the 
machine assignment algorithm, the non-delay 
schedule and planning staff  was then partitioned to 
time slices. The next rules must be obeyed: a) any 
start of production of a new part type on any machine 
opens the new time interval; b) any end of part type 
production on any machine ends the current time 
interval. 

Typically then the continuous occupancy interval of 
any machine in Gantt chart is divided in more time 
slices. An example of test schedule is given in fig.1. 
Here, the second  time slice begins when machine 
S5000 starts to produce type 1003 parts. 

 
Fig. 1 Simplified Gantt-chart 

4 Stock calculation 
The cornerstone of our calculations is to determine the 
mass flow balance considering the constraints in stock 
capacities for each time slice separately and then 
compose the general criterion function for all time 
slices. Machine flow balance is presented in fig.2.  

 
Fig. 2 Machine flow balance 

In model construction the next specific indices are 
used, with a few text sensitive exceptions: 

-i  product or assembly part index 

-j  storage index  in  (D1,D2,D3,D4) sets of stocks 

-k  index of the time slice/section 

-m  machine index 

Let the next variables be introduced: 

production (in single units) on machine 
           of item  in time interval 

mikP m
i k

…   

transport flow of item  from machine  to

           stock  in time interval 
mijkx i

j k

… m
   

1  set of allowable stocks to store half-products or 
        finished parts which are produced on machines
D …

   

2 set of allowed stocks for empty pallets,
         which get free on machine input places
D …

 

3 set of allowed stocks for assembly parts
         and raw materials
D …           

4 set of allowed stocks of empty box-pallets to
         supply machine 
D

m
…

 

output flow of empty box-pallets, which get
           free during the production on assembly lines
           on the input places

mikO …
 

( ) proportional fraction of empty-box pallets,
          which get empty on machine input places, of 
          production of item 

ec i

i

…
 

flow of empty pallets, which get free on

           machine  producing item  and are 
           transported to stock 

mijko

m i
j

…
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transport flow of item  from stock  to

           machine 
mljky l

m

… j

i

i j

 

  flow of empty pallets to output buffer of   mikE

           machine m where they are loaded with finished  

           i items 

mijke  components of the flow  from more stores  mikE

          with empty box-pallets with index j. 

transport costs for unit of product  on the

          shortest path from machine  to stock 
mijw

m j

…
 

( ), the number of parts of input item  to produce
             one output item , normally integer number

l i l
i

α …

( ) the fractional part of one pallet, which is
           necessary to carry one item 

i
i

β …
 

0 initial inventory of item  in storage jih …  

capacity of storage jC j…  

, , , transfer of item  from stock  to stock 

              in the period 
i j u kf i j

k

… u

i k

k

 

4.1 Output flow balance 

The subsection title refers output flow balance for 
machine m producing item i in time slice k. The term 
‘flow’ is used always as a quantity of items, 
transferred in the given time-slice k. First the output 
flow balance for any machine will be considered (see 
fig.2) : the known production  has to be divided 
among all storage facilities in the group , which 
can accept an item with index i. This delivers 

mikP

1D

  (4.1) 
1

; , ,mik mijk
j D

P x m
∈

= ∀∑

The items are carried on box-pallets. Those box-
pallets, which are emptied on the machine input 
places, contribute to the output flow balance. Clearly 
this flow is proportional to the production of finished 
parts with factor of proportion  .  ( )ec i

  (4.2) ( )
2

; , ,e
mik mik mijk

j D

O c i P o m i
∈

= = ∀∑

Factor  vanishes, if assembly parts are not 
carried on pallets, this is a case for jet machines with 
central distribution of plastic granulate.  

( )ec i

4.2 Input flow balance 

Input flow balance refers to machine m producing 
item i in time slice k. Input flow generally has next 

terms: plastic granulate, half-products and box-pallets. 
Again the machine producing  (fig. 2) shall be 
considered. For example, for quantity  of item i 
the quantities 

mikP

mikP

( ),mikP lα i

,k∀

 of part l has to be used. The 
necessary amount of part l can be delivered from more 
stocks, then the flow equation gets: 

  (4.3) ( )
3

, ; ( , ),mik mljk
j D

P l i y l i mα
∈

= ∀∑

The term ( ),l i∀  defines the system of linear 
equations (4.3). The pallets here are not considered as 
input components, as they are transported together 
with other items and do not need transport devices for 
themselves.  

The second term in input flow balance are empty box 
pallets, which must be transported from stocks  to 
machine m where they are loaded with its products. 
The flow equation for these pallets is: 

4D

  (4.4) ( )
4

; , ,mik mik mijk
j D

E i P e mβ
∈

= = ∀∑ i k

4.3 Inter-stock flow 

The analysis of flows can be concluded with the 
supposition, that along with the flows calculated in 
previous subsections, the complementary transport 
takes place, enabling materials to move between 
stocks, so as to prevent stock overload. To incorporate 
this supposition in an LP model, new flows are 
introduced, denoted  to define the flow of item 
i from source stock j to destination stock .  

, , ,i j u kf

4.4 Stock capacity constraints 

In the process described so far the storage facilities 
were filled and emptied without taking into account 
their capacities and state of filling ; even the capacities 
of paths between storage places were neglected. The 
next step will establish a system of inequalities, in 
order to prevent storage places to over – or under-
flow. The current filling grade in a storage facility is 
not a new variable. It depends on variables in formulas 
which have been already developed, provided that the 
initial inventory is known. Let the initial states for all 
items over all stocks be given with parameters 0

jih , 
and as usually j being the storage and  i the item 
index. Then the quantity of item i relative to the initial 
state at the end of k-th time slice is given by the 
following formulas: 

  (4.5) (1
1

1

( , ) , ,
k

D
mijlk

l m

h j i x I j i D
=

=∑∑ )

)  (4.6) (4
4

1

( , ) , ,
k

D
mijlk

l m

h j i e I j i D
=

= −∑∑
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j
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;
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  (4.9) 
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k
f
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iujl
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f I i u j l
=

=

−
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In (4.5)- (4.9) dummy binary variables I are 
introduced as multipliers, which activate the adjoining 
transport term. They are given a priori as constants. 
Furthermore, intersections  are generally not 
empty, so index j passes over the union 

 of stacks. Then from  

iD D∩

1 2 3D D D D∪ ∪ ∪ (4.5)- (4.9) 
we get a set of buffer capacity constraints: 

 (4.10) 

( )
( )(

( )
( )

( ) ( ) )( )

1 4

3 2

0 , ,

, , ,

D D
ji k k

i j i j

D D f
jk k k

h h j i h j i

h j i h j i h j i C

k

+ + +

+ + + ≤

∀

∑ ∑

The summation term  in ( )i j (4.10) runs over all 
items i, which can be stored in stock  j. The similar 
summation terms appear in the series of any further 
formulas and are to be resolved by analogy. Then  
(4.10) also states that the stock on hand should be less 
than the storage capacity over all time slices. For 
simplicity reasons , the storage capacity in (4.10) is 
virtually expressed as the number of parts, the LP 
program however calculates the real volume. Indeed, 
the storage capacity must be positive:  

 (4.11) 
( )

( )(
( )

( )

( ) ( ) )( )

1 4

3 2

0

0

0

, ,

, , , 0 ;

ij

D D
ji k k

i j i j

D D f
k k k

h

h h j i h j i

h j i h j i h j i

≥

+ + +

+ + + ≥

∑ ∑

5 Object function: transport and stock 
inventory costs, LP solution 

The LP objective function construction begins by first 
considering time interval k. This criterion function 
deals with transport and stock inventory costs 
whereas, at later stage it will be expanded over the 
whole production period. 

From (4.1) the transport costs of machine produced 
parts from all machines to all allowed stocks are, if the 
specific transport costs are denoted with ‘w’:  

  (4.12) ( )
( )( ) ( , ) , ,

x
trx mij mijk

m k i k m j m i k

C k w x= ∑ ∑ ∑

In analogy with (4.2) it follows for stream of  emptied 
box-pallets to all allowed stocks for empty box pallets: 

 ( )
( )( ) ( , ) , ,

ep
tro mij mijk

m k i k m j m i k

C k w o= ∑ ∑ ∑  (4.13) 

From (4.3) we get (4.14) for transport of half-products 
from all stocks to all machines. It is a technical detail, 
that the products are never transported from machine 
to machine.  

 ( )
( )( )( )

y
try mljkmlj

m k l i j l

C k w y= ∑∑∑  (4.14) 

Eq. (4.15) describes cost for transport of empty box-
pallets from all allowable stocks for empty box-pallets 
to all output buffers of machines, where they are 
uploaded with products:  

 ( )
( ) ( , )

ep
tre mij mijk

m k i m k j

C k w e= ∑ ∑ ∑  (4.15) 

From transport the inter-stock flows remain, they are 
put into formula: 

 ( ) f
trf ijuk iju

i j u

C k f w=∑∑∑  (4.16) 

The sum of all partial costs is: 

 
( ) ( ) ( )

( ) ( ) ( )              
tr trx tro

try tre trf

C k C k C k

C k C k C k

= + +

+ + +
 (4.17) 

Additionally to transport costs, stock inventory costs 
( )inC k  are important, too. If the initial stock levels 

 are kept constant, then the stock inventory cost is 

constant too. The LP program work efficiently, if  
become process variables. It is sufficient to adopt in 
the criterion function only the total stock inventory at 
the end of each time slice. So we get: 

0
ijh

0
ijh

 
( )

( )
( )(

( )
( )

( ) ( ) ( )

1 4

3 2

0 , ,

, , ,

D D
in ji k k

j i j j i j

D D f
k k k

C k h h j i h j i

h j i h j i h j i

= + +

+ + +

+∑∑ ∑∑
(4.18) 

Finally the objective function for total production time 
span is: 

 ( ) 1tr in
k k

C C k Cρ= + ( )k∑ ∑  (4.19) 

The constant 1ρ  in (4.19) is the weighing factor that 
evaluates the interrelation between transport and 
process inventory costs.  

The criterial function (4.19) subjected  to flow 
constraints (4.3) ,(4.4), (4.5),(4.6), (4.7), (4.8), (4.9) 
along with buffer capacity constraints (4.10) ,(4.11) 
and the general restriction that all flows should be 
positive, form the LP problem.  
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Here the short outline of the LP with his supporting 
programs is given: the non-delay scheduler works 
with the list of user’s  orders and with assembly trees 
for each product. The result is Gantt chart of the 
process with a production plan for every machine or 
assembly line. From Gantt chart the integral flows can 
be read out for every machine and LP gives the sub-
partition of integral flows into part flows between 
machines and storage areas. Besides the flows, all 
stock levels are known in every time slice. 

The representative graphic solution of LP is given in 
fig.3. The density of transport flows is given for the 
real factory layout, the transport paths and stock 
locations were obtained from CAD- files and the 
shortest transport paths used in LP program were 
calculated by Dijkstra algorithm. In fig.3 the width of 
the connection line between source and destination 
points  is proportional to the material flow. In the 
drawing, red points are machine pools, green points 
are assembly lines and yellow points are stocks and 
inter-stocks.  

 Fig. 3 The transport flows 

6 Discussion and conclusion 
The program technique has been designed for 
determining the disposition and capacities of machines 
and inter-stage buffers while optimizing the transport 
and inventory costs for arbitrary process layout and 
production schedule with LP. The benefit of this 
technique in comparison with standard simulator [5] is 
in use of analytic LP solution instead of varying the 
simulator parameters for distribution of material flows 
and buffer capacities until some satisfying results are 
obtained. The exponential growth of variables in LP 
program,  with increasing complexity of schedule with 
respect to  production time and the number of time 
sections in Gantt chart, can easily be mastered even 
for monthly production, particularly as the great part 
of flows is relative very small and can be excluded 
from LP without influencing the result. For a single 
schedule one can define the great number of storage 
places and machine pools and then run the LP 
repetitively with gradual elimination of uninteresting 
locations. The inclusion of long term production 

schedule (say a year instead of month now) would 
theoretically solve the problem but would immensely 
increase the number of LP-variables. So the set of 
monthly schedule plans was a preferable choice. The 
results then were averaged over long-term periods to 
get more reliable data. 

As the flow density is given as time dependent 
function, the maximal transport flow over the schedule 
period can be analysed, the result is the number of 
transport devices. With LP program it is not possible 
to solve the problem of routing the transporting fork-
lifts or avoid the transport bottlenecks,  however the 
data from LP solution can be used as input to other 
programs controling transport facilities. 

It is characteristic for the program, that beside the 
stock inventory costs the maximal stock levels are 
known: then the investment costs for rearranging 
stock and other facilities locations can be calculated 
and form together with the LP-results a data base for 
multi-decisional problem.  

The further advantage of using LP is the possibility to  
organize the ‘cyclic’ production, enforcing that the 
stack levels for ‘factory made’ half-products after 
finishing the schedule are the ones at the beginning of 
the schedule. 

The conclusion for the praxis then is, that LP 
techniques can be useful to determine the optimal 
disposal of transport resources and to locate the 
producing and storing facilities in optimal manner. 
The problem of  credibility of  results is not LP itself, 
but the reliability of future production planning, not to 
mention other managerial risks.  
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