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Abstract

The Continual Evolution Algorithm (CEA) for building of models is presented in this paper.
We chose an artificial neural networks (ANN) based models in our applications to show prop-
erties of CEA algorithm. During CEA evolution process a continual (in time) gradient learning
algorithm is combined with a classical genetic (evolutionary) approach. Thus in this applica-
tion a structure of models is constructed separately from particular parameters optimization in
such models (e.g. weights in neural networks). These two optimizations are running at the
same time but using different methods. As a platform for our experiments the universal neural
network topology implementation based on the fully recurrent neural network has been cho-
sen. This implementation allows the evolution algorithm tocreate any network structure with
no limitations for a usage of gradient real time recurrent learning algorithm. An advantage of
using evolutionary algorithms for neural network construction is in finding its optimal structure
(number of neurons and connections among them). Splitting the construction process into struc-
ture finding part and the particular weight values setting (finding) has an advantage in reduction
of the problem dimension. Number of reproduction operationcalls is reduced and a part of op-
timization process is done separately. Results of these twoparts are then combined before the
next reproduction operation is needed. Individuals in our algorithm contain an age parameter,
so the CEA allows for the number of gradient based algorithm steps for the individual qual-
ity assignment. The CEA is a universal optimization algorithm with no limitations for neural
network construction and evolution. Neural networks created using this algorithm can be used
for example in classification, prediction, etc. In this paper we will focus mainly on benchmark
tasks showing a function and principles of the novel evolution algorithm in relations to other
methods, pure gradient learning algorithm and differential evolution method.
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1 Introduction
Continual evolution algorithm is a novel method based
on standard genetic algorithm. It has been partially pre-
sented in our previous work, e.g. [1], or [2]. In this pa-
per we have focused mainly on application of the algo-
rithm. The goal was to prove some of its theoretical ex-
pected properties. As an application for our algorithm
we have chosen the problem of building the models for
real systems simulation. We use models based on arti-
ficial neural networks (ANN) that are constructed and
adapted using our CEA algorithm.

Section 2 is dedicated to the main contribution of this
work, which is the continual evolution algorithm (CEA)
detailed description.

In section 3 we shortly describe other methods and al-
gorithms used in this work. Brief description of simple
genetic algorithm and differential evolution algorithm
is given. Fully recurrent neural network that our imple-
mentation is based on, and gradient-based real time re-
current neural learning algorithm will be also described.

Main application of the CEA algorithm to neural net-
work construction and adaptation problem is described
in section 4. We show particular encoding of individ-
uals (representing the neural networks) in CEA, whole
process of evolution, and interesting part of implemen-
tation details.

Section 5 is dedicated to description of experiments we
have performed to test the implementation, theoretical
properties of our CEA algorithm, and selected algo-
rithms comparison. Selected results of experiments are
presented in section 7.

2 Continual Evolution Algorithm (CEA)
As well as standard genetic algorithm (SGA) also the
CEA is fundamentally inspired by nature and it is a
part of group of evolutionary algorithms. It com-
bines genetic operators (representing the evolution-
ary part of the algorithm) with a gradient optimiza-
tion method. Evolution in the CEA runs in two rel-
atively independent processes - genetic based process
and time-dependent gradient-based process. This two-
dimensional evolution is illustrated in figure 2. The
main idea of this approach is to separate the evolution
of a structure and behavior (parameters) of individuals.
When applied to a neural network construction we can
imagine the structure as a topology of network and be-
havior as a particular weight values setting in such net-
work.

The main core of CEA is the SGA extended by new pa-
rameters and techniques. Description of these parame-
ters – data structures used for individuals’ encoding –
is given in next subsections as well as detailed descrip-
tion of evolution control mechanism based on probabil-
ity functions.

Here are some basic properties, principles, and param-
eters used in CEA:

• variable size of population,

CEA

Model

Real system

Structure

Parameters

Fig. 1 Schematic diagram of model creation.

• separated encoding of structure and parameters of
models,

• age of each individual,

• sequential replacement of individuals,

• original individuals (parents) are kept in popula-
tion and optimized together with new individuals
(offspring),

• evolution of individuals in two dimensions – inter-
generation evolution and continual adaptation in
time dimension (using gradient algorithm),

• probability based control of whole evolutionary
process (depending on size of population, quality
of individual, and its age).

Note: term “generation” here is used only for discrim-
ination of parents and offspring. It is not the genera-
tion as it is defined in SGA. An example of population
evolution and sequential replacement of individuals is
shown in figure 3.
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Fig. 2 Two-dimensional evolution in CEA.

The basic principles of CEA are the same as in SGA
or genetic algorithms in general. Algorithm works with
sets of individuals and there is also a reproduction pro-
cess with genetic operators as crossover and mutation
operators. The main differences are in methods how we
are working with the population - how the new genera-
tion of individuals is being created, how the individuals
are encoded and how they are being modified within the
single generation.
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Fig. 3 Visualization of a CEA population example. This
example shows the evolution of population with maxi-
mal size of five individuals, represented by five slots in
the figure. The population is initialized with three indi-
viduals at timet0 (two slots are empty in that moment).
The vertical axis represents the age of each individual,
maximal age is represented by horizontal dashed gray
lines. Here can be seen that only some individuals reach
this maximal age - it depends on some other factors
such as probability, population size, and fitness value.
At time t1 the new individual (marked as D) is created
as the offspring of the (parents) individuals A and B.
The next reproduction processes come att2, t3, t4, and
t5. It is clear that the size of population (number of
individuals) varies through time.

2.1 General Structures

This subsection describes the basic data structures used
in CEA. Genetic algorithms in general work with some
encoding of individuals – each individual represents
one solution. In CEA the floating point vector is used
for encoding of individuals. This encoding vector is
additionally divided into logical parts, representing the
structure and behavior of individual – topology and
weights setting of neural network represented by the in-
dividual. An individual in CEA the individual is repre-
sented by the following vector:

x̄i = (ai, p̄i, s̄i, b̄i), (1)

whereai is theageof i-th individual,p̄i is the initializa-
tion parametric vector(called instinct),s̄i is thestruc-
tural parameter and̄bi is behavioral vectorof i-th indi-
vidual, which contains actual set of working parameters
of the individual (at the beginning of evolution it is cre-
ated as a copy of thēp vector).

The parameters ofi-th individual x̄i are described as
follows:

p̄i = (pi,1, pi,2, . . . , pi,u),
s̄i = (si,1, si,2, . . . , si,v),
b̄i = (bi,1, bi,2, . . . , bi,u),

(2)

whereu is the dimension of time (age) dependent pa-
rameters vector (̄p andb̄) andv is the dimension of the
structural parameters vector.

2.2 Probability Functions

The CEA is controlled by several auxiliary parame-
ters that are computed for each individual in popula-
tion. These parameters are used in the reproduction
cycle. The first parameter is thereproduction proba-
bility which describes the probability, that thei-th in-
dividual of ageai and qualityF given by the fitness
function, will be used for reproduction operation and
that they will produce some new individual (offspring)
to the next generation. The reproduction probability is
defined as:

RP ∗(x̄i) = RP ∗(ai, F (x̄i)), (3)

wherexi is the i-th individual that we are computing
the probability for,ai is the age of this individual and
function F represents the fitness function – soF (x̄i)
represents the fitness value (quality) of thei-th individ-
ual. Typical behavior of the reproduction probability
can be seen in figure 4(a).
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Fig. 4 Example of the raw probability functions.

Parameterdeath probabilityrepresents the property that
each individual has some maximal age that they can live
for. The probability of survival of each individual de-
pends on the quality and actual age of this individual.
Here is an example how the death probability is defined:

DP ∗(x̄i) = DP ∗(ai, F (x̄i)), (4)

wherexi is the i-th individual that we are computing
the probability for,ai is the age of this individual and
function F represents the fitness function – soF (x̄i)
represents the fitness value (quality) of thei-th individ-
ual. Typical behavior of the death probability can be
seen in figure 4(b).

All values signed by∗ are so calledraw values. So
DP ∗ is theraw death probabilityandRP ∗ is theraw
reproduction probability. The final valuesDP andRP ,
which the CEA works with, are computed from the raw
values using thebalancing functions. These functions
represent the influence of the size of the population to
this size itself – the bigger population will grow slowly
(to some limit value, where no new individual will be
born) and the smaller population will grow faster (for
smaller populations the death probability is reduced and
goes to zero – see examples below).

Final probabilities computation:

DP (x̄i) = BALDP (N, DP ∗(x̄i)), (5)
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RP (x̄i) = BALRP (N, RP ∗(x̄i)), (6)

whereN is the size of the actual population and the
BALDP andBALRP are the general balancing func-
tions. Examples of the balancing function is shown in
figure 5.
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Fig. 5 Example of the balancing functions.

2.3 Evolution Control

• X = (x̄1, x̄2, . . . , x̄N ) – Population of individuals

• N – Size of the population

• ∆t – Time step for updating the age parameter

• α – Training constant

• CROSSp/CROSSs – cross operators

• RP (x̄i) – reproduction probability function

• DP (x̄i) – death probability function

• F (x̄i) – fitness function/fitness value of individual

Algorithm 1 (The General CE Algorithm)

1. Initialization
2. Repeat until stop condition

2.1. Evaluate all individuals
2.2. Reproduction of the individuals with respect

to theRP (x̄i) value
2.3. Elimination of the individuals with respect

to theDP (x̄i) value
2.4. Adaptation of the parametrical vector of

each individual
2.5. Update all working parameters and age

parameter of individuals
3. The result processing

Algorithm 2 (CEA – 1. Initialization)

let N = initial population size
for i = 1 to N
do

let ai = 0
generate random̄pi = (pi,1, pi,2, . . . , pi,u)
generate random̄si = (si,1, si,2, . . . , si,v)
let b̄i = p̄i

insert individualx̄i = (ai, p̄i, s̄i, p̄i) to X

done;

Algorithm 3 (CEA – 2.1. Evaluate Individuals)

for i = 1 to N
do (* calculate the probability parameters *)

let DPi = DP (x̄i) = BALDP (N, DP ∗(x̄i))
let RPi = RP (x̄i) = BALRP (N, RP ∗(x̄i))

done;

Algorithm 4 (CEA – 2.2. Reproduction Process)

let M = 0
for i = 1 to N
do

generate randomp from interval< 0; 1 >
if p < RPi then

let M = M + 1
(* select other individual *)

definepsel(n) =











P

n
j=1

RPi
P

N
j=1

RPi
, 1 ≤ n ≤ N

0, n = 0
1, n = N + 1

generate randomq from interval< 0; 1 >
findj 6= i; j ∈< 1, N >

⇒ psel(j − 1) < q < psel(j + 1)
(* produce new individual *)
¯sM = CROSSs(s̄i, s̄j)
¯pM = CROSSp(p̄i, b̄i, p̄j, b̄j)
¯bM = ¯pM

fi
done;
let N = N + M

Algorithm 5 (CEA – 2.3. Elimination Process)

for i = 1 to N
do

generate randomp from interval< 0; 1 >
if p < DPi then

mark individualx̄i as “removed”
fi

done;

Algorithm 6 (CEA – 2.4. Time Dependent Adaptation)

for i = 1 to N
do

if x̄i is not marked as “removed” then
use gradient or other optimization technique
bi,j = bi,j − α ∂F

∂bi,j

fi
done;

Algorithm 7 (CEA – 2.5. Update Parameters)

delete all individuals marked as “removed” fromX
let N = |X|
for i = 1 to N
do

let ai = ai + ∆t
done;
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Fig. 6 Diagram of population evolution in the CEA.
New generation of individuals is created in process con-
trolled by probability functions. Number (N ) of indi-
viduals in original population (t) is in general not equal
to the number of individual in new population (t + 1).

3 Other Methods and Algorithms Used

In this section some other algorithms and methods used
in our work are shortly described.

3.1 Standard Genetic Algorithm (SGA)

The standard genetic algorithm (SGA) works with a
population of individuals, where each individual rep-
resent one solution of problem being solved. It is an it-
erative process using crossover and mutation operators
to modify/generate individuals.

The individuals that will take a part in the reproduc-
tion process are selected with respect of their fitness
value, which represents quality of the individual (so-
lution). Schematic diagram describing the algorithm is
shown in figure 7. All this approach is based on the-
ory that by combination of two good individuals we get
one even better individual/solution. J. Holand in 1975
created the schema theory that prove, that this works
and that the above-average schemas (each schema rep-
resents one ore more individuals) are multiplied expo-
nentially in the population.

Generation (t)

Temporal generation

Generation (t+1)

Modification

Selection

Initialization

S
ub

st
itu

tio
n

Fig. 7 The SGA flow diagram.

Thecross operatorcombines the parts of two individu-
als and creates new offsprings that replaces the “parent”
individuals in new population. For binary encoded in-
dividuals – the encoded vector describing the individual
is calledchromosome– the example of cross operator is
shown in figure 8.
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1Parent 1

Parent 2

Offspring 1
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1 0 0 1

0 1 1

Cross point

1

0

0

10 1 0 0

1 1 0

Fig. 8 Example of single point cross operation.

1 0 0 0

0

1 1 11Original individual

After mutation

Mutation point

1101001

Fig. 9 Example of mutation operation.

Themutation operatoris based on random bit change in
the chromosomes. An example of mutation is shown in
figure 9. The reason of using the random mutation op-
erator is to avoid the optimization to stuck in some local
optimum. When so high probability of mutation is used
the genetic algorithm become the random search. So it
is important to set the value appropriate to the current
problem/data.

When the genetic algorithm is used in combination
with neural networks, each individual can represents
the whole network – the topology, weight matrix, or
combination of them [3].

More information and links to other literature can be
found e.g. in [4, 5] or in technical report [2], where a
survey of these nature inspired methods is given.

3.2 Differential Evolution (DE) Algorithm

The differential evolution algorithm is very similar to
the genetic algorithm described above. The main differ-
ence is the sophisticated method of reproduction oper-
ation. This method has been created by Price and Storn
in 1997.

In the reproduction process four individuals are used (in
standard genetic algorithm only two individuals were
used). As the first individual is selected step-by-step
each individual in population, the remaining three indi-
viduals (r1, r2, r3) are selected randomly (as three dif-
ferent individuals).
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The mutation vector is calculated from the randomly
selected individuals:

vj = xG
r3,j + (xG

r1,j − xG
r2,j)F, (7)

wherexG
r,j represents thej-th parameter of the individ-

ual r in current generation andF is the mutation con-
stant.

Using the random number and cross threshold value
(CR) the new “testing” individual is created:

x
testing
i,j =







xG
r3,j + (xG

r1,j − xG
r2,j)F,

if rnd(0, 1) ≤ CR

xG
i,j else,

(8)

wherex
testing
i,j represent thej-th parameter ifi-th test-

ing individual,xG
i,j represents thej-th parameter ofi-th

individual in current generation,CR is the cross thresh-
old value, andrnd(0, 1) represents the random number
from interval< 0; 1 >.

The quality/fitness value of the new testing individual
is then compared with the fitness value of the original
individual (the first one – “step-by-step” selected from
the population). If the new individual is better than the
original one, the new individual is inserted into new
population:

XG+1

i =

{

xtesting f(XG
i ) ≤ f(xtesting),

xG
i else,

(9)

where theXG+1

i represent thei-th individual in new
generation andf(x) calculates the fitness value of indi-
vidualx.

It has been shown that the differential evolution algo-
rithm is good for optimizations in very complex state
space with very isolated solutions [6, 7]. This algo-
rithm is also useful for real value encoded individuals.
For example whole weight matrix describing the neural
network can be used.

3.3 Fully Recurrent Neural Network (FRNN)

Fully recurrent neural network (FRNN) is the most gen-
eral structure of recurrent network, it is represented by
a complete balanced graph, see fig.10.

x0=1

1 2

x1

y1 y2

Fig. 10 The fully recurrent neural network with two
neurons and two inputs. One of the inputs (x0) is usu-
ally used for threshold value realization connecting to
constant value equal to one, so this network has one ex-
ternal input (x1).

3.4 Real time Recurrent Learning (RTRL)

Real time recurrent learning is a gradient based algo-
rithm for neural networks training. It has been de-
scribed in [8, 9].

We have network withn neurons andm external inputs.
Potential ofk-th neuron in network in timet is defined
as:

sk(t) =
∑

l∈U∪I

wklzl(t), (10)

whereU is the set of indicesl for whichzl(t) represents
output value of neurons andI is the set of indices of
external input of network. Sozl(t) representsl-th input
to neuron andwkl is the corresponding weight.

zk(t) =

{

xk(t) for k ∈ I

yk(t) for k ∈ U .
(11)

Output ofk-th neuron in next time step is defined as:

yk(t + 1) = fk(sk(t)), (12)

wherefk is activation function of neuron, andsk(t) is
the inner potential of neuron in timet.

Now we can define the difference between expectedj-
th output and actual output value as:

ek(t) =

{

dk(t) − yk(t) is k ∈ T (t)

0 else,
(13)

wheredk(t) is expected andyk(t) actual output value
of k-th neuron.T (t) represents set of indices for which
the expected value is defined.

Error of whole network in timet can be calculated as:

J(t) =
1

2

∑

k∈U

[ek(t)]2, (14)

whereek(t) is error ofk-th neuron in timet.

If the calculation runs in time interval< t0, t1 >, the
final error will be:

Jtotal =

t1
∑

t=t0+1

J(t), (15)

whereJ(t) is error in timet.

This error we are trying to minimize during the training
process using modification of weight matrixW:

∆wij =

t1
∑

t=t0+1

∆wij(t), (16)

where

∆wij(t) = −α
∂J(t)

∂wij

(17)

andα > 0 is the training parameter.
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Using equation above we can finally compute for all
k ∈ U , i ∈ U andj ∈ U ∪ I:

pk
ij(t + 1) = f ′

k(sk(t))

[

∑

l∈U

wklp
l
ij(t) + δijzj(t)

]

(18)
where

f ′

k(sk(t)) = yk(t + 1)[1 − yk(t + 1)] (19)

and

δij =

{

0 for i 6= j,
1 for i = j.

(20)

Because the initial state of network (in timet0) is inde-
pendent on weight values

∂yk(t0)

∂wij

= 0, (21)

holds the following initial condition:

pk
ij(t0) = 0. (22)

Finally the differences in weight matrix can be calcu-
lated:

∆wij(t) = α
∑

k∈U

ek(t)pk
ij(t). (23)

The RTRL algorithm is of course not the only algorithm
for training the recurrent neural networks, but we chose
it because of its universality. The algorithm described
above represents the basic version of RTRL algorithm.
More detailed description of RTRL and other gradient
methods for training recurrent networks can be found in
[8, 9].

4 Application
We chose a neural network based models construction
problem as an application for our CEA evolution algo-
rithm. Using this algorithm the structure of the model
is being evolved with the goal of finding some opti-
mal neural network topology for given problem. At the
same time there is running a process of optimization of
parameters of the model.

As a platform for our application we chose the imple-
mentation of fully recurrent neural network (FRNN) as
a most universal neural network structure. For gradi-
ent learning part of CEA we chose a real time recurrent
learning algorithm.

All experiments has been performed inMathematica
programming language and environment.

4.1 Individuals’ Encoding

Individuals’ encoding vector is divided into logical
parts as it was shown in (1). Because of the topology
of the FRNN (the fully connected graph), its structure
can be simply encoded into matrix, where1′s repre-
sent connections between nodes (neurons) and0′s rep-
resent missing connection. Encoding of behavior of the

i

k

jjjjjjjj
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4. 5. 0 6.

0 7. 0 0

y

{

zzzzzzzz

(a) Weight matrix

1.

4.

2.
3.

6.

5.

7.
1

3

Threshold

2

Output value

(b) Corresponding network

Fig. 11 An example of representation of the network by
weight matrix.

network – particular setting of weights – is encoded in
the similar matrix (same dimensions) but with floating
point values.

In CEA two matrices are used - 0/1 matrix represent-
ing the structure of network and real value matrix with
weights values.

4.2 Evolution Process

An example of general evolution process in CEA is
shown in figures 2 and 3. In this chapter some detailed
information about evolution in our application of CEA
to neural network construction problem will be shown.
Reproduction operators and fitness function will be de-
scribed here.

4.2.1 Fitness function

Fitness value (quality) of each individual is calculated
as the negation of normalized error of the network (rep-
resented by the individual) on testing data. First the
vectors describing the neural network need to be ex-
tracted from individual encoding, then it is necessary
to convert the linear encoding to matrix form and fi-
nally this matrix can be imported into network model
and simulated.

mutation

random number
generatorp̄i

p̄j

b̄i

b̄j

p̄k, b̄k

u

Fig. 12 Schematic diagram of crossover operation on
the behavioral vectors. There are randomly selected
parts from initial parameter vector and behavioral vec-
tor of both individuals (i andj). In combination with
the mutation operator the parametrical and behavioral
vectors of new individual are being constructed

4.2.2 Reproduction operator

Reproduction process works with two individuals.
Each individual is represented by 3 vectors (and other
parameters, which are not important in the process now)
– initial parametric vector, structural vector, and behav-
ioral vector. Reproduction operator works with 6 sets of
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parameters then. Figure 12 shows the process of para-
metric vector of new individual generation. Reproduc-
tion process for structural parameter works similarly –
there are two “source” structural vectors (s̄i ands̄j) and
two auxiliary vectors – vector of zeros and vector of
ones, these vectors represent mutation operation (these
vectors are selected with lower probability then vectors
s̄i ands̄j.

4.3 Implementation

All algorithms and experiments have been implemented
in Wolfram Mathematicaenvironment. We have cre-
ated the CEA.m library with universal CEA implemen-
tation. Example of population (which involves all the
CEA parameters settings) initialization:

pop = CEAInitialize[
initial_pop_size,
min_pop_size,
max_pop_size,
age_increment,
u, v, (* vectors dimensions *)
fitness_ref,
crossfunction_ref,
gradf_ref,
updatef_ref,
{additional_parameters}];

First three parameters describe the size of population
(number of individuals),age increment represents
the elementary time increment of age parameter of each
individual - age parameter is normalized (0-1), so us-
ing this parameter the maximal age of individuals can
be specified (0.1 represents maximal age of 10 steps,
0.01 represents maximal age of 100 steps, etc.). Us-
ing u and v parameters the dimensions of structural
and behavioral vectors are specified. Parameters* ref
are references to following functions: fitness function,
crossover operator, gradient learning algorithm, auxil-
iary function for individual parameters update (it is no
necessary to be used). The last parameter represents the
set of auxiliary parameters that could be used in some
special cases (in our experiments we are using this pa-
rameter for passing the number of neurons in network
to the fitness function – it is only an implementation
detail).

When the initial populationpop is created and initial-
ized, we can run the evolution process. One step of the
process is done using the following code:

newpop = CEAReproduction[pop];

In the CEA.m library there are also some other
functions used mainly for debugging purposes (print-
ing the individuals in population, etc.), but with
CEAInitialize[] and CEAReproduction the
whole evolution process can be performed.

5 Experiments
We have chosen the simple experiment “learn to oscil-
late” [8] to check our implementation and for compari-

son with other optimization algorithm. The neural net-
work is trained to generate some defined periodical se-
quence. We have tried pure gradient method (real time
recurrent learning), differential evolution algorithm and
CEA algorithm.

5 10 15 20
Time
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1
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Fig. 13 An example of training set for learn to oscillate
experiment. Two period ofsin(x) function sampled by
20 points has been chosen in one experiment.

Neural network in this experiment has no external in-
puts and it has one output value – trained to generate
the given sequence.

We have tried many parameters setting of used algo-
rithms to get an appropriate results. Performed experi-
ments confirmed the theoretical properties of our CEA
algorithm. For details see section 6.
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(a) ANN based model
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(b) CEA built model

Fig. 14 An example of CEA result in ANN based model
evolution experiment. Left figure shows the fully recur-
rent neural network with all connections – this is the
most general structure that we are building our solution
on. Right figure shows the result of evolution process
– trained recurrent neural network. About 57% con-
nection has been removed by evolution process. Output
value of the network is taken from the neuron 1.

6 Discussion
We have chosen benchmark experiments based on
“learn to oscillate” experiment described in [8]. Table 1
shows a result from experiment where FRNN with 6
neurons has been trained tosin(x) function. We chose
this number of neurons based on our previous experi-
ences – it is enough and it can be shown the possible
inter-neurons connections reduction in this network.

Because of variable population size and combination of
genetic and gradient-based methods in CEA there was
highly reduced the number fitness evaluation needed for
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Tab. 1 Selected experiments results. Comparison of
number of iterations needed in particular algorithms to
train the network with comparable result (errors). DE-
differential evolution, CEA-continual evolution algo-
rithm, RTRL-real time recurrent learning. The table
shows numbers for whole population and for the best
individual for comparison. Shown values are approxi-
mate – they come from several runs of algorithms.

DE CEA RTRL
Total for whole algorithm run.
No. of fitness evaluations25 000 480 ×
No. of gradient steps × 9 000 500
For best solution (one individual).
No. of fitness evaluations 500 17 ×
No. of gradient steps × 340 500

Tab. 2 The table shows number of fitness function eval-
uations (FC), number of gradient algorithm steps per-
formed (GC), average population size (PS), and quality
of best solution found (Best). All these parameters were
tested for different maximal population size and num-
ber of evolution steps. Number of gradient steps in each
evolution iteration was set to 20.

Maximal populaton size setting
Evolution 10 20

steps FC/GC PS Best FC/GC PS Best
5 57/940 10 0.62 91/1440 18 0.61
10 106/1900 10 0.69 183/3220 18 0.67
20 201/3740 10 0.94 365/6780 18 0.87
30 301/5700 10 0.95 526/9880 17 0.95
40 397/7500 10 0.95 674/12580 17 0.95
50 503/9580 10 0.96 865/16340 17 0.96

Maximal populaton size setting
Evolution 50 100

steps FC/GC PS Best FC/GC PS Best
5 245/3900 49 0.64 477/7580 95 0.65
10 482/8600 48 0.73 958/17120 96 0.68
20 843/15640 42 0.931819/33980 91 0.93
30 1175/21960 39 0.962645/49700 88 0.96
40 1551/29120 39 0.963509/66360 88 0.96
50 1947/36620 39 0.964406/83780 88 0.97

evolving good-quality individual (network). Differen-
tial evolution algorithm uses constant population size,
so number of fitness evaluations is also constant for par-
ticular number of individuals and number of generation
setting. Gradient-based algorithm (RTRL) works with
only one network and it needed less steps than the CEA.
In CEA the average size of population was 24 although
the maximal size was the same as in DE and it was set
to 100.

The RTRL algorithm is not able to create optimal topol-
ogy of network. It always uses the fully connected
network. DE also optimized the whole weight matrix
representing the fully recurrent neural network. CEA
reduced some connection - as an example see follow-

Tab. 3 Results of testing CEA for different number of
evolution iterations (10, 50, 100) and for different set-
tings of number of gradient steps in each evolution it-
eration. We measured number of fitness function eval-
uations (FC - Fitness Count), population size - PS (av-
erage, minimal, maximal) and quality of best solution
found (Best).

Grad FC PS Best
10 evolution steps

1 249 (25, 10, 42) 0.607035
5 220 (22, 10, 37) 0.611232
10 282 (28, 10, 45) 0.617294

50 evolution steps
1 2063 (41, 10, 50) 0.608738
5 2038 (41, 10, 50) 0.673340
10 2150 (43, 10, 50) 0.903866

100 evolution steps
1 4327 (43, 10, 51) 0.612297
5 4276 (43, 10, 50) 0.884965
10 4478 (45, 10, 51) 0.960214

ing numbers: for 6 neurons there are 42 weight val-
ues (6 × (6 + 1), one additional input for threshold
value), best network from one algorithm runs had 25 ac-
tive connections, it means 17 connections was removed,
which represents about40% reduction.

Based on experiments we can say that we got better re-
sults with CEA for bigger state spaces - larger networks
(larger maximal number of neurons). For smaller net-
works the DE algorithm served better results. RTRL al-
gorithm is faster (mainly for very small networks) than
DE or CEA, but RTRL is not able to optimize the topol-
ogy of network.

It is clear that all presented algorithms especially the
evolutionary algorithms – DE and CEA – have many
parameters that can extensively affect their perfor-
mance and results. The goal of this work was to prove
some of the CEA’s theoretical expected properties. We
have experimentally tested that CEA is able to work
with separate encoding of structure and behavior of
individuals and evolve them in two different dimen-
sions (using different algorithms) separately and con-
tinuously.

Table 2 shows the results of testing the CEA algorithm
for different settings of maximal size of population. In
table 3 the results of experiments with different num-
ber of gradient steps in each evolution iteration are pre-
sented. It can be seen that for low number of gradient
steps the algorithm gives relatively bad results. It is be-
cause in this case the evolution process is used mainly
for structure of network building/adaptation. The evo-
lution process is used also for weight setting but it is
a minority function. The weights are mainly adapted
by gradient algorithm (realtime recurrent learning was
used). In table 3 can be seen that increasing number of
gradient steps gives better results.
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7 Conclusion and future work

We have described the CEA algorithm in detail in this
paper. On the experiments we have successfully tested
some theoretically expected properties of CEA algo-
rithm and we have shown that it can be used for ANN-
based models creation/evolution. Comparison to other
methods (real time recurrent learning and differential
evolution algorithm) has been shown. We have pre-
sented the ability of CEA to produce smaller (simpler)
models (networks) than RTRL and DE (used for weight
matrix adaptation).

The first (debugging, not public yet) version of library
for Wolfram Mathematicathat implements the CEA
algorithm was created. The experiments with ANN-
based models in combination with CEA brings some
new ideas how to improve the CEA algorithm, for ex-
ample specific probability and balancing functions set-
ting.

In future a lot of work on the theory of CEA algorithm
and its applications are needed. The public version of
CEA.m library is planed to be released.
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