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Abstract

The Continual Evolution Algorithm (CEA) for building of mets is presented in this paper.
We chose an artificial neural networks (ANN) based modelsimapplications to show prop-
erties of CEA algorithm. During CEA evolution process a aoml (in time) gradient learning
algorithm is combined with a classical genetic (evolutighapproach. Thus in this applica-
tion a structure of models is constructed separately frortiqudar parameters optimization in
such models (e.g. weights in neural networks). These twonigdtions are running at the
same time but using different methods. As a platform for oqregiments the universal neural
network topology implementation based on the fully recuirmeeural network has been cho-
sen. This implementation allows the evolution algorithntiteate any network structure with
no limitations for a usage of gradient real time recurreatiéng algorithm. An advantage of
using evolutionary algorithms for neural network constirrcis in finding its optimal structure
(number of neurons and connections among them). Spliti@gaonstruction process into struc-
ture finding part and the particular weight values settingd{fig) has an advantage in reduction
of the problem dimension. Number of reproduction operat@lis is reduced and a part of op-
timization process is done separately. Results of thesgasts are then combined before the
next reproduction operation is needed. Individuals in dgodthm contain an age parameter,
so the CEA allows for the number of gradient based algorittepssfor the individual qual-
ity assignment. The CEA is a universal optimization aldoritwith no limitations for neural
network construction and evolution. Neural networks a@éatsing this algorithm can be used
for example in classification, prediction, etc. In this pawe will focus mainly on benchmark
tasks showing a function and principles of the novel evolutlgorithm in relations to other
methods, pure gradient learning algorithm and differéetralution method.
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1 Introduction o —>
: Real system :

Continual evolution algorithm is a novel method based - > —o—>
on standard genetic algorithm. It has been partially pre-
sented in our previous work, e.g. [1], or [2]. In this pa- Model —
per we have focused mainly on application of the algo- o | ol
rithm. The goal was to prove some of its theoretical ex- g ~ Parameter
pected properties. As an application for our algorithm ‘\\
we have chosen the problem of building the models for S S

. d . tructure ~ - - - - -
real systems simulation. We use models based on arti-

ficial neural networks (ANN) that are constructed and

; , Fig. 1 Schematic diagram of model creation.
adapted using our CEA algorithm. g 9

Section 2 is dedicated to the main contribution of this
work, which is the continual evolution algorithm (CEA)

detailed description e separated encoding of structure and parameters of

models,

In section 3 we shortly describe other methods and al-

gorithms used in this work. Brief description of simple e age of each individual,

genetic algorithm and differential evolution algorithm

is given. Fully recurrent neural network that our imple- e sequential replacement of individuals,

mentation is based on, and gradient-based real time re-

currentneural learning algorithm will be also described. e original individuals (parents) are kept in popula-
tion and optimized together with new individuals

Main application of the CEA algorithm to neural net- (offspring).

work construction and adaptation problem is described
in section 4. We show particular encoding of individ-
uals (representing the neural networks) in CEA, whole
process of evolution, and interesting part of implemen-
tation details.

e evolution of individuals in two dimensions — inter-
generation evolution and continual adaptation in
time dimension (using gradient algorithm),

Section 5 is dedicated to description of experiments we o probability based control of whole evolutionary
have performed to test the implementation, theoretical process (depending on size of population, quality
properties of our CEA algorithm, and selected algo-  of individual, and its age).

rithms comparison. Selected results of experiments are

presented in section 7. B o . S
Note: term “generation” here is used only for discrim-

. . . ination of parents and offspring. It is not the genera-
2 Continual Evolution Algorithm (CEA) tion as it is defined in SGA. An example of population

As well as standard genetic algorithm (SGA) also th&volution and sequential replacement of individuals is
CEA is fundamentally inspired by nature and it is ashown in figure 3.
part of group of evolutionary algorithms. It com-

bines genetic operators (representing the evolution- Time dimension — adaptation of behavic

ary part of the algorithm) with a gradient optimiza- . %

tion method. Evolution in the CEA runs in two rel- § S .
atively independent processes - genetic based process2 =

and time-dependent gradient-based process. This two-“EJ s Model 2 (t)

dimensional evolution is illustrated in figure 2. The = £

main idea of this approach is to separate the evolution o .2 ®

of a structure and behavior (parameters) of individuals. hc_j g +

When applied to a neural network construction we can & ® EVOLUTION
imagine the structure as a topology of network and be- £ &Y

havior as a particular weight values setting in such net-
work. Fig. 2 Two-dimensional evolution in CEA.

The main core of CEA is the SGA extended by new pa-

rameters and techniques. Description of these parames - cic principles of CEA are the same as in SGA

}grsi\/_er??rganzt;tuggf)rse(—:?cﬁzﬁg ;Osrvlvr:e(?ll\gcsjlfja(laltsaiferlicgglsncri6-r genetic algorithms in general. Algorithm works with
tiO% of evolution control mechanism based on robabil-ets of individuals and there is also a reproduction pro-
P cess with genetic operators as crossover and mutation

ity functions. operators. The main differences are in methods how we
Here are some basic properties, principles, and paramre working with the population - how the new genera-
eters used in CEA: tion of individuals is being created, how the individuals
are encoded and how they are being modified within the
e variable size of population, single generation.
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afie AL b oE F G H 2.2 Probability Functions

} § § L | The CEA is controlled by several auxiliary parame-
stots § : ‘ § AJ] B\r : /‘ » ters that are computed for each individual in popula-
sloty]| J] § 5&77/(7 tion. These parameters are used in the reproduction

: M Jﬂ poy %\\ - gyl_cle. rT_hﬁ grst p_%ramtra]ter is lghcglollrodug:non lM;:r:o_ba-

3 1 i N : ility which describes the probability, that theh in-
slots = 7 j—— : @ A VL dividual of agea; and quality F' given by the fitness
slots § j//ﬂ‘@\w ,P T function, will be used for reproduction operation and

: : ; — : = that they will produce some new individual (offspring)
sloty| v //‘ : &/‘ to the next generation. The reproduction probability is

: ; ; — ; » defined as:

tinit t1 to ts ty ts time

RP*(z;) = RP"(a;, F(z;)), )
Fig. 3 Visualization of a CEA population example. This . e .
example shows the evolution of population with maxi-";’]herexé |z.|t_hefz—th |n_d|vr|]dua| tha'; V}’f a_lr((aj.c%mplutmg
mal size of five individuals, represented by five slots i€ Probability for.a; Is the age of this individual an
unction F' represents the fithess function — Bz;)

the figure. The population is initialized with three indi- : . N
; ; ; represents the fitness value (quality) of tké individ-
viduals at time (two slots are empty in that moment). al. Typical behavior of the reproduction probability

The vertical axis represents the age of each individudf il
maximal age is represented by horizontal dashed gr&n P€ seen in figure 4(a).

lines. Here can be seen that only some individuals reach RP DP*
this maximal age - it depends on some other factors /
such as probability, population size, and fitness value.
At time ¢; the new individual (marked as D) is created
as the offspring of the (parents) individuals A and B.
The next reproduction processes com&ats, t4, and

t5. It is clear that the size of population (hnumber of
individuals) varies through time.

P L7z
1117
11755

L1777

1177177 |

(@) RP*(a, F) (b) DP*(a, F)

Fig. 4 Example of the raw probability functions.
2.1 General Structures

This subsection describes the basic data structures used

in CEA. Genetic algorithms in general work with some .
encoding of indiviguals - ea(?h individual represent?aramete‘jeath probabilityepresents the property that

one solution. In CEA the floating point vector is use ach individual h_e_as Some m_aximal age t.hat.they can live
for encoding of individuals. This encoding vector is or. The probablllty of survival of each |nd_|V|_du§1I_de—
additionally divided into logical parts, representing th e”d$ on the quality and actual age of th!s |_nd|V|(_juaI..
structure and behavior of individual — topology an ere is an example how the death probability is defined:
weights setting of neural network represented by the in- DP*(&;) = DP*(a;, F(z;)), 4)
dividual. An individual in CEA the individual is repre-

sented by the following vector: wherex; is thei-th individual that we are computing

the probability for,a; is the age of this individual and

o _ - 1 function F' represents the fithess function — Bgz;)

zi = (ai, pi, 5i, bi), () represents the fitness value (quality) of tké individ-

. L . o ual. Typical behavior of the death probability can be

v_vhereai is the_ageofz-th |nd|V|_dua_I,pi is the initializa-  geenin figure 4(b).
tion parametric vectolcalled instinct),s; is thestruc-
tural parameter andi; is behavioral vectoof i-th indi- ~ All values signed by« are so calledaw values. So
vidual, which contains actual set of working parameter® " is theraw death probabilityand RP* is theraw

of the individual (at the beginning of evolution it is cre-reproduction probability The final values) P andR P,
ated as a copy of thevector). which the CEA works with, are computed from the raw

o . values using théalancing functions These functions
The parameters ofth individual z; are described as represent the influence of the size of the population to

follows: this size itself — the bigger population will grow slowly
Pi = (Di1,Pi2y s Piu)s (to some limit value, where no new individual will be
Si = (8i1,8i,2, -+ Siv)s (2) born) and the smaller population will grow faster (for

i = (bi1, b2y vy biw), smaller populations the death probability is reduced and

goes to zero — see examples below).
wherew is the dimension of time (age) dependent pag
rameters vectori{andb) andv is the dimension of the
structural parameters vector. DP(z;) = BALpp(N, DP*(z;)), (5)

inal probabilities computation:
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Algorithm 3 (CEA — 2.1. Evaluate Individuals)

where N is the size of the actual population and th%rz‘ —1toN

BALpp and BALgp are the general balancing func-
tions. Examples of the balancing function is shown i

figure 5.

(a) BALRP(]V7 RP*)

(b) BALpp(N, DP*)

Fig. 5 Example of the balancing functions.

2.3 Evolution Control
o X = (a,70,...,
e N —Size of the population
e At — Time step for updating the age parameter
e o — Training constant
o CROSS,/ICROSS; — cross operators
e RP(x;) — reproduction probability function
e DP(x;)— death probability function

2 ) — Population of individuals

do (* calculate the probability parameters *)

N \etDP, = DP(z;) = BALpp(N, DP*(;))

let RP, = RP(&;) = BALrp(N, RP*(z;))
done;

Algorithm 4 (CEA — 2.2. Reproduction Process)

letM =0
fori=1to N
do

generate random from interval< 0;1 >
if p < RP,; then

letM =M +1
(* select other individual *)

SFhme l<n<N
deﬁnq)sel (n) = O, J:ln =0

1, n=N+1

generate random from interval< 0;1 >
findj #4;j e<1,N >
= psel(j - 1) <g< psel(j + 1)
(* produce new individual *)
sy = CROSS,(S;,55)
pz\/[ = CROSSP(]Z, bi,ﬁj, bJ)
by = pu
fi
done;
letN =N+ M

Algorithm 5 (CEA — 2.3. Elimination Process)

e F(i;) —fitness function/fitness value of individual gor i=1tON
0

Algorithm 1 (The General CE Algorithm)

1. Initialization
2. Repeat until stop condition
2.1. Evaluate all individuals

2.2. Reproduction of the individuals with respect

to the RP(z;) value

2.3. Elimination of the individuals with respect
to the DP(z;) value

2.4. Adaptation of the parametrical vector of
each individual

2.5. Update all working parameters and age
parameter of individuals

3. The result processing

Algorithm 2 (CEA — 1. Initialization)

let N = initial population size

forc=1t0 N

do
let a; =0
generate random; = (pi,1, Pi2, - - Pi,u)
generate randond; = (8,1, Si,2, - - - » Siw

letb; = p;
insert individualz; = (a;, pi, $;,p;) to X
done;

ISBN 978-3-901608-32-2

generate random from interval< 0;1 >
if p < DP; then
mark individualz; as “removed”
fi
done;

Algorithm 6 (CEA — 2.4. Time Dependent Adaptation)

fori=1t0 N
do
if z; is not marked as “removed” then

use gradient or other optimization technique

b — q0F
bl»] - bl»] aabi,]’

fi
done;

Algorithm 7 (CEA — 2.5. Update Parameters)

delete all individuals marked as “removed” frok
let N = [X]

fori=1to N
do

Ietai :aZ+At
done;

Copyright © 2007 EUROSIM / SLOSIM
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population size N Thecross operatocombines the parts of two individu-
: ~ Probabilty : als and creates new offsprings that replaces the “parent”
Population | e® Population individuals in new population. For binary encoded in-

: %j’ ‘. ) (1) dividuals — the encoded vector describing the individual
op

@ is calledchromosome- the example of cross operator is
— shown in figure 8.
Individual 2

y/gener,él.,fe new indii‘{i‘duals

|ndiviéual 2 : ><b’\,>® ‘ '
; T‘ v Diff : Cross point
Reproduction/eliminatio| {}
—> Parameters progess Parent l| l| O| 0| 1 0| 1| 1| 1|

— Data (individuals)
---> Control

Parent2|0|1|0|0|1|1| o|o|

Offspring 1| 10| 0] 1| 1] 1|0] 0|

Fig. 6 Diagram of population evolution in the CEA.
New generation of individuals is created in process con-
trolled by probability functions. Number\) of indi-
viduals in original populationtj is in general not equal

to the number of individual in new populatioh-{ 1).

Offspring 2|o| 1| 0| o|o| 1|1| 1|

Fig. 8 Example of single point cross operation.

3 Other Methods and Algorithms Used

In this section some other algorithms and methods used
in our work are shortly described.

Mutation point

Original individual | 1] 0| 0| 1] 0 1] 1] 1]

3.1 Standard Genetic Algorithm (SGA) After mutation| 1| O| 0| 1 | 0| 1| 0| 1|

The standard genetic algorithm (SGA) works with a

population of individuals, where each individual rep- Fig. 9 Example of mutation operation.
resent one solution of problem being solved. Itis an it-

erative process using crossover and mutation operators

to modify/generate individuals. Themutation operatois based on random bit change in
The individuals that will take a part in the reproduc-he chromosomes. An example of mutation is shown in
tion process are selected with respect of their fitnedigure 9. The reason of using the random mutation op-
value, which represents quality of the individual (so£ratoristo avoid the optimization to stuck in some local
lution). Schematic diagram describing the algorithm i@Ptimum. When so high probability of mutation is used
shown in figure 7. All this approach is based on the?-h‘? genetic algorithm become the raqdom search. So it
ory that by combination of two good individuals we getiS important to set the value appropriate to the current
one even better individual/solution. J. Holand in 197®roblem/data.

created the schema theory that prove, that this workghen the genetic algorithm is used in combination
and that the above-average schemas (each schema kgRn neural networks, each individual can represents
resents one ore more individuals) are multiplied expahe whole network — the topology, weight matrix, or

nentially in the population. combination of them [3].
T More information and links to other literature can be
Initialization found e.g. in [4, 5] or in technical report [2], where a
{7 survey of these nature inspired methods is given.
Generation (t) j 3.2 Differential Evolution (DE) Algorithm
= {7 Selecti The differential evolution algorithm is very similar to
-% election the ge_netic algori_thm described above. The ma_in differ-
£ Temporal generatio ence is the sophisticated method of reproo_lucnon oper-
2 [ P 9 @ ation. This method has been created by Price and Storn
> " .
n <7 Modification in 1997.
i In the reproduction process four individuals are used (in
Generation (t+1) ) standard genetic algorithm only two individuals were
used). As the first individual is selected step-by-step
Fig. 7 The SGA flow diagram. each individual in population, the remaining three indi-

viduals 1,72, r3) are selected randomly (as three dif-
ferent individuals).
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The mutation vector is calculated from the randomly8.4 Real time Recurrent Learning (RTRL)

selected individuals: . L .
Real time recurrent learning is a gradient based algo-

_ .G G G rithm for neural networks training. It has been de-
Ui = g+ (@ = 2 ) F ) scribed in [8, 9]. g

whereax; represents thg-th parameter of the individ- We have network with neurons anah external inputs.
ualr in current generation andl is the mutation con- Potential ofk-th neuron in network in time is defined

stant. as:
Using the random number and cross threshold value sk(t) = Z wrzi(t), (10)
(CR) the new “testing” individual is created: levul

whereU is the set of indicesfor which z;(¢) represents
I%] + (5‘9?13 - z& .j)F7

testing ; r2, output value of neurons anflis the set of indices of
L5 = o if rnd(0,1) < CR (8)  external input of network. Sg (t) representé-th input
T3 j else, to neuron anduy; is the corresponding weight.
wherez;*’"" represent thg-th parameter if-th test-
Lo G . xp(t) forkel
ing individual,z;”; represents thg-th parameter of-th zp(t) = { (11)
individual in current generatio; R is the cross thresh- y(t) forkeU.

old value, andnd(0, 1) represents the random numberg, it ofk-th neuron in next time step is defined as:
from interval< 0;1 >.

The quality/fitness value of the new testing individual ye(t +1) = fr(sk(t)), (12)
is then compared with the fitness value of the original ) o _ )
individual (the first one — “step-by-step” selected fromwhere f;. is activation function of neuron, angt () is
the population). If the new individual is better than thethe inner potential of neuron in tinte

original one, the new individual is inserted into Newy oy we can define the difference between expegted

population: th output and actual output value as:
testing G testing .
! x; else, er(t) = 0 else (13)

where theXZ ™! represent the-th individual in new
generation and (z) calculates the fitness value of indi-
vidual x.

wheredy(t) is expected angy(¢) actual output value
of k-th neuronT'(t) represents set of indices for which
the expected value is defined.

It has been shown that the differential evolution algog .o of whole network in time can be calculated as:
rithm is good for optimizations in very complex state '

space with very isolated solutions [6, 7]. This algo- 1 9
rithm is also useful for real value encoded individuals. J(t) = 2 Z[e’f(t)] ’ (14)
For example whole weight matrix describing the neural key

network can be used.

3.3 Fully Recurrent Neural Network (FRNN
Y ( ) If the calculation runs in time intervat ¢y,t; >, the

Fully recurrent neural network (FRNN) is the most genfinal error will be:
eral structure of recurrent network, it is represented by

whereey (t) is error ofk-th neuron in time:.

a complete balanced graph, see fig.10. 2]
Jtotal = Z J(t)v (15)
Y1 Y2 f=totl
? T whereJ(t) is error in timet.
Cl ——~ 2 This error we are trying to minimize during the training
\\\{/I process using modification of weight matkix:
Xo=1 X1 t1
Awij = Z Awij (t), (16)
Fig. 10 The fully recurrent neural network with two t=to+1
neurons and two inputs. One of the inputg)(is usu- here
ally used for threshold value realization connecting td/ aJ(t)
constant value equal to one, so this network has one ex- Aw;(t) = —a a7
ternal input £+). wij

anda > 0 is the training parameter.
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Using equation above we can finally compute for all 3
keU,ieUandj e UUI: Threshold% N,
2. 3 6/7. X ™
k _ g ! . 4. 5. 0 6 | =
Pt +1) = fi(se(t)) [Z wply (t) +6zm<t>] N A
lev (18) 5_/ Output value
where (a) Weight matrix (b) Corresponding network

filsi(®) =yt + DI —ye(t+1)]  (19)  Fig. 11 An example of representation of the network by
weight matrix.

and
0 fori# 7,
- 2
i {1 fori=j. (20)
Because the initial state of network (in timg is inde-  hetwork — particular setting of weights — is encoded in
pendent on weight values the similar matrix (same dimensions) but with floating
point values.

Oy (to) =0, (21) In CEA two matrices are used - 0/1 matrix represent-
Ow; ing the structure of network and real value matrix with

L . weights values.
holds the following initial condition:

4.2 Evolution Process

k —
pij(to) = 0. (22)  an example of general evolution process in CEA is
shown in figures 2 and 3. In this chapter some detailed
‘information about evolution in our application of CEA
, to neural network construction problem will be shown.
Awi(t) = a Z e (£)pi (1)- (23) Reproduction operators and fitness function will be de-
ket scribed here.

The RTRL algorithm is of course not the only algorithm4.2.1  Fitness function
for training thg recurrent ngural networkg, but we ChOSEitness value (quality) of each individual is calculated
|tbbecause of its unr:vekr)sal_lty. The alg;)gfrhg;_ d?scr.'t;]e%s the negation of normalized error of the network (rep-
above represents the basic version o algorit L . .

More detailed description of RTRL and other gradier';'g/esented by the individual) on testing data. First the

- .vectors describing the neural network need to be ex-
[’gegiods for training recurrent networks can be found '"tacted from individual encoding, then it is necessary

to convert the linear encoding to matrix form and fi-
o nally this matrix can be imported into network model
4  Application and simulated.

We chose a neural network based models construction
problem as an application for our CEA evolution algo- p; D]]]]]—<5
rithm. Using this algorithm the structure of the model -

is being evolved with the goal of finding some opti- b; M

mal neural network topology for given problem. At the Dj m_o
same time there is running a process of optimization of

parameters of the model. b; m_@

As a platform for our application we chose the imple- u

mentation of fully recurrent neural network (FRNN) aSrjg. 12 Schematic diagram of crossover operation on

a most universal neural network structure. For gradine pehavioral vectors. There are randomly selected
ent learning part of CEA we chose a real time recurreria s from initial parameter vector and behavioral vec-

Finally the differences in weight matrix can be calcu
lated:

random number
generator

learning algorithm. tor of both individuals { and j). In combination with
All experiments has been performed Nathematica the mutation operator the parametrical and behavioral
programming |anguage and environment. vectors of new individual are being constructed

4.1 Individuals’ Encoding

Individuals’ encoding vector is divided into logical 42.2 Reproduction operator

parts as it was shown in (1). Because of the topologRReproduction process works with two individuals.

of the FRNN (the fully connected graph), its structureEach individual is represented by 3 vectors (and other
can be simply encoded into matrix, wheres repre- parameters, which are notimportantin the process now)
sent connections between nodes (neuronsYancep-  — initial parametric vector, structural vector, and behav-
resent missing connection. Encoding of behavior of thimral vector. Reproduction operator works with 6 sets of
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parameters then. Figure 12 shows the process of pason with other optimization algorithm. The neural net-
metric vector of new individual generation. Reproducwork is trained to generate some defined periodical se-
tion process for structural parameter works similarly -quence. We have tried pure gradient method (real time
there are two “source” structural vectoss &énds;) and  recurrent learning), differential evolution algorithmdan
two auxiliary vectors — vector of zeros and vector ofCEA algorithm.

ones, these vectors represent mutation operation (these

vectors are selected with lower probability then vectors val ue
5; ands;. '

4.3 Implementation

All algorithms and experiments have been implemented
in Wolfram Mathematicaenvironment. We have cre-
ated the CEA.m library with universal CEA implemen- 0.2
tation. Example of population (which involves all the 4 s 4 s 2 Time
CEA parameters settings) initialization:

Fig. 13 An example of training set for learn to oscillate
experiment. Two period ofin(z) function sampled by
20 points has been chosen in one experiment.

pop = CEAInitialize|
initial pop_size,
m n_pop_si ze,
max_pop_si ze, o : .
age_i ncrenent, Neural ngtwork in this experiment has.no external in-
u, v, (* vectors dinensions ) Puts and it has one output value — trained to generate

fitness ref,
crossfunction_ref,
gradf _ref,

the given sequence.

We have tried many parameters setting of used algo-
rithms to get an appropriate results. Performed experi-

updat ef _ref,

- ments confirmed the theoretical properties of our CEA
{addi tional paraneters}];

algorithm. For details see section 6.

First three parameters describe the size of population

(number of individuals)age_i ncr enent represents Y 7

the elementary time increment of age parameter of each C\ o3 /} s =

individual - age parameter is normalized (0-1), so us- 9 2 /4’/ \

ing this parameter the maximal age of individuals can 5 N , 13
be specified (0.1 represents maximal age of 10 steps,( ° 1)

0.01 represents maximal age of 100 steps, etc.). Us- 7 \ /

ing u andv parameters the dimensions of structural G o D G ] output

and behavioral vectors are specified. Parametarsf

are references to following functions: fitness function,
crossover operator, gradient learning algorithm, auxil-
iary function for individual parameters update (it is NoFjg. 14 An example of CEA resultin ANN based model
necessary to be used). The last parameter representsig|ution experiment. Left figure shows the fully recur-
set of auxiliary parameters that could be used in soment neural network with all connections — this is the
special cases (in our experiments we are using this parost general structure that we are building our solution
rameter for passing the number of neurons in networn_ Right figure shows the result of evolution process
to the fitness function — it is Only an implementation_ trained recurrent neural network. About 57% con-
detail). nection has been removed by evolution process. Output

When the initial populatiopop is created and initial- value of the network is taken from the neuron 1.
ized, we can run the evolution process. One step of the
process is done using the following code:

(a) ANN based model (b) CEA built model

newpop = CEAReproduct i on[ pop] ; 6 Discussion

, We have chosen benchmark experiments based on
In the CEAm library there are also some othekieam tg oscillate” experiment described in [8]. Table 1
functions used mainly for debugging purposes (printshqyg 4 result from experiment where FRNN with 6
ing the individuals in population, etc.), but with he rons has been trainedsin (=) function. We chose
CEAIni tialize[] and CEAReproduction the his number of neurons based on our previous experi-
whole evolution process can be performed. ences — it is enough and it can be shown the possible
inter-neurons connections reduction in this network.

5 Experiments . N o
Because of variable population size and combination of

We have chosen the simple experiment “learn to oscigenetic and gradient-based methods in CEA there was

late” [8] to check our implementation and for compari-highly reduced the number fitness evaluation needed for
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Tab. 1 Selected experiments results. Comparison d&b. 3 Results of testing CEA for different number of

number of iterations needed in particular algorithms tevolution iterations (10, 50, 100) and for different set-

train the network with comparable result (errors). DEtings of number of gradient steps in each evolution it-
differential evolution, CEA-continual evolution algo- eration. We measured number of fitness function eval-
rithm, RTRL-real time recurrent learning. The tableuations (FC - Fithess Count), population size - PS (av-
shows numbers for whole population and for the bestrage, minimal, maximal) and quality of best solution

individual for comparison. Shown values are approxifound (Best).

mate — they come from several runs of algorithms.

Grad [ FC PS Best

DE] CEA[RTRL 10 evolution steps
Total for whole algorithm run. 1 | 249 (25,10,42) 0.607035
No. of fitness evaluation®5 000, 480 X 5 | 220 (22,10,37) 0.611232
No. of gradient steps x 19 000] 500 10 | 282 (28,10,45) 0.617294

For best solution (one individual). 50 evolution steps
No. of fitness evaluatior)ls 500 17 X 1 [2063 (41, 10,50) 0.608738
No. of gradient steps x| 340| 500 5 |2038 (41,10,50) 0.673340
10 | 2150 (43,10,50) 0.903866

100 evolution steps
Tab. 2 The table shows number of fitness function eval- 1 [4327 (43,10,51) 0.612297
uations (FC), number of gradient algorithm steps per- 5 |4276 (43,10,50) 0.884965
formed (GC), average population size (PS), and quality 10 |4478 (45,10,51) 0.960214

of best solution found (Best). All these parameters were
tested for different maximal population size and num-
ber of evolution steps. Number of gradient steps in each

evolution iteration was set to 20. . .
ing numbers: for 6 neurons there are 42 weight val-

ues 6 x (6 + 1), one additional input for threshold
value), best network from one algorithm runs had 25 ac-

Maximal populaton size setting

Evolution 10 20 tive connections, it means 17 connections was removed,
steps | FC/GC  PS Besy FC/GC PS Best \nich represents abod6% reduction.
5 57/940 10 0.62 91/1440 18 0.61

10 106/1900 10 0.69 183/3220 18 0.67
20 201/3740 10 0.94 365/6780 18 0.87
30 301/5700 10 0.9% 526/9880 17 0.9%
40 397/7500 10 0.9% 674/12580 17 0.9
50 503/9580 10 0.96 865/16340 17 0.9

Based on experiments we can say that we got better re-
sults with CEA for bigger state spaces - larger networks
(larger maximal number of neurons). For smaller net-
works the DE algorithm served better results. RTRL al-
gorithm is faster (mainly for very small networks) than

G C

Maximal populaton size setting DE or CEA, but RTRL is not able to optimize the topol-
Evolution 50 100 ogy of network.
steps FC/IGC PS Best FC/GC PS Best
S 245/3900 49 0.64 477/7580 95 0.6% |t is clear that all presented algorithms especially the
10 482/8600 48 0.73 958/17120 96 0.68 eyolutionary algorithms — DE and CEA — have many
20 843/15640 42 0.931819/33980 91 0.98 parameters that can extensively affect their perfor-
30 |1175/21960 39 0.952645/49700 88 0.95 mance and results. The goal of this work was to prove
40 | 1551/29120 39 0.963509/66360 88 0.96 some of the CEA's theoretical expected properties. We
50 1947/36620 39 0.964406/83780 88 0.9y

have experimentally tested that CEA is able to work
with separate encoding of structure and behavior of
individuals and evolve them in two different dimen-

sions (using different algorithms) separately and con-

evolving good-quality individual (network). Differen- tinuously.

tial evolution algorithm uses constant population size , ,

so number of fitness evaluations is also constant for pa-l'_ab'{a 2 shows the results of testing the CEA algorithm
ticular number of individuals and number of generatiorir different settings of maximal size of population. In
setting. Gradient-based algorithm (RTRL) works with{@ble 3 the results of experiments with different num-
only one network and it needed less steps than the ceher of gradient steps in each evolution iteration are pre-
In CEA the average size of population was 24 althougﬁemed- It can be seen that for low humber of gradient

the maximal size was the same as in DE and it was s&€pPs the algorithm gives relatively bad results. Itis be-
to 100. cause in this case the evolution process is used mainly

for structure of network building/adaptation. The evo-
The RTRL algorithm is not able to create optimal topoldution process is used also for weight setting but it is
ogy of network. It always uses the fully connectedh minority function. The weights are mainly adapted
network. DE also optimized the whole weight matrixby gradient algorithm (realtime recurrent learning was
representing the fully recurrent neural network. CEAused). In table 3 can be seen that increasing number of
reduced some connection - as an example see follogradient steps gives better results.

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM



Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic)

7 Conclusion and future work

We have described the CEA algorithm in detail in this196
paper. On the experiments we have successfully test o]
some theoretically expected properties of CEA algo-
rithm and we have shown that it can be used for ANN-
based models creation/evolution. Comparison to oth

methods (real time recurrent learning and differenti

evolution algorithm) has been shown. We have pre-
sented the ability of CEA to produce smaller (simpler)
models (networks) than RTRL and DE (used forweighf

matrix adaptation). 8]

The first (debugging, not public yet) version of library
for Wolfram Mathematicathat implements the CEA [9]
algorithm was created. The experiments with ANN-
based models in combination with CEA brings some
new ideas how to improve the CEA algorithm, for ex-
ample specific probability and balancing functions set-
ting.

In future a lot of work on the theory of CEA algorithm
and its applications are needed. The public version of
CEA.m library is planed to be released.
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