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Abstract

An efficient control of laser welding process requires a reliable prediction of process behavior.
For this purpose representative variables have to be chosen, which can effectively describe
the welding process. Our prediction is based on a record of surface optical activity in the
heated zone, known as the melt pool. The spatiotemporal dynamics of surface optical activity is
successfully predicted using non-parametric statisticalmodeling, which is based on assumption
that statistical properties of deterministic chaotic fields remain unchanged as the field evolutes
with time. An analysis of field patterns in the past enables usto extract relations between
values of field in neighboring points in space as well as in time. Based on similarities between
the present field pattern and field patterns extracted from the past data, the field value in the
next time step can be successfully predicted. In this presentation we show how to optimize
field pattern sampling in order to maximize prediction quality. A special attention is paid to
the structure of sample vectors, which represent the bridgebetween the past and the future
field distributions. Presented time prediction method, which was applied to the surface optical
activity in the heated zone, represents the first step towards the optimal control of laser welding
process.
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1 Introduction

In order to use laser system as a high performance
welding tool, efficient control should be established
[1]. The crucial task in planning the control system
is to determine representative variables which can ef-
fectively describe the welding process. In addition to
measurements of intensity and spatial distribution of re-
flected light or surface temperature, characteristic dy-
namic properties in space and time can also be obtained
by recording surface optical activity in the heated zone,
known as the melt pool [2].

After choosing the representative variables, evolution
laws have to be extracted from temporal data. To date,
this problem has been extensively studied in relation
to chaotic time series prediction [3, 4, 5, 6, 7]. The
basis of these methods is to reconstruct a state-space
from a recorded scalar time series by using an embed-
ded technique, and then to estimate deterministic dy-
namic evolution from the reconstructed trajectory us-
ing statistical average estimators. We present a gener-
alization of this approach, where the modeling of dy-
namic laws is extended from one dimension (time) to
multiple dimensions in spatiotemporal space. This gen-
eralization requires a new embedding method, which
makes feasible a reconstruction of trajectory in the
state-space from spatiotemporal data. The embedded
technique, which was initially developed for time series
analysis, can be simply generalized to spatially related
data [8, 9, 10, 11, 12] and results in a good agreement
between predicted and original chaotic fields over short
time scales. Since, in a properly reconstructed state-
space, the modeled dynamics must have similar statis-
tical properties to the actual dynamics, we use a new
state-space reconstruction method which also considers
statistical properties of a field structure. Such recon-
struction results in an accurate short-term prediction as
well as a statistically proper long-term prediction of de-
terministic chaotic field evolution [13].

The basic motivation of this article is to develop a
method for modeling spatio-temporal fields, which
could provide for an efficient control of laser welding
process. Result shown in this article present a first step
in this direction.

In the presented work a statistical method of field gen-
erators is used to model the spatiotemporal dynamics
of laser welding melt pool images [14]. The stochas-
tic field evolution is modeled from sample state vectors
reconstructed from recorded spatiotemporal data. The
field evolution equation is estimated non-parametrically
from the samples, using the conditional average estima-
tor which determines the governing equation ofradial
basis function neural network. Our goal is to find an
optimal dimensionality of the neural network,i.e., to
determine its optimal structure and an adequate num-
ber of sampling patterns, which will result in the best
qualityQ of field generator prediction.

Accurate modeling of laser welding images, together
with a criterion function specified by the operator of
the laser system, provides the basis for optimal control
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Fig. 1 Illustration of points and its surroundingss′ ∈ S.
The future distribution of fieldϕ (s) is located in plane
t, while the surrounding pointss′ ∈ S, which represent
the past distribution of field, are located inplanest−1,
t−2...

of the laser welding process.

2 Description of method
2.1 Non parametric statistical modeling

In our model, field evolution is expressed only in terms
of data recorded at equally spaced discrete points in
space and time,ϕ = ϕ(s), where the variables repre-
sents space as well as time componentss = s(r,t). We
assume that the dynamics of the field can be described
in terms of the generator equation

ϕ(s) = G (ϕ(s′ ∈ S(s)), σ) , (1)

whereϕ(s′ ∈ S) represents thepast distributionof the
record, whileϕ(s) represents itsfuture distribution. S
represents the surroundings of points. The field gen-
eratorG provides for determination of the future field
distribution from its past distribution.σ is a model pa-
rameter depending on the experimental setup and will
be specified in greater detail later. An arbitrary points
and its surroundingss′ ∈ S are illustrated in Fig. 1.

The source of information for modeling the field gener-
ator is a field record containing joint sample pairsϕ(s)
andϕ(s′ ∈ S). These joint sample pairs form a sam-
ple vectorVi(s) = (ϕi(s), ϕi(s

′ ∈ S)). To make
further derivation more transparent, the past field dis-
tribution ϕi(s

′) and the future field distributionϕi(s)
will be denoted byxi and yi, respectively. Hence
Vi(s) = (yi,xi).

The samplesVi are interpreted as random variables and
can therefore be used to express thejoint probability
distribution function(PDF) by the kernel estimator [15]

fN (V) =
1

N

N∑

i=1

ψ(V − Vi, σ), (2)

in which ψ denotes an acceptable kernel function
such as the Gaussian functionψ(x − xi, σ) =

1/(
√

2πσ)exp(−(x − xi)
2/2σ) andN is the number

of sample pairs.

Once the samples from the field record have been taken,
the question ofhow to determine the optimal predictor



becomes relevant. We consider as an optimal predictor
of the future field distributiony from a given valuex
the valuêy at which the mean square prediction error is
minimal:

E[(y − ŷ)2|x] = min(ŷ). (3)

HereE[ ] denotes averaging over all points in a field
record at a given timet. The solution of Eq. (3) yields
together with PDF from Eq. (2)the conditional average
estimator

ŷ(x) =

∑N

i=1
yiψ(x − xi, σ)

∑N

j=1
ψ(x − xj , σ)

=

N∑

i=1

yiCi(x), (4)

where coefficients of the expansionCi(x) represent ba-
sis functions that measure the similarity between the
temporary vectorx and vectorxi from the field record.
The conditional average estimator described by Eq. 4
represents a radial basis function neural network in
which the recorded dataxi,yi represent the memorized
contents of neurons,x and ŷ(x) are the input and the
output of the network, while the basis functionsCi(x)
correspond to activation functions of neurons. Since∑N

i=1
Ci(x) = 1, the conditional average estimator

represents a normalized radial basis function neural net-
work.

2.2 Quality of predictor

Working towards optimal modeling of future field dis-
tributions requires a quantitative estimation of model-
ing quality. We therefore introducea testing fieldy and
define theprediction qualityQ, based upon the differ-
ence between the predicted fieldŷ and the testing field
y as:

Q = 1 − E[(ŷ − y)2]

E[(ŷ − ˆ̄y)2] + E[(y − ȳ)2]
. (5)

Hereˆ̄y andȳ stand for the average values of predicted
field ŷ and testing fieldy, i.e., E[ŷ] = ˆ̄y andE[y] =
ȳ. A perfect prediction̂y = y yieldsQ = 1, while
uncorrelated̂y and y with equal mean values̄y = ˆ̄y

result inQ = 0.

2.3 Prediction of field evolution

The prediction process consists of three steps:

1. Learning, that corresponds tosetting up the basis
of joint sample pairs(ϕi(s), ϕi(s

′ ∈ S)) = (xi,
yi) from the field record,

2. predicting the field̂y by using the conditional av-
erage estimator from Eq. (4),

3. and, if the testing field exists,comparing predicted
field with testing fieldand calculating prediction
qualityQ.

In order to achieve the highest quality of prediction for
the process, answer to the following crucial question is
needed:
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Fig. 2 Time series of laser welding records for two dif-
ferent welding regimes: (a) a deep welding regime , and
(b) a heat conduction welding regime. The next time-
step images denoted by? are unknown and must be
predicted.

• How to find the surroundingS of a given points,
which gives the best prediction of field̂ϕ(s) at this
point?

This question will be addressed in the following chap-
ters.

3 Time evolution of melt pool

Characteristic dynamic properties of laser welding pro-
cess in space and time can be experimentally obtained
by recording the surface optical activity of the melt
pool. With respect to the energy supplied to the ma-
terial, various dynamic regimes of the welding process
can be distinguished. In Fig. 2 visual records of two
different welding regimes are shown, a deep welding
regime (a) and a heat conduction welding regime (b).
The deep welding regime results in a higher quality
weld than the heat conduction welding regime. In the
following discussion, only the deep welding regime is
considered.

Dynamics of the welding regime are here represented
by a record of 1000 images of size 32× 32 points in
space with sampling time 1/220 s. This experimental
record forms a three-dimensional field of light intensity
ϕ(s = r, t) in two-dimensional space{(rx,i, ry,i); i =
1, ..32, j = 1..32} and time{tk; k = 1..1000}. Due
to local energy supply, the field is non-homogeneous in
space. Consequently, we model its evolution locally at
each spatial point separately. A model of field evolu-



tion, i.e., the learning sampleis formed from the first
800 images. We then predict the time evolution of the
field and compare it with the next 200 images, which
represent thetesting sample. Based on the qualityQ of
these predicted images, we optimize our prediction pro-
cedure,i.e., and define the structure of the surroundings
S.

3.1 Optimizing model structure

Our next goal is to find an optimal structure of radial ba-
sis function neural network which yields the best qual-
ity of prediction in the shortest time interval. The struc-
ture of surrounding setS plays an important role in this
optimization process since each additional point in the
surrounding increases the dimensionality of vectorsxi

and therefore the time needed to predict the field distri-
bution in a given point. Our task is to find the smallest
surrounding of points, which results in high prediction
quality.

In Fig. 3 the prediction quality is presented for various
selections of surrounding setS. Our model structure
consisted ofN=600 sample pairs, parameterσ was set
to 4. Q represents the average quality of ten predicted
images which were compared with the corresponding
images from the testing field. All the member points of
the first six surrounding sets in the diagram lie in the
planet−1. Member points of other surrounding sets lie
in several planes. For each of these, only those planes
containing the member points are plotted.

As can be seen in Fig. 3, the smallest surrounding sets
give the best quality of prediction - see sets Nr. 1-3 and
7-10. If more points belonging to the same time-plane
are added toS, prediction quality is decreased- com-
pare, for example sets Nr. 1 and Nr. 6 or Nr. 14 and
Nr. 15. In contrast, surrounding sets containing points
from two planes,t−1 andt−2, give a slightly betterQ
than sets containing only points fromt−1 - compare
for example sets Nr. 1 and Nr. 7. However, an addition
of multiple time-planes reduces the quality (see set Nr.
12).

As the best quality is obtained for set Nr. 7, this sur-
rounding set is considered optimal in further calcula-
tions. We would like to stress, that in Fig. 3 only those
surrounding sets which seemed to have the potential to
give the best quality were taken into account. The opti-
mal structure ofS was chosen on the basis of selected
sets. To be sure that the chosen structure was really op-
timal, it is necessary to calculate the prediction quality
of all the subsets containing all combinations of neigh-
boring points. Since the number of points in our learn-
ing set is 32×32×600, a calculation ofQ for all sets
would become a computationally prohibitive task.

3.2 Optimal prediction of melt pool evolution

Using the optimal structure of our model, we show the
discrepancy between the predicted images of the laser
welding melt pool and the corresponding images from
the testing field. In Fig. 4 we present predicted laser
welding image and corresponding image from the test-
ing field for the optimal model structure. The surround-
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Fig. 3 Dependence of prediction qualityQ (*) on the
structure of the surrounding setS, s′ ∈ S(s). Model
structure consisted ofN = 600 sample pairs,σ was set
to 4. The black squares in the netlike patterns (1-15)
describe the position of surrounding points. Only those
time planes are plotted, which contain points fromS.

ing setS has only two member points, both having the
same spatial position as the predicted point, but neigh-
boring positions in time.N = 600 sample pairs are
taken into acount, parameterσ is set to 4. Since the
quality of prediction is 0.93 (see Fig. 3), a very good
similarity between the predicted and corresponding im-
age from the testing field is expected. Comparison of
predicted image and image from the testing field in
Fig. 4 indeed exhibits a good resemblance. However,
we would like to draw attention to surface smoothness.
As can be seen, the predicted surface is smoother than
the original surface. This can be easily understood if the
origin of prediction of images in the conditional average
estimator (Eq. 4) is taken into account. Predictedŷ is
therefore a weighted average of all thoseyi, for which
xi is similar tox. Consequently, the surface roughness
is diminished due to conditional averaging.



51015202530

10

20

300

50

100

150

51015202530

10

20

300

50

100

150

a) predicted field

b) testing field

j

r
x

r
y

j

r
x

r
y

Fig. 4 Comparison of predicted melt pool image (a)
with corresponding image from the testing field (b) for
a randomly chosen testing record.ϕ stands for field,rx
andry denote spatial coordinates of the record. Param-
eters areN = 600 andσ = 4. The surrounding setS
has only two member points, both having the same spa-
tial position (r) as the predicted points=(r,t), but dif-
ferent neighboring positions in time,i.e., t−1 andt−2.

4 Conclusion
Time evolution of multi-dimensional fields is usually
obtained by solving a system of partial differential
equations. However, if the only source of information is
a record of the field, a neural network can successfully
replace differential equations by extracting field evo-
lution properties from the recorded data [16]. Neural-
network-like structures are also expected to be the
working algorithm of living organisms’ intelligence. In
the same way as neural networks, living organisms pre-
dict the evolution of events in their surroundings solely
on the basis of recorded data. It could be conjectured
that this operation is probably performed by extracting
simple evolution laws from recorded data.

In this paper we show how to optimize a statistical mod-
eling of a field generator performed by the normalized
radial basis function neural network, to efficiently learn
spatiotemporal dynamics of multi-dimensional fields.

In our experimental approach, all information about
process dynamics is contained in a measured space-
time record of the characteristic variable. To extract
the model of field evolution from the corresponding
discrete sample data, we employ a non-parametric ap-
proach, following a state-space reconstruction tech-
nique. The basis of state-space reconstruction is the for-
mation of sample vectors which are composed of past
and future field distributions. We assume that the field
distribution in a given spatiotemporal points is corre-
lated with the field distribution in the spatiotemporal
surroundings of this point,S. The prediction of field
distribution ins is then accomplished as a mapping re-
lation between the field distribution in the surroundings
S and field distribution ins.

Since the optimization of the state-space reconstruction
technique also requires a quantitative measure of the
prediction quality, we introduce the quality estimator
Q, which incorporates the difference between the pre-
dicted field and the corresponding testing field. We con-
sider as a proper set of model parameters those values at
which the prediction quality achieves a maximum. This
strategy is used here to find a proper value of parame-
ter σ and the structure of the surroundingS utilized in
the prediction process. Generally, an estimation of the
proper number of sample points must also consider the
complexity of the experiments, which is numerically
demanding in a multidimensional case [17].

We demonstrate the proposed method of modeling of
the properties of the laser-heated melt pool. For this
purpose, we employ non-parametric statistical model-
ing of field evolution on a spatiotemporal record of the
melt pool of the laser welding process. The major part
of the field record is used for learning, while the minor
part of the record serves for testing. We show how to
construct the set of joint sample pairs containing past
and future values of field distributions and pay special
attention to the structure of these sample pairs. We also
present the optimal structure of sample vectors, which
gives the highest resemblance between predicted im-
ages and images from the testing field and has a small
number of member points in order to make the predic-
tion algorithm work quickly.
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