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Abstract

An efficient control of laser welding process requires aatdk prediction of process behavior.
For this purpose representative variables have to be cheganh can effectively describe
the welding process. Our prediction is based on a record & optical activity in the
heated zone, known as the melt pool. The spatiotemporahdigsaf surface optical activity is
successfully predicted using non-parametric statisticadeling, which is based on assumption
that statistical properties of deterministic chaotic fetdmain unchanged as the field evolutes
with time. An analysis of field patterns in the past enablegousxtract relations between
values of field in neighboring points in space as well as iretilBased on similarities between
the present field pattern and field patterns extracted frarp#st data, the field value in the
next time step can be successfully predicted. In this ptaen we show how to optimize
field pattern sampling in order to maximize prediction gtyaliA special attention is paid to
the structure of sample vectors, which represent the brijeeen the past and the future
field distributions. Presented time prediction method,clhwas applied to the surface optical
activity in the heated zone, represents the first step tathrloptimal control of laser welding
process.
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1 Introduction ot

—

In order to use laser system as a high performancé\( S ( -
welding tool, efficient control should be established =+
[1]. The crucial task in planning the control system | = :
is to determine representative variables which can ef- | sﬁ\\ ERAR o =
fectively describe the welding process. In additonto —— —— | '
measurements of intensity and spatial distribution of re- \
flected light or surface temperature, characteristic dy- B | )
namic properties in space and time can also be obtained ( ﬁ\u{
by recording surface optical activity in the heated zone, T
known as the melt pool [2]. Fig. 1 lllustration of poins and its surroundings € S.
The future distribution of field (s) is located in plane

After choosing the representative variables, evolutiop’ while the surrounding pointé € S, which represent
laws have to be extracted from temporal data. To datgye past distribution of field, are locatedpranest_1,

this problem has been extensively studied in relatiop
to chaotic time series prediction[3, 4, 5, 6, 7]. The
basis of these methods is to reconstruct a state-space
from a recorded scalar time series by using an embedf the | Idi
ded technique, and then to estimate deterministic d)9— € laser welding process.
namic evolution from the reconstructed trajectory us- o

ing statistical average estimators. We present a gene?- Description of method
alization of this approach, where the modeling of dy-2
namic laws is extended from one dimension (time) t&”
multiple dimensions in spatiotemporal space. This gerin our model, field evolution is expressed only in terms
eralization requires a new embedding method, whicbf data recorded at equally spaced discrete points in
makes feasible a reconstruction of trajectory in thepace and timep = ¢(s), where the variable repre-
state-space from spatiotemporal data. The embeddsents space as well as time componentss(r,t). We
technigue, which was initially developed for time seriesassume that the dynamics of the field can be described
analysis, can be simply generalized to spatially relateid terms of the generator equation

data[8, 9, 10, 11, 12] and results in a good agreement ,

between predicted and original chaotic fields over short p(s) = G (p(s' € 5(s)),0), 1)

time scales. Since, in a properly reconstructed stalgyhere (s’ € S) represents thpast distributionof the
space, the modeled dynamics must have similar statigscord, whilep(s) represents itfuture distribution S
tical properties to the actual dynamics, we use a Nepanresents the surroundings of paintThe field gen-
state-space reconstruction method which also considelgiorg provides for determination of the future field
statistical properties of a field structure. Such recoryistripytion from its past distributionr is a model pa-
struction results in an accurate short-term prediction 3§ meter depending on the experimental setup and will
well as a statistically proper long-term prediction of deye specified in greater detail later. An arbitrary paint
terministic chaotic field evolution[13]. and its surroundings € S are illustrated in Fig. 1.

The basic motivation of this article is to develop aThe source of information for modeling the field gener-
method for modeling spatio-temporal fields, whichator is a field record containing joint sample paits)
could provide for an efficient control of laser weldingand (s’ € S). These joint sample pairs form a sam-
process. Result shown in this article present a first stgfle vectorV;(s) = (p;(s), :(s’ € S)). To make
in this direction. further derivation more transparent, the past field dis-

- ) tribution ¢;(s") and the future field distributiorp;(s)
In the presented work a statistical method of field geng be denoted byx; andy;, respectively. Hence
erators is used to model the spatiotemporal dynamic‘s‘(s) = (yi,Xi)- ! B ’

of laser welding melt pool images[14]. The stochas-
tic field evolution is modeled from sample state vectorg he sampled/; are interpreted as random variables and
reconstructed from recorded spatiotemporal data. Th&@n therefore be used to express jhiat probability
field evolution equation is estimated non-parametricallglistribution function(PDF) by the kernel estimator [15]
from the samples, using the conditional average estima- N

tor which determines the governing equatiorradial 1

basis function neural networkOur goal is to find an N (V) = N Zl/}(V —Vi,0), @
optimal dimensionality of the neural networike., to =1

determine its optimal structure and an adequate nurir which ¢y denotes an acceptable kernel function
ber of sampling patterns, which will result in the bessuch as the Gaussian function(z — z;,0) =
quality @ of field generator prediction. 1/(v270)exp(—(xz — 2;)%/20) and N is the number

Accurate modeling of laser welding images, togethecr)f sample pairs.

with a criterion function specified by the operator ofOnce the samples from the field record have been taken,
the laser system, provides the basis for optimal contrehe question ohow to determine the optimal predictor

M

/
[EHT

, (
S\’\\ S

1 Non parametric statistical modeling



becomes relevant. We consider as an optimal predictc

of the future field distributiory from a given valuex 10 e 10
the valuey at which the mean square prediction error is N 0 [
minimal: 8 . A
— ) 217] = min(v 30 -
Elly = §)7le] = min(y). ® oow o w s
HereE[ ] denotes averaging over all points in a field
record at a given timé. The solution of Eq. (3) yields 10 ol 10 ]
together with PDF from Eqg. (2he conditional average ,, - 0 ,H
estimator . -
30 30 = h
N N 10 20 30 10 20 30
y(X) — 217\]1 Yﬂ/f(x XZ;U) — ZyLCZ(X)7 (4)
Zj:l Y(x —x;,0) i=1 10 e 10 -
20 20 :_
where coefficients of the expansioh(x) represent ba- 2 -l
sis functions that measure the similarity between the * %0 el
. 10 20 30 10 20 30
temporary vectok and vectork; from the field record.
The conditional average estimator described by Eq.4 t
represents a radial basis function neural network in
which the recorded datg, y,; represent the memorized ‘? ‘?
contents of neurons andy(x) are the input and the ° .
output of the network, while the basis functiofig(x)
correspond to activation functions of neurons. Sinceaa) (b)

SV, Ci(x) = 1, the conditional average estimator . . . : :
Ky : : . . ig. 2 Time series of laser welding records for two dif-
\r;(;))rrkesentsanormallzed radial basis function neural n%erentwelding regimes: (a) a deep welding regime , and
' (b) a heat conduction welding regime. The next time-
2.2 Quality of predictor step images denoted 8 are unknown and must be

redicted.
Working towards optimal modeling of future field dis- pred

tributions requires a quantitative estimation of model-

ing quality. We therefore introduaetesting fieldy and

define theprediction qualityQ, based upon the differ- e How to find the surrounding of a given points,
ence between the predicted figidand the testing field which gives the best prediction of fieftls) at this
y as. point?

Q=1- ]?[(y ~y)’] ) (5) This question will be addressed in the following chap-
E[(y -¥)} +E[(y - 9)% ters.

Herey andy stand for the average values of predicte ; ;

field § and testing fieldy, i.e, E[§] — § andEly] — $ Time evolution of melt pool

y. A perfect predictiony = y yields@ = 1, while  Characteristic dynamic properties of laser welding pro-
uncorrelatedy andy with equal mean valueg =y  cess in space and time can be experimentally obtained
resultin@ = 0. by recording the surface optical activity of the melt
pool. With respect to the energy supplied to the ma-
terial, various dynamic regimes of the welding process
The prediction process consists of three steps: can be distinguished. In Fig. 2 visual records of two
different welding regimes are shown, a deep welding
regime (@) and a heat conduction welding regime (b).
The deep welding regime results in a higher quality
weld than the heat conduction welding regime. In the
following discussion, only the deep welding regime is
considered.

2.3 Prediction of field evolution

1. Learning that corresponds teetting up the basis
of joint sample pairg¢;(s), pi(s’ € S)) = (x;,
yi) from the field record,

2. predicting the fieldy by using the conditional av-
erage estimator from Eq. (4), Dynamics of the welding regime are here represented
. N . . . by a record of 1000 images of size 3232 points in
3. and, if the testing field existspmparing predicted  gn406 \with sampling time 1/220s. This experimental
field with testing fieldand calculating prediction ecord forms a three-dimensional field of light intensity
quality Q. o(s = r,t) in two-dimensional spacf(r, i, r,.i);i =
1,..32,j = 1..32} and time{t,; k = 1..1000}. Due
In order to achieve the highest quality of prediction foito local energy supply, the field is non-homogeneousin
the process, answer to the following crucial question ispace. Consequently, we model its evolution locally at
needed: each spatial point separately. A model of field evolu-



tion, i.e,, thelearning samplds formed from the first
800 images. We then predict the time evolution of the
field and compare it with the next 200 images, whict  0.94 [@]6)
9229, $700p o
*

0.95

represent théesting sampleBased on the qualit§) of

¥ @ 4

these predicted images, we optimize our prediction prc 0.93 ? * *
cedurej.e., and define the structure of the surrounding:  0.92 ® ’@
S. *

© 091 HHH :i:
3.1 Optimizing model structure 0.9 © 7#7 t, O & t,
Our nextgoalis to find an optimal structure of radial ba: g9} (3) o @ﬁ ]
sis function neural network which yields the best qual Lt t, ®
ity of prediction in the shortest time interval. The struc- 088 *

ture of surrounding sef plays an importantrole inthis g,

optimization process since each additional point in th 0

surrounding increases the dimensionality of vectgrs

and therefore the time needed to predict the field distri- @.t_l
[T

15

bution in a given point. Our task is to find the smallest
surrounding of poing, which results in high prediction
quality. © a. t.H

In Fig. 3 the prediction quality is presented for various
selections of surrounding sé&t Our model structure @ﬁ t.H
consisted ofV=600 sample pairs, parametemwas set

to 4. Q represents the average quality of ten predicted

) 9 0
ki B
i

| ::‘H:F ::H:: ::H::
®

images which were compared with the corresponding @# LT t-Z:#: t-»E#E L

images from the testing field. All the member points of ] = H

the first six surrounding sets in the diagram lie in the ) A t t 0Tt Ot Bt
planet_;. Member points of other surrounding sets lie T e e e

in several planes. For each of these, only those planes - & -
containing the member points are plotted. @#H#% #t,]#tz#g

As can be seen in Fig. 3, the smallest surrounding sets HH HH HH H-H H-H
give the best quality of prediction - see sets Nr. 1-3 and ®) t t t t t
7-10. If more points belonging to the same time-plane . ". '2. "‘. '4. N
are added taS, prediction quality is decreased- com-

pare, for example sets Nr. 1 and Nr. 6 or Nr.14 andig. 3 Dependence of prediction quali§y (*) on the

Nr. 15. In contrast, surrounding sets containing pointstructure of the surrounding st s’ € S(s). Model
from two planest_; and¢_,, give a slightly better)  structure consisted @f = 600 sample pairsy was set
than sets containing only points from; - compare to 4. The black squares in the netlike patterns (1-15)
for example sets Nr.1 and Nr. 7. However, an additiodescribe the position of surrounding points. Only those

of multiple time-planes reduces the quality (see set Ntime planes are plotted, which contain points frém
12).

As the best quality is obtained for set Nr.7, this sur-
rounding set is considered optimal in further calcula-
tions. We would like to stress, that in Fig. 3 only those

surrounding sets which seemed to have the potential ftqg setS has only two member points, both having the

give the best quality were taken into account. The optisgme spatial position as the predicted point, but neigh-
mal structure ofS was chosen on the basis of selecte oring positions in time.N' = 600 sample pairs are

sets. To be sure that the chosen structure was really 9Byen into acount parameteris set to 4. Since the

timal, it is necessary to calculate the prediction qualit)quamy of prediction is 0.93 (see Fig.3), a very good

of all the subsets containing all combinations of neighgimilarity between the predicted and corresponding im-
boring points. Since the number of points in our Ieamzge from the testing field is expected. Comparison of
ing set is 3% 32x600, a calculation of) for all sets

. n 2 predicted image and image from the testing field in
would become a computationally prohibitive task.  Fig 4 indeed exhibits a good resemblance. However,

3.2 Optimal prediction of melt pool evolution we would like to draw attention to surface smoothness.
As can be seen, the predicted surface is smoother than

Using the optimal structure of our model, we show thehe original surface. This can be easily understood if the
discrepancy between the predicted images of the laserigin of prediction ofimages in the conditional average
welding melt pool and the corresponding images fronestimator (Eq. 4) is taken into account. Predicfei$

the testing field. In Fig.4 we present predicted lasetherefore a weighted average of all thgge for which
welding image and corresponding image from the test; is similar tox. Consequently, the surface roughness
ing field for the optimal model structure. The surroundis diminished due to conditional averaging.



In our experimental approach, all information about
process dynamics is contained in a measured space-
time record of the characteristic variable. To extract
the model of field evolution from the corresponding
discrete sample data, we employ a non-parametric ap-
proach, following a state-space reconstruction tech-
nique. The basis of state-space reconstruction is the for-
mation of sample vectors which are composed of past
and future field distributions. We assume that the field
distribution in a given spatiotemporal poinis corre-

I lated with the field distribution in the spatiotemporal
surroundings of this point§. The prediction of field
distribution ins is then accomplished as a mapping re-
lation between the field distribution in the surroundings
S and field distribution irs.

a) predicted field

Since the optimization of the state-space reconstruction
technique also requires a quantitative measure of the
prediction quality, we introduce the quality estimator
@, which incorporates the difference between the pre-
dicted field and the corresponding testing field. We con-
sider as a proper set of model parameters those values at
which the prediction quality achieves a maximum. This
strategy is used here to find a proper value of parame-
ter o and the structure of the surroundiSgutilized in

the prediction process. Generally, an estimation of the
proper number of sample points must also consider the
complexity of the experiments, which is numerically
demanding in a multidimensional case [17].

150
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We demonstrate the proposed method of modeling of
the properties of the laser-heated melt pool. For this
purpose, we employ non-parametric statistical model-
ing of field evolution on a spatiotemporal record of the
Fig. 4 Comparison of predicted melt pool image (amelt pool of the laser welding process. The major part
with corresponding image from the testing field (b) forof the field record is used for learning, while the minor
arandomly chosen testing recorgstands for fieldy.  part of the record serves for testing. We show how to
andr, denote spatial coordinates of the record. Parangonstruct the set of joint sample pairs containing past
eters aréV = 600 ando = 4. The surrounding se¥  and future values of field distributions and pay special
has only two member points, both having the same spattention to the structure of these sample pairs. We also
tial position ) as the predicted poimst=(r,t), but dif-  present the optimal structure of sample vectors, which
ferent neighboring positions in timee., ¢_; andt_».  gives the highest resemblance between predicted im-
ages and images from the testing field and has a small
number of member points in order to make the predic-
tion algorithm work quickly.

b) testing field

4 Conclusion

Time evolution of multi-dimensional fields is usually
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