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Abstract  

In this paper we propose a survey on recently studied integration methods for elasoplasitc 
constitutive models. In particular, the von-Mises elastoplastic constitutive model in the realm 
of small deformations is considered. The model takes into account both linear isotropic 
hardening and linear/nonlinear kinematic hardening. The aim of the work is to present and 
compare a set of quadratically accurate integration algorithms based on different numerical 
strategies. Namely, we present two sets of algorithms: The first set is related to algorithms 
based on classical backward-Euler and midpoint integration schemes in conjunction to a 
standard return map procedure. The second set refers to newly developed integration schemes 
based on an ad hoc rewriting of the constitutive model by means of an integration factor 
governing the evolution process, coupled with the use of exponential maps for the time 
integration. The two class of methods analyzed above apply both to linear kinematic 
hardening model and nonlinear kinematic hardening models. The comparison of the different 
methods is then carried out by testing accuracy and precision using different time 
discretizations on mixed stress-strain loading histories adopting an overkilling reference 
solution computed via return map method. A technical problem solved through a finite 
element approach is presented in order to compare algorithms performance on a typical 
boundary value problem. 
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1 Introduction 
The present paper focuses on a class of newly 
developed integration algorithms for the J2 or von-
Mises elastoplastic constitutive model. The considered 
three dimensional constitutive model is set in the 
framework of infinitesimal strain regime and 
specializes to two main cases: associative case and 
non-associative case depending of the kind of 
hardening mechanism considered, i.e. on the type of 
rate equation assumed for the backstress internal 
variable. In the first case the backstress tensor evolves 
in time remaining normal to the yield surface in stress 
space, on the contrary this does not hold true for the 
nonassociative case in which the backstress evolution 
is depending on the backstress itself. In the first 
instance we speak of a combined linear isotropic and 
kinematic hardening model, in the second one of a 
combined linear isotropic-nonlinear kinematic 
hardening model. The form assumed for the hardening 
mechanism in the nonlinear case is due to Armstrong 
and Frederick [1] and is a very classical and 
established one.  

The presented algorithms are subdivided in two main 
groups according to the solution strategy for the 
evolution equations, i.e. according to the time 
integration rule adopted. We thus split the presented 
methods in two main classes, namely midpoint-based 
methods and exponential-based methods. The first 
group contains a number of procedures which are 
based on finite difference-type integration rules and 
precisely on different versions of classical midpoint 
integration rule. These kind of methods apply the a 
standard return map concept for the solution of the 
final algebraic problem [2-4]. The midpoint schemes 
presented in the following section are suitable both to 
the associative case and to the nonassociative one. 

The second group, instead, contains a set of newly 
developed algorithms which are baed on re-writing the 
constitutive model equations in terms of a scalar 
integration factor which is chosen to govern the 
evolution of the yield surface radius and by the 
construction of an augmented relative stress tensor. 
The constitutive model thus rewritten in the above 
terms shows a convenient quasi-linear form which is 
suitable for subsequent integration via exponential 
maps [5-7]. The exponential based methods herein 
presentd apply both to the associative case and to the 
nonassociative one. 

The two sets of algorithms, even if completely 
different in principle, share a common feature, namely 
they are all second-order accurate schemes. With this 
we mean that the considered algorithms produce an 
error on the exact solution which decreases 
quadratically with respect to the time integration step 
size. This feature is of remarkable importance and 
represents a key point of these newly introduced 
schemes since most application and commercial codes 
implement just first-order accurate integration 

algorithms due to their relative coding simplicity and 
numerical robustness. 

After a brief sketch of the considered classes of 
algorithms, we present numerical results both for the 
associative and the non-associative plasticity model. 
The numerical tests are carried out on pointwise 
stress-strain mixed loading history and on a boundary 
value equilibrium problem of an elastoplastic medium. 
The results are presented in order to give a comparison 
of the integration algorithms in terms of order of 
accuracy and precision and then to indicate the most 
efficient choice for practical simulation purposes. 

2 Time-continuous model 
Admitting a deviatoric/volumetric splitting of the 
stress tensor and of the strain tensor, the equations for 
the model under consideration are 

 p Kθ=  (1) 

 2 pG ⎡ ⎤= −⎣ ⎦s e e  (2) 

 = −Σ s α  (3) 

 yF σ= −Σ  (4) 

 p γ=e n  (5) 

 ,0y y isoHσ σ γ= +  (6) 

 kin nlH Hγ γ= −α n α  (7) 

 0, 0, 0F Fγ γ≥ ≤ =  (8) 

where K is the material bulk modulus, G is the shear 
modulus, ep is the traceless plastic strain, α is the 
backstress, Σ is the relative stress, F is the von Mises 
yield function, n is the normal to the yield surface, σy 
is the yield surface radius, the initial yield stress, Hkin, 
Hiso and Hnl are respectively the linear kinematic and 
isotropic hardening moduli and the nonlinear 
kinematic hardening modulus. Finally, Equations (8) 
represents the well known Kuhn-Tucker conditions 
which govern the loading-unloading conditions, 
making of the above set of equations a constrained 
evolution differential-algebraic problem. In what 
follows it is assumed that when the system is in an 
elastic phase γ = 0, while γ > 0, when the system is in 
a plastic phase. 

We remark here that in the sequel we will treat both 
the case in which nonlinear kinematic hardening is 
present, for which case we say that we have a non-
associative constitutive model and also the case in 
which Hnl is zero, in which case we have an 
associative model. From the theoretical and modeling 
standpoint there is a marked difference between the 
two cases and this becomes quite delicate in terms of 
designing integration algorithms architecture and 
evaluating the relative performance. Without going 
into too much details and referring the Reader to 
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specific literature for the detailed mathematical 
derivations, in the following, we will present 
integration algorithms specifically designed for the 
first kind of model and for the second one as well. 

3 Second-order integration algorithms 
3.1 Integration strategy and solution 

In the sequel we assume to consider the problem of 
integrating the model represented by equations (3)-(9) 
under the consistency conditions (10), for a prescribed 
mixed stress-strain loading history taking place during 
the closed and bounded time interval [0, T]. Let us 
divide the time history interval [0, T] into N sub-
intervals defined by the points 0 = t0 < t1 < … < tn < 
tn+1 < … < tN = T.  

Given the history variable values (sn, αn, ep
n, γn) at 

time tn, and the deviatoric strain en+1 at time tn+1, the 
problem consists in computing the history variables at 
time tn+1 consistently with the constitutive model. The 
strain history is assumed to be piecewise linear in 
time, while for simplicity the initial values for α, ep 
and γ  at t0 are taken zero. 

In the following sections we give a brief illustration of 
the two classes of second-order accurate integration 
algorithms for the considered model. Detailed 
mathematical derivations are omitted here for 
brevity’s reasons but can be found in [5,6]. 

3.2 Midpoint rule integration algorithms 

The midpoint-based algorithms considered for the J2 
associative model can be divided in two subsets: 

• SMPT1 and SMPT2 single step algorithms [2,3,8] 

• DMPT1 and DMPT2 double step algorithms [4,8] 

The main difference between the two subets lies in the 
fact that the first two algorithms (single step 
algorithms) perform the updating of the history 
variables along a generic time interval with a single 
return map yield consistency condition enforcement, 
while the double step algorithms apply the return map 
twice over each update. The SMPT1 method applies a 
midpoint integration rule along the whole time 
interval and performs the return map at the end of the 
step. The SMPT2 method still applies a midpoint 
integration procedure over the entire time step, 
imposing the return map at the midpoint of the time 
integration interval. It is to be noted that whilst the 
SMPT1 guarantees yield consistency at the end of the 
time step, the SMPT2 method enforces yield 
consistency at the midpoint instant and is not therefore 
endpoint yield consistent. The SMPT2 scheme gives 
instead a simple nonlinear scalar problem for the 
plastic consistency parameter and a symmetric tangent 
operator which does not hold true for the SMPT1. 

The algorithms grouped in the second subset are based 
on the idea of dividing each time step in two substeps 
of equal amplitude: [tn, tn+α] and [tn+α, tn+1] in order to 

update the solution substep by substep. Both double 
step algorithms use a standard backward Euler 
integration scheme along the first substep and are 
therefore both midpoint yield consistent.  

In the second substep, the DMPT1 algorithm adopts a 
return map update based on a projection along the 
midpoint normal-to-yield-surface direction onto the 
endpoint limit surface. In the second substep, the 
DMPT2 scheme, instead, adopts an endpoint radial 
projection combined with a non standard trial state 
derived from the values of the history variables 
computed in the first substep and assuming a linear 
evolution in time over the whole time step. As a result 
both the DMPT1 and the DMPT2 present midpoint 
and endpoint yield consistency, which results in 
evaluating twice the plastic consistency parameter and 
on an augmented computational effort.  

The midpoint algorithm presented for the non-
associative J2 model mainly follows the same lines of 
the SMPT1 scheme. The only difference lays in the 
fact that also the evolution equation for the backstress 
must be integrated in time at each substep and in that 
this history variable is now updated independently 
rather than in terms of the deviatoric plastic strain [8]. 
As previously, the method is based on a single step 
generalized midpoint integration rule combined with a 
return mapping algorithm. The return map is achieved 
enforcing consistency at the end of the time step and 
projecting the trial solution onto the updated yield 
surface at the end of each elastoplastic step.  

We note that in particular, the generalized integration 
rule investigated by Ortiz and Popov [2,3] can be 
specialized to two different methods, namely the 
proper midpoint integration scheme [3] and the well 
known backward Euler integration scheme [2,4]. Each 
of the above integration procedure make use of the 
return mapping concept as a means to the yield 
consistency enforcement at the end of the time step. 
The scheme under consideration will be referred to in 
the following as the MPTnl method. 

3.3 Exponential-based integration algorithms 

The stated problem, either with the associative or non-
associative flow rule, can be put into a different form 
by combining Equations (2) and (3), deriving with 
respect to time and subsequently introducing 
Equations (5) and (7) respectively. Such calculations 
lead to the definition of a scalar integration factor X0 
which depends on γ and on the hardening parameters 
and describes the evolution of the yield surface radius 
σy. With this it is stated that the scalar integration 
factor plays the role of controlling the time evolution 
of the inelastic process.  

Defining a generalized stress vector X, in terms of the 
relative stress S and of the scalar integration factor X0, 
it is possible to reformulate the initial differential 
problem in terms of the a new form for the evolution 
law of the following kind 
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  (9) =X XA

with the matrix depending on the vector X and on 
the actual phase. The solution of Equation (11) can be 
approximated using exponential maps in each 
numerical time step.  

A

A detailed description of the new exponential-based 
algorithms and the full derivation of system (11) can 
be found in [5-7]. In what follows we refer to the 
exponential-based algorithms designed for the 
associative model as ESC and ESC2, while ESC2nl is 
the label for the corresponding scheme in the case of 
non-associative J2 plasticity [5-7]. 

4 Numerical examples 
4.1 Bi-axial mixed stress-strain loading history 

The first numerical example that is introduced 
presents the relative error curves for stress and strain 
computation of a mixed pointwise loading history. 
The loading history [0, T] = [0, 7] assumes to vary 
the two strain components indicated in Figure 1 and 
to keep the remaining stress components zero. The 
material parameters are E = 7000; ν = 0.3; σy = 24.3, 
Hkin = 0; Hiso = 225; Hnl = 0. The example clearly 
refers to the associative case with both isotropic and 
kinematic linear hardening moduli. The error curves 
represented in Figures 2 report the total stress and 
strain errors: 

0 0, ,

2
ex exN N

n n n n

n ny n y n

E Eσ ε

σ σ= =

− −
= =∑ ∑

σ σ ε ε
G       

 (10) 
 

for different choices of time discretization 
amplitudes, taking as a reference solution the one 
computed with  the backward Euler method (BE 
method) with a very fine time discretization [2-4]. 
The computation of stress and strain with different 
integration algorithms is carried out using the CE-
DRIVER code [9]. The error curves are plotted in bi-
logarithmic scale and are made up with five 
progressively smaller choices of the time 
discretization step.  

The plotted curves emphasize that the exponential-
based method ESC2 produces the lowest error levels 
within the confronted methods. All the compared 
procedures, except the SMPT2, show second order 
accuracy, while the backward Euler shows first-order 
accuracy. The double-step DMPT2 reveals to be the 
most precise between the midpoint methods. The 
endpoint inconsistent single step SMPT2 shows loss 
of accuracy as the discretization parameter decreases 
and nearly tends to a linear accuracy pattern. The first-
order accurate BE method instead results as a first-
order accurate method and grants the lowest precision 
within compared methods. 

 

 

Fig. 1 Mixed stress-strain loading history: time 
evolution of controlled strains. 

 

Fig. 2 Pointwise stress-strain test. Stress and strain 
total error versus number of steps per second. 

 

4.2 Perforated plane strain tension strip 

The second numerical simulation regards an initial 
equilibrium boundary value problem of a rectangular 
strip with a circular hole in plane strain regime under 
tension. The system has two axes of symmetry and 
due to the symmetry of loading only a quarter of the 
strip is examined, as depicted in Figure 3. The 
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geometric lengths are B = 100, H = 180, R0 = 50. The 
material constants are taken as the previous ones, plus 
the material has a nonlinear kinematic hardening Hnl = 
50. The loading history consists of imposing a 
uniform vertical displacement to the upper side δ(t), 
up to a maximum size of 0.02 B in 1 time unit within 
equal increments. The left and bottom sides are fixed 
with rollers which block transverse displacements 
respecting the symmetry condition while the right side 
is free.  

The problem is solved using a finite element strategy 
through the code FEAP [10-11] in conjunction with a 
Newton-Raphson iterative solver. The mesh consists 
of 194 SOLID2D finite element in plane strain 
regime. The comparison of the algorithms is carried 
out choosing different time integration amplitudes and 
measuring the error on the computation of 
displacement using such discretizations referring to  
an exact solution calculated using the Backward Euler 
method and a very fine time discretization. The results 
resumed in Table 1 report the total error horizontal 
displacement of the hole superior apex, using the 
ESC2nl and the MPTnl methods with different time 
discretizations and the non-associative variant of the 
backward Euler method (BEnl) as reported in 
reference [2-4]. It is evident that the MPTnl and the 
ESC2nl still show second-order accuracy, while the 
backward Euler BEnl method presents first-order 
accuracy. Namely, in the first two cases the relative 
error on the displacement goes as Δt2, while in the 
third case the error goes as Δt. The comparison 
between the second-order accurate methods for non-
associative plasticity refers practically equal results. 
For practical computation thus one is lead to involve 
other considerations than simply accuracy and 
precision as for instance simplicity in coding the 
integration algorithm and computational time. In 
regard to this point it is noted that the midpoint 
method basically results as the lighter procedure and 
especially for the greater simplicity of the relative 
consistent tangent operator. The ESC2nl procedure on 
the other hand does not involve the solution of a 
consistency equation which in the case of the MPTnl 
method results highly nonlinear and therefore 
represents the bottle neck of the procedure in terms of 
computational effort. 

Tab. 1 Relative error: strip with hole boundary value 
problem 

Δt BEnl MPTnl ESC2nl 

.1 5.0×10-3 2.2×10-4 2.1×10-4 

.05 2.5×10-3 5.7×10-5 5.1×10-5 

.025 1.3×10-3 1.5×10-5 1.2×10-5 

 

Fig. 3 Perforated strip with upper side imposed 
displacement. 
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