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Abstract  

This article deals with the analytical modelling of skin and proximity effects present in 
windings of the electric machines. The selected application is the primary winding of a pulse 
transformer. An example of a real pulse transformer is studied. The analytical expression 
giving the space-time distribution of the flux density, in the case of an idealized winding layer 
of semi-infinite plane geometry, has been established first. The current density calculation 
based on the established formula giving the flux density makes it possible to estimate the 
primary winding DC resistance, and then the Joule losses in the transformer primary winding. 
The losses found in the primary winding of the studied transformer using the established 
formula are quite higher than what they would be if the current was distributed uniformly in 
the conductors. In fact, the effective resistance of the transformer primary winding calculated 
using our model is about 40% higher than the calculated continuous resistance. This result has 
also been verified indirectly experimentally. The analytical model is validated thereafter by a 
discrete modelling methodology which consists in an electrical equivalent circuit [1]. The 
results given by the analytical modelling are perfectly identical to those of the discrete 
modelling presented in [1] for the same example studied. 
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Fig. 1: Idealized geometry of a lamination
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Fig. 2: Idealized plane primary winding
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1 Introduction 
In [1], the authors showed that an equivalent circuit 
model can be used in order to estimate the skin and 
proximity effects in the primary winding of a pulse 
transformer. Their model allows obtaining a first 
estimation of the AC resistance when the layer is 
excited by a rapidly changing current. Moreover, the 
model can take into account any temporal form of 
excitation. However, the integration of such a method 
in the algorithms calculating the losses in the 
transformer windings will remain, in our opinion, a 
tedious work because it would imply the combination 
of a software interface of electric circuits calculation 
and a programming environment. 

In another paper [2], the same authors developed an 
analytical model which accounts for the phenomenon 
of the magnetic field penetration in the core 
laminations of magnetic circuits. In fact, they 
established an analytical expression giving the space-
time distribution of the magnetic flux density within a 
lamination excited on both sides of its surfaces by an 
unspecified temporal form signal. However, the 
mathematical formalism such developed in [2] for the 
phenomenon of the magnetic field penetration is 
unfortunately not adapted for the problem studied in 
this paper. In fact, the boundary conditions are 
different when dealing with an idealized magnetic 
lamination where the magnetic field on the two sides 
of its surfaces is the same one (Fig. 1), or in the case 
of an idealized layer of winding where the magnetic 
field on the two sides of each winding layer is 
different (Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to be able to exploit the methodology 
developed in [2] and thus to establish an analytical 
expression calculating the skin and proximity effects 

in the transformer winding, we must find a 
mathematical analogy between the problem of the skin 
and proximity effects in the transformer winding and 
that of the magnetic field penetration in the core 
laminations. This is related, in fact, to the boundary 
conditions on the external surfaces of each layer. The 
magnitude of the excitation must be indeed of the 
same value on both sides of the equivalent conducting 
ribbon. 

Let’s consider the case of the semi-infinite plane 
geometry defined by Harrison in [3]. The made 
assumptions are as follow: The flux density has only 
one component which is directed along z-axis, the 
current density has only one component directed along 
x-axis, the values of the current and flux densities 
depend only on the depth y in the conductor and on 
the time t. One assimilate the conductors of a layer to 
a semi-infinite ribbon thickness 2a similar to that 
defined by Dowell [4]. One side of the conducting 
ribbon is positioned at ay = , and the other side at 

ay -=  (Fig. 3). 

Firstly, we will determine the response of the 
conducting ribbon subjected on both sides of its 
surfaces to two constant induction levels having 
different magnitudes. Further, we will use the 
methodology developed in [2] to determine the 
response of this conducting ribbon when the two 
excitations are of an unspecified temporal form. Thus, 
knowing the analytical expression giving the space-
time distribution of the flux density inside the ribbon, 
the skin and proximity effects can be evaluated by 
calculating the current densities in all points inside the 
ribbon and at all times. 

2 Response to constant induction levels 
having different magnitudes  

At the beginning, one applies an induction level of 
amplitude +B on the face ay =  of the conducting 
ribbon and an induction level of amplitude -B  on the 
face ay -=  (Fig. 3). 

 

 

 

 

 

Mathematically speaking, the application of these two 
induction levels can also be interpreted as the sum of 
an even excitation and an odd excitation. The even 
excitation is the application of two induction levels 
having the same magnitude. This is given by (1). 
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The odd excitation is the application of two induction 
levels having an opposite magnitude. This is given by 
(2). 

                               )2(                             
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i

BBB −
= +  

According to the superposition principle, the total 
response of the conducting ribbon will be the sum of 
the responses of the even and the odd excitations. 

The partial derivative Maxwell's equations, which 
obey the flux and the current densities are given by (3) 
and (4) within the framework of the assumptions made 
for the selected geometry. 
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2.1 Response to the even excitation 

The excitation being independent of time, after 
extinction of the transient state the flux density 
distribution )( yBzp  in the conducting ribbon must 
also be independent of time. One obtains (5) by taking 
into account the Maxwell's equations and the 
boundary conditions at ay = and ay -= . 

                         )5(                         )(ξ=)( tByB pzp  

 Where )(ξ t  is the unit level. 

It is shown in [3] that the general solutions depending 
on time of the equations (3) and (4) are of the 
following form: 
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The complete solution giving the response to the even 
excitation is the sum of the solution independent of 
time and the general solutions dependent on time (7). 
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At the initial moment, the flux density is not 
established immediately inside the conducting ribbon. 

( )0,yBzp  will be thus null whatever the depth in the 

conducting ribbon except at its boundaries where the 
flux density is equal to pB . 

In order to satisfy these boundary conditions at the 
initial time, the flux density ( )0,yBzp  is approached 

by the opposite of a periodic function )(yf  of which 
the period is 4a (Fig. 4). This function will thus be 
worth 1 between ay -=  and ay = , except at the 
ends of the interval to preserve the value of the 
excitation pB . 
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These boundary conditions make it possible to fix at 
the same occasion the coefficients A, B and k of (7). 
One thus obtains the analytical solution giving the 
response to the even excitation (9). 
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2.2 Response to the odd excitation 

The excitation being independent of time, after 
extinction of the transient state the flux density 
distribution )(yBzi  in the conducting ribbon must 
also be independent of time. One obtains (10) by 
taking into account the Maxwell's equations and the 
boundary conditions at ay = and ay -= . 
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Fig. 4: Function defining the boundary conditions at 
the initial time relating to the even excitation 
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Fig. 5: Function defining the boundary conditions 
at the initial time relating to the odd excitation 
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Fig. 6: Diagram simulating the internal layer of 
the transformer primary winding 

The complete solution giving the response to the odd 
excitation is the sum of the solution independent of 
time and the general solutions dependent on time (11). 
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In the same way, as for the even excitation at the 
initial moment, the flux density is not established 
immediately inside the conducting ribbon. ( )0,yBzi  
will be thus null whatever the depth in the conducting 
ribbon except at its boundaries where the flux density 
is equal to iB . 

In order to satisfy also these boundary conditions at 
the initial time, the flux density ( )0,yBzi  is 
approached by the opposite of a periodic function 

)(yl (Fig. 5). This function is linear between ay -=  
and ay = , and worth respectively at these points -1 
and 1. That makes it possible to preserve at the ends of 
the interval the values of the odd excitation iB .  
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In the same way, these boundary conditions make it 
possible to fix at the same occasion the coefficients C, 
D and j of (11). One thus obtains the analytical 
solution giving the response to the odd excitation (13). 
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2.3 Total response 

The total response of the conducting ribbon thickness 
2a to the constant induction levels of unequal 
magnitudes, applied on both sides of its two external 
surfaces, will be thus under the terms of the 
superposition principle equal to the sum of the 
responses to the even and the odd excitations (14). 
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That gives by the substitution of (9) and (13) in (12) 
the total response (15). 
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2.4 Numerical example  

To validate the analytical expressions giving the 
space-time distribution of the flux density inside the 
conducting ribbon, we will treat as example the case 
of a ribbon excited by two constant induction levels 

T 2=+B  and T 0=-B . That gives according to (1) 
and (2): T 1== ip BB .  

We will apply these excitation conditions to the first 
layer of the pulse transformer primary winding treated 
in [1]. This winding is equivalent to a conducting 
ribbon thickness 2a = 0,886 mm having an equivalent 
conductivity S 10 47,37 = 6

2σ  [4]. The permeability 

of the conducting ribbon is 7-
0 10 4= = πµµ .  

The results of the analytical model are compared with 
those of the discrete model developed in [1]. The 
assumptions made for the development of the discrete 
model are identically the same one as those done for 
the analytical model. The diagram of the discrete 
simulation is given by (Fig. 6). 

 

 

 

 

 

Each symbol of (Fig. 6) is constituted of a cell 
<in+ out+, in- out-> contains 10 multiple cells, and 
each multiple cell contains 10 basic cells. The basic 
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Fig. 9: Decomposition of a rectangular pulse in 
constant levels 

cells are defined by an RL circuit such shown by 
(Fig. 7). The conductance G is the inverse of a 
resistance R. Knowing that a basic cell represents a 
hundredth thickness of the equivalent conducting 
ribbon, and that the equivalent thickness of the ribbon 
is equal to 0,886 Φ [4] (where Φ is the conductor 
diameter), the element dy will thus be worth 
0,886 Φ/100. According to [1] the inductance L and 
the conductance G of (Fig. 7) worth respectively σ2 
and μ0. 

  

 

 

 

 

  

The current sources representing by identification the 
flux densities at the lower and higher boundaries of 
the ribbon are respectively B+ and B- (Fig. 3). The 
source B- is represented by an open circuit, because 
the current is null (Fig. 6).  

Figure 8 shows the flux densities in the conducting 
ribbon for some different duration of the applied 
induction levels. The full curves result from the 
analytical modelling where the expression of )( t,yBz  
given by (15) was evaluated with n = 100 terms. The 
points result from the discrete modelling.  

 

 

 

 

 

 

 

 

 

 

 

 

The agreement between the two models is excellent 
(Fig. 8). In fact, the points and the curves are perfectly 
superimposed. That validates our analytical approach 
in the case of an excitation by dissymmetric induction 
levels. 

 

3 Response to excitations of unspecified 
temporal forms 

The Maxwell's equations are linear. The superposition 
principle can thus be applied. Thus, the response of a 
conducting ribbon subjected to a sum of excitations 
will be the sum of the responses to each excitation 
taken individually. By using this principle and the 
results of the preceding section, we will show, as in 
[2] by two different methods of calculation, how to 
lead to the analytical formulation of the flux density in 
a conducting ribbon subjected on both sides of its 
surfaces to a magnetic excitation of unspecified 
temporal form. 

3.1 Summation of rectangular pulses 

A rectangular pulse of magnitude aB and width tΔ  is 
equivalent to a constant level of magnitude aB applied 
at 0t  followed by a constant level of magnitude aB−  
applied at tt Δ0 + (Fig. 9). 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
Knowing the response of the ribbon subjected on both 
sides of its surfaces to the even constant level pB  
given by (9), the response which one will obtain in the 
case of a rectangular pulse of magnitude pB  will thus 
be given by (16). 
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In the same way, starting from (13) the response to the 
rectangular odd excitation of magnitude iB  will be 
given by (17).  
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Fig. 7: Basic cell 
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Fig. 8: Induction penetration according to the depth 
in the conducting ribbon thickness 2a, Tesla 
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Fig. 10: Division of an unspecified temporal 
form signal in rectangular pulses 
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Fig. 11: Division of an unspecified temporal 
form signal in constant levels signals 

 
A signal of unspecified temporal form can be divided 
up into rectangular pulses of different magnitudes and 
equal widths (Fig. 10).  

 

 

 

 

 

 

 

 

 

 

Knowing the responses of the ribbon subjected on 
both sides of its surfaces to the even and the odd 
rectangular pulses given respectively by (16) and (17), 
the responses which one obtains in the case of a sum 
of rectangular pulses forming the even and the odd 
excitations of unspecified temporal form will be given 
respectively by (18) and (19). 
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Where : tku Δ=  
             ( ) ( )utut −′=− ξδ : Dirac pulse 
 
( )ut −′ξ , ( )utfnp −'  and ( )utfni −'  are respectively 

the limited developments to the first order of ( )ut −ξ , 

( )utfnp −  and of ( )utfni − . 

Making tend tΔ  towards zero by the passage to the 
limit, the sums on k in the expressions (18) and (19) 
become integrals. And then, by adding the two 
resulting expressions, one obtains according to (14) 
the exact analytical expression of the flux density in 
the conducting ribbon subjected on both sides of its 
surfaces to two dissymmetrical excitations of 
unspecified temporal forms (20). 
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3.2 Summation of constant levels 

A signal of unspecified temporal form can also be 
approached by a sum of constant levels with different 
magnitudes shifted regularly in time (Fig.11). 

 

 

 

 

 

 

 

 

 

 

One can there too apply the superposition principle to 
find the exact analytical expression of the flux density 
in the conducting ribbon subjected to the even and the 
odd excitations. In fact, we can add all the constant 
levels resulting from the division of the two basic 
signals by using the expression (15). And after, by 
making tend towards zero by the passage to the limit, 
the sums on k in the resulting expressions become 
integrals, and thus give the exact analytical expression 
of the flux density in the conducting ribbon subjected 
on both sides of its surfaces to two dissymmetrical 
excitations of unspecified temporal forms (21).  

( )

( )

( )

( ) (21)     )( )(
∞

)ξ(0                 

)( )(
∞

 )ξ(         

)( )(
∞

 )ξ(         

)( )(
∞

)ξ(0),(

∑

∑

∑

∑

1

1

1

1

0

'

0

'

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−+⎟

⎠
⎞

⎜
⎝
⎛−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−+−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+=

=

∞

=

∞

=

=

∫

∫

ygtf
a
ytB

duygutf
a
yutuB

duygutfutuB

ygtftBtyB

nini
n

i

nini
n

i

npnp
n

p

npnp
n

pz

 

)(' uBp  and )(' uBi  are respectively the limited 

developments to the first order of )(uB p  and of )(uBi . 
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If the even and the odd excitations have a null initial 
value, the preceding expression (21) will be reduced to 
(22). 
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4 Concrete example – Pulse Transformer 
4.1 Flux and current densities calculation in the 

equivalent conducting ribbon 

Using the second method (summation of constant 
levels), we will treat the case of the first layer of the 
pulse transformer primary winding studied in [1]. This 
transformer comprises 1000=1n  turns at the 
secondary and 40=2n turns at the primary. The 
diameter of the primary winding wire is 

mm 1,12 = 1Φ  and the distance between the centres of 
two adjoining wires is mm 171,2 = 1d . The number of 
turns per meter at the primary winding is n = 1/d1. 

Using the transformation defined by Dowell [4], the 
ribbon thickness equivalent to the first layer of the 
primary winding will be equal to 18860 Φ, and the 
equivalent conductivity of the ribbon which will make 
it possible to keep the same value of the resistance 
will be 1112 8860= dσΦ,σ . The conductivity σ1 of 
the cylindrical conductors is that of copper 
(58,1 106 S) and their magnetic permeability is 0 = µµ . 

In the case of our transformer, the output voltage pulse 
is known and assimilated to an exponential pulse (23). 
The parameters 20U , 1τ  and 2τ  are adjusted to 
approach as closer as possible the real forms of output 
voltage pulses that are measured. So be 
it kV 25=20U , sμ 20=1τ  and sμ 35=2τ  on a purely 
resistive load at the secondary side Ωk 1=2R . 
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By supposing an infinite permeability of the 
transformer core, the source of induction representing 
the lower boundary condition of the primary winding 
internal layer (Fig. 3) will be given by (24). 

                                (24)                                  0)(- =tB  

By applying the Ampere theorem one obtains (25). 

(25)                          )()( 10 tinμtB =+  

Where )(1 ti  is the current traversing the conducting 
ribbon. 

The infinite permeability of the core being supposed, 
the Ampere-turns of the primary and the secondary 
windings are then equal. Thus, for a purely resistive 
load at the secondary side, the primary current has the 
form of the output voltage. The induction )(tB+  
representing the higher boundary condition of the 
primary winding first layer will be then given by (26).  
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From (1) and (2), and knowing (24) and (26), the even 
and the odd excitations will thus be given by (27).  
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The derivative calculation of )(tBp  and )(tBi  from 
(27) gives (28). 
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By making a change of variable t-u = v  and by 
noticing that the functions )(vfnp  and )(vfni  are null 
for  v  inferior to zero, and then by substituting (28) in 
(22) we obtain (29). 
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After the calculation of the integral appearing in (29) 
we end to (30).  

Where: ( )2
1

3 -1
1

n
n a

a =  

    and ( )24 4-1
1

n
a n =  
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The space-time distribution of the current density is 
obtained simply by application of the equation (4). 
Then, taking into account (30), the current density in 
the conducting ribbon will be given by (31) in the case 
of the studied example. 
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The figure 12 shows the current densities in the 
conducting ribbon according to the pulse duration for 
the following depths: y = -a, y = 0, y = a/3, y = a/4 and 
y = a. The full curves result from the analytical 
modelling where the expression of ),( tyJ x  given by 
(31) was evaluated with n = 100 terms. The points 
result from the discrete modelling where the source 
B1 of (Fig. 6) is that given by (26).  

One can see on (Fig. 2), as in the preceding example, 
that the agreement between the two models (analytical 
and discrete) is perfect. That validates definitively our 
analytical approach in the case of excitations of 
unspecified temporal forms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 The Joule losses 

The current in a layer thickness dy and width ℓ 
(Fig. 13) is equal to the flux of the current density 
through the surface ℓ dy (32). 

( ) (32)                            1 dyy,tJdI x l=  

 

 

 

 

 

 

 

The resistance 1dR  of the layer thickness dy, width ℓ, 
length L and conductivity σ2 is given by (33).   

(33)                             1

2
1 dy

LdR
lσ

=  

The energy lost by Joule effect during a time dt in the 
layer thickness dy, width ℓ, length L and conductivity 

2σ is given by (34). 

( ) (34)                         2
11

2 dtdIdREd =    

By substituting (32) and (33) in (34), the energy lost 
throughout the pulse of period tpulse on all the thickness 
of the conducting ribbon will be given by (35). 
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The evaluation of (35) in the case of an elementary 
rectangular conductor of width ℓ equal to the distance 
between centres of two adjoining turns, gives the 
energy lost per unit of length in the case of the 
primary winding internal layer of the studied pulse 

Time (µs) 

Fig. 12: Current density (A/mm²) for different 
depths in the conductor thickness 2a 

Fig. 13: Conducting layer thickness dy 

x

y

z2a

ℓ 

L 

dy 
Jx(y,t) 
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transformer: E = 0,02 J/m. The expression of Jx(y,t) 
given by (31), in (35) is evaluated with 100  =n  terms.  

If the current had been distributed uniformly in the 
layer, the losses by Joule effect would have been 
given by (36). 
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The evaluation of (36) in the case of an elementary 
rectangular conductor of width ℓ equal to the distance 
between centres of two adjoining turns, gives the 
energy lost per unit of length in primary winding 
internal layer of the studied pulse transformer: 
E' = 0,014 J/m. 

The real losses in the primary winding internal layer 
of the studied pulse transformer are quite higher than 
what they would be if the current were distributed 
uniformly in the conductors and that the proximity 
effects were neglected. Indeed, the effective resistance 
of the internal layer is 1,42 times higher than the 
calculated continuous resistance. In other words, the 
resistance is increased by 42%. 

5 Conclusions 
The results of the analytical formulation are identical 
to those of the discrete model. Actually, these results 
are hardly surprising since the two models are based 
on the same assumptions. The comparison allows 
nevertheless to validate our approach of modelling, 
and also allows to consolidate the results obtained in 
[1], in particular concerning the skin and proximity 
effects absolutely to take into account when designing 
devices as the one studied in this paper. 

The major advantage of this analytical model 
compared to the discrete model, is the possibility of its 
insertion rather easily in the algorithms calculating the 
losses in the windings of transformers.  

The use of an idealized geometry far from the concrete 
reality of the winding undoubtedly limits the method, 
but the old analytical models use practically the same 
assumptions. On the other hand, our modelling 
accepts sources of unspecified temporal forms 
including pulses. It makes also much more intuitive 
the reasons of the unequal distribution of the current 
in the conductors. It is a major advantage compared to 
the preceding analytical methods which generally 
suppose sinusoidal periodic signals. They become 
very heavy for simply periodic signals since it is 
necessary to divide up the original signal in Fourier 
series and to study individually the case of each 
harmonic. They do not give a response for no periodic 
signals like pulses. 
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