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Abstract

This work has been carried out in strict collaboration with the veterinarians studying the Au-
jeszky disease (A.D.), [1]. This disease is caused by the Herpevirus 1 suis (ADV or SHV-1).
Field data concerning the blood samples collected according to the law (D.M. April 1st, 1997)
in 1997-2004 for the serologic exam for A.D. of breeding animals of the Cuneo province have
been examined. For each breeding farm birth rates have been determined. Also, mortality rates
have been subdivided into those connected with Aujeszky disease and those which were not.
The Villafalletto and Vottignasco towns where the farms are located has a swine density exceed-
ing 3200 units per Km2 and a total number of 90000 units. These facts allow to take the area as
a single giant raising farm. On the basis of these assumptions we have formulated and analyzed
mathematical models for the description of the disease evolution, to determine strategies for its
desirable if at all possible control, and also indirectly for simulating the human intervention,
which if inappropriate may adversely affect the disease spread. In this context, the effects of
biosafety measures, together with the vaccination policy according to the regulations in effect,
are also considered. The ultimate goal would be the realisation of a disease eradication plan
with nonprohibitive costs. We started from a well-known and accepted epidemics models for
realistic situations, [2], in which also the total population is not constant, [3, 4], contrary to the
basic assumption of the classical epidemiological model, [5]. We then modified these models
to take into account the possible fluxes between susceptible, “vaccinated” and infected animals,
incorporating the lack of biosafety measures and possibly mimicking also the farmer’s behavior
who does not fully comply with correct vaccination policies. We discuss the outcomes of our
analysis in terms of possible policies to contain the epidemics.
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1 Introduction
The Aujeszky disease (A.D.) is caused by the Herpe-
virus 1 suis (ADV or SHV-1), affecting several wild and
domestic species, but in particular hogs. It is not lethal,
but it causes several disorders in the affected animals
and ultimately it constitutes an economical burden for
the farmer. Once contracted the disease, the infected
animal cannot recover from it. Almost every country
in Europe is affected. An eradication policy based on
vaccination has been attempted in Italy in the past ten
years, with mixed results.

Here we formulate and analyze a mathematical model
possibly aimed at defining the realisation of a disease
eradication plan at nonprohibitive costs. To determine
strategies for the desirable if at all possible disease con-
trol, we begin by modeling the description of the evo-
lution of the latter. A partial result has already been
obtained, [6]. Noteworthy in the previous study is the
modeling of the absence of biosafety measures, which
may allow disease infiltration into a non affected farm
by external vectors and not by direct contact between
infected and susceptible animals. In this investigation
we extend the previous model by taking into account in
the simulation the human intervention, which if inap-
propriate adversely affects the disease spread.

2 Methods
This study is an attempt to investigate the situation us-
ing mathematical methods, in strict collaboration with
the veterinarians studying the disease on the field, [1].
We have considered breeding farms in the area of
the towns Villafalletto and Vottignasco in the Cuneo
province in Piedmont, NW Italy. This part of the re-
gion is considered as a single giant epidemiological
unit, since the swine density exceeds 3200 units per
Km2 with a total number of 90000 units.

Blood sample data collected according to the law (D.M.
April 1st, 1997) in the period 1997-2004 for the sero-
logic exam for A.D. constitute the basis for our anal-
ysis. From these and for each breeding farm birth
rates have been determined together with natural and
disease-related mortalities. These informations have
been used in the model to give to the relevant parame-
ters reasonably accurate numeric values, to validate the
subsequent analysis and simulations.

From the mathematical point of view, in [6] we started
from a well-known and accepted epidemics model for
realistic situations, [2]. But contrary to the assumptions
of the classical epidemiological model, [5], we allowed
the total population to reproduce, as done in more re-
cent models for disease spread, [3, 4]. The model stud-
ied in [6] has been here modified to include one more
important feature. Based on the fact that disease preva-
lence went down after the first three years of law imple-
mentation, to come up again in the years 2000-2004, it
is indeed argued whether the vaccination is in the end
at all useful. This may be due to an intrinsic weakness
of the vaccine, or to the bad implementation on the part
of the farmers. The vaccine should indeed be adminis-

tered three times in the lifetime of the animal, the first
two times in the first months of life, the third one when
the animal is about one year and a half old. Since by
that time the farmer is in general ready to sell it, it may
happen that the farmer avoids to administer the third
vaccination, maybe thinking it is then unnecessary and
to save on its costs. Whatever the cause, in any case the
distinguishing feature of this model is here represented
by the introduction of the class of animals on which the
vaccine is ineffective, allowing possible fluxes between
susceptible, “vaccinated” and infected animals. We dis-
cuss the outcomes of our analysis in terms of possible
policies to contain the epidemics.

3 The model
In formulating the model we then take into account the
following basic variables. First of all we consider the
susceptible animals, S(t). The latter is then subdivided
into two further classes, the class of “formally” vacci-
nated animals, V (t) and the one of susceptible or un-
vaccinated animals, U(t). Then there is the infected
class, I(t). We allow transitions among these classes
assuming that the vaccine does not always have a full
effect, or is not implemented correctly. The transitions
are described in the following equations. Notice that the
disease is unrecoverable, so that once infected, an ani-
mal carries it for life, no transition back from the class
I to either U or V is allowed.

We also assume that all individuals reproduce and new-
borns at birth are susceptible, due to some immuniza-
tion gotten from the mother, there is no possibility of
vertical transmission of the disease. Of course they will
lose this immunity as they grow older. They then all be-
long to class U or V at birth, with respective birth rates
ρU and ρV .

We consider then the following model

U̇ = ρUN − µSU − βU
UI

N
− τU + αV − σU (1)

İ = βU
UI

N
+ βV

V I

N
+ τU + τV − µII

V̇ = ρV N − µSV − βV
V I

N
− τV − αV + σU

in addition to
N = U + V + I. (2)

The first equation says that all newborns coming from
parents of whichever class are born sound, i.e. they are
susceptible to the disease. The class of susceptibles is
subject to natural mortality µS . Some of its members
migrate to the class V of the vaccinated at rate σ, but
either for ineffectiveness of the vaccine or faults in its
implementation we assume they can migrate back from
class V into the susceptibles at rate α. This is clearly
modeled by the last two terms of the first equation (1).
The disease affects them via the incidence β, which
expresses contagion of a susceptible upon direct con-
tact with an infected animal, while the parameter τ ex-
presses the fact that the susceptible can get infected also
by other means, by vectors carried into its environment
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by external factors. Thus in a sense this parameter mod-
els the biohazards, which should be tackled by suitable
biosafety measures in the farm.

The second equation gives the dynamics of infected in-
dividuals. They enter class I via direct contact at the
rate β specified above, or via an external vector at rate
τ ; in both cases they can enter class I either from class
U or from class V if the vaccine is ineffective. Finally
they are subject this time to disease-related mortality
µI .

The third equation (1) describes the evolution of the
vaccinated class. The first term again represents the
newborns, then there is the natural mortality term, the
disease incidence which may affect also these animals,
if the vaccine is not so effective, again the infection
caused by external factors, and finally the vaccination
at rate σ and the loss of immunization at rate α.

The available parameter values from veterinarians field
measuments are N = 90000 total hogs population
in the epidemiological unit, µS = 0.084 represents
the average natural mortality, µI = 0.087 is the av-
erage disease-related mortality, ρ = 0.107 represents
the mean birth rate in the whole epidemiological unit.
Since the field measurements provide only a lump na-
tality rate ρ, we assume the birth rates as follows

ρU = ρ
U

N
, ρV = ρ

V

N
. (3)

The remaining parameter description is as mentioned
above, with βU and βV denoting the horizontal disease
incidences respectively for the classes of susceptibles
and vaccinated, τ the absence of biosafety measures, α
the loss of immunity due to failure in the vaccine or in
its administration, therefore it is a migration rate into
the class of susceptibles from the class of vaccinated,
and σ the vaccination rate, expressing a migration from
U into V .

We now introduce three new variables, given by the
subpopulations fractions u,i e v, namely

u =
U

N
, i =

I

N
, v =

V

N
. (4)

From (2) it then follows

u + v + i = 1. (5)

Notice that the position (4) entails for instance that upon
differentiation

u̇ =
U̇

N
− U

N

Ṅ

N
=

U̇

N
− U

N

[
U̇

N
+

V̇

N
+

İ

N

]
, (6)

and similarly for the other fractions. Thus substituting
from (1) we obtain

u̇ = µSu2 + ui(µI − βU ) + ρU + µSuv + αv (7)
−u(µS + τ + σ + ρU + ρV ),

v̇ = µSv2 − v(µS + τ + α + ρU + ρV )
+vi(µI − βV ) + ρV + σu + µSvu,

i̇ = µI i
2 + ui(µS + βU ) + vi(βV + µS)
−i(µI + ρV + ρU ) + τu + τv.

Then by using the assumption on the birth rates (3) into
(7) we have

u̇ = µSu2 − u(µS + τ + σ) + µSvu (8)
+ui(µI − βU + ρ) + αv,

v̇ = µSv2 + vi(ρ + µI − βV ) + µSuv

+σu− v(µS + τ + α),

i̇ = i2(µI + ρ)− i(µI + ρ + τ)
+ui(βU + µS) + vi(βV + µS) + τ.

Finally on eliminating the variable i from (5) we have
the reduced model description via the equations

u̇ = (µS − µI − ρ + βU )u2 (9)
+uv(µS − µI − ρ + βU )

−u(µS + τ + σ − ρ− µI + βU ) + αv,

v̇ = v2(µS − ρ− µI + βV ) + σu

+uv(µS − ρ− µI + βV )
+v(ρ− µS − τ − α + µI − βV )

In view of the constraint (5), we seek the solutions of (9)
in the unit simplex Ω ≡ {(u, v) ∈ R2 : 0 ≤ u, v ≤ 1}.

4 Analysis
Let us now seek the system equilibria. By equating to
zero the right hand sides of (9) we find the following
equations

(µS − µI − ρ + βU )u2 + αv (10)
+uv(µS − µI − ρ + βU )

−u(µS + τ + σ − ρ− µI + βU ) = 0
v2(µS − ρ− µI + βV ) + σu (11)

+uv(µS − ρ− µI + βV )
+v(ρ− µS − τ − α + µI − βV ) = 0.

These represent conic sections. To study the first conic,
we consider its invariants

∆1 ≡

∣∣∣∣∣ (∆1)1,1 (∆1)1,2 (∆1)1,3

(∆1)2,1 0 (∆1)2,3

(∆1)3,1 (∆1)3,2 0

∣∣∣∣∣
with elements given by

(∆1)1,1 = µS − ρ + βU − µI

(∆1)1,2 = (∆1)2,1 =
µS − ρ + βU − µI

2

(∆1)1,3 = (∆1)3,1 =
ρ− µS − τ − βU + µI − σ

2
(∆1)2,3 = (∆1)3,2 =

α

2

and

δ1 ≡
∣∣∣∣ (∆1)1,1 (∆1)1,2

(∆1)2,1 0

∣∣∣∣
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Evaluating the determinants, then we find

∆1 =
α

4
[−α(µS − ρ + βU − µI)

+(µS − ρ− µI + βU )(ρ− µS − τ − σ + µI + βU )]

=
α

4
(µS − ρ− µI + βU )

×(ρ− µS − τ − σ + µI + βU − α)

and

δ1 = −α

4
(µS − ρ + βU − µI)2.

Since δ1 < 0 it is therefore a hyperbola. Its center is
the point (u∗, v∗) where

u∗ ≡ 1
δ1

∣∣∣∣ (∆1)1,2 (∆1)1,3

(∆1)2,2 (∆1)2,3

∣∣∣∣
= − α

µI − µS − βU + ρ
,

v∗ ≡ 1
δ1

∣∣∣∣ (∆1)1,3 (∆1)1,1

(∆1)2,3 (∆1)2,1

∣∣∣∣
=

µS + τ + σ − µI − ρ + βU + 2α

µS − ρ− µI + βU

The asymptotes of this hyperbola are given by

(µS − ρ + βU − µI)u2 + (µS − ρ− µI + βU )uv (12)

+(ρ− µS − τ − σ + µI − βU )u + αv − ∆1

δ1
= 0,

where

∆1

δ1
=

α2 − α(ρ− µS − σ + µI − βU )
µS − ρ− µI + βU

.

To find them explicitly, upon division of (12) by
µS − ρ− µI + βU , we find

T (u, v) = u2 +
ρ− µS − τ − σ + µI − βU

µS − ρ− µI + βU
u

+vu +
α

µS − ρ− µI + βU
v

−α2 − α(ρ− τ − µS − σ + µI − βU )
(µS − ρ− µI + βU )2

= 0.

Let us assume T (u, v) to be the product of two linear
functions with undetermined coefficients, so that

T (u, v) = (Ãu + B̃v + C̃)(D̃u + Ẽv + F̃ ) = 0.

Upon equating coefficients of like powers, we find that
the following equations must be satisfied by Ã, B̃, C̃,
D̃, Ẽ, F̃ ,

u2 : ÃD̃ = 1, (13)

uv : ÃẼ + B̃D̃ = 1,

v2 : B̃Ẽ = 0,

u : ÃF̃ + D̃C̃ =
(ρ− τ − µS − σ + µI − βU )

(µS − ρ− µI + βU )

v : B̃F̃ + C̃Ẽ =
α

(µS − ρ− µI + βU )

1 : F̃ C̃ =
α2 − α(ρ− τ − µS − σ + µI − βU )

(µS − ρ− µI + βU )2
.

Without loss of generality, taking for instance Ẽ = 0,
to satisfy the second above equation, we have then the
straight lines in the form

u = − F̃

D̃
, v = − Ã

B̃
u− C̃

B̃
.

We find now their coefficients as follows. From the fifth
and the second of (13), since Ẽ = 0 we have

F̃

D̃
≡ F̃ B̃

D̃B̃
= − α

µS + βU − µI − ρ
.

so that the first asymptote is

u = − α

µS + βU − µI − ρ
. (14)

Then the first two equations of (13) give

Ã

B̃
≡ ÃD̃

B̃D̃
= 1

and the last two in turn yield

C̃

B̃
≡ F̃ C̃

B̃F̃
=

α− (ρ− µS − σ − τ + µI − βU )
(µS − ρ− µI + βU )

.

Thus the second asymptote is

v = −u +
α− (ρ− µS − σ − τ + µI − βU )

(µS − ρ− µI + βU )
. (15)

The intersections with the coordinate axes of the hyper-
bola (10) are the origin and the points v = 0 and the
roots of the quadratic

u2(µS − ρ + βU − µI)
+u(ρ− µS − τ − σ + µI − βU ) = 0

which are explicitly

u = 0, u = − (ρ− µS − τ − σ + µI − βU )
(µS − ρ + βU − µI)

.

We study now the conic (11). Its invariants can be de-
termined as follows.

∆2 ≡

∣∣∣∣∣ 0 (∆2)1,2 (∆2)1,3

(∆2)2,1 (∆2)2,2 (∆2)2,3

(∆2)3,1 (∆2)3,2 0

∣∣∣∣∣
has the elements

(∆2)1,2 = (∆2)2,1 =
µS − ρ− µI + βV

2
,

(∆2)1,3 = (∆2)3,1 =
σ

2
,

(∆2)2,2 = µS − ρ− µI + βV ,

(∆2)2,3 = (∆2)3,2 =
ρ + µI − µS − τ − α− βV

2
,
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from which upon evaluation, we find

∆2 =
σ

4
(µS − ρ− µI + βV )

×(ρ− µS − τ − α + µI − βV − σ).

The second invariant is

δ2 ≡
∣∣∣∣ 0 (∆2)1,2

(∆2)2,1 (∆2)2,2

∣∣∣∣
= − (µS − ρ + βV − µI)2

4
.

Again δ2 < 0 shows that also (11) is a hyperbola. To
find its center we use once again the invariant method

u2 ≡
1
δ2

∣∣∣∣ (∆2)1,2 (∆2)1,3

(∆2)2,2 (∆2)2,3

∣∣∣∣
= −−(ρ− µS − τ − α + µI − βV ) + 2σ

µS − ρ− µI + βV

and

v2 ≡
1
δ2

∣∣∣∣ (∆2)1,3 0
(∆2)2,3 (∆2)2,1

∣∣∣∣
= − σ

µS − ρ− µI + βV
.

The asymptotes are found from

(µS − ρ− µI + βV )v2 + (µS − ρ− µI + βV )uv

+(ρ− µS − τ − α + µI − βV )v + σu− ∆2

δ2
= 0

where

∆2

δ2
= −σ(ρ− µS − τ − α + µI − βV ) + σ2

(µS − ρ− µI + βV )
.

Substitution into the above equation thus yields

(µS − ρ− µI + βV )v2 + (µS − ρ− µI + βV )uv

+(ρ− µS − τ − α + µI − βV )v + σu +
σ(ρ− µS − τ − α + µI − βV ) + σ2

(µS − ρ− µI + βV )
= 0.

To explicitly determine the asymptotes, upon division
by µS − ρ− µI − βV we have

Q(u, v) = v2 +
(ρ− µS − τ − α + µI − βV )

(µS − ρ− µI + βV )
v

+uv +
σ

(µS − ρ− µI + βV )
u +

σ(ρ− µS − τ − α + µI − βV ) + σ2

(µS − ρ− µI + βV )2
= 0.

Again let us take Q(u, v) in factored form

Q(u, v) ≡ (Gu + Hv + I)(Lu + Mv + N) = 0.

Equating like powers of the variables, we thus find

u2 : GL = 0, (16)
uv : GM + HL = 1,

u : GN + IL =
σ

A
,

v : HN + IM =
B

A
,

v2 : HM = 1,

1 : IN =
σE

A2
.

In these equations we have used the following short-
hands

C = µS − ρ− µI = −0.110 < 0, (17)
A = C + βV ,

D = C + βU ,

Γ = C + τ,

B = Γ + α + βV = A + α,

E = B − σ,

F = Γ + σ + βU = D + σ.

In this way Q(u, v) can be rewritten as

Q(u, v) = v2 +
B

A
v + uv +

σ

A
u +

σE

A2

Let us take G = 0, without loss of generality. We have
then the asymptotes

v = − I

H
, v = − L

M
u− N

M
.

The second and third equations (16) give

I

H
=

IL

HL
=

σ

A
.

From the second and fifth equation (16) we have

L

M
=

HL

HM
= 1.

Also using the second, the sixth, the fifth and the third
equation (16) we have

N

M
=

HL

HM

IN

IL
=

E

A
.

The asymptotes have then the equations

v = −u +
E

A
, v = − σ

A
. (18)

5 Discussion
Let us now introduce new notations, to simplify the sub-
sequent discussion. Using (17) the conics can be rewrit-
ten as

Du2 − Fu + Duv + αv = 0 (19)
Av2 −Bv + Auv + σu = 0 (20)
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The center of (19) becomes

u0 = − α

D
, v0 = 1 +

τ + σ + 2α

D
.

Set

u∗ = 1 +
τ + σ

D
, v0 = u∗ − 2u0,

its axes intersections are then the origin and (u∗, 0). Its
asymptotes are finally

u = u0, v = −u + 1 +
τ + σ − α

C + βU
= −u + u∗ + u0.

Studying the intersection with the straight line u+v = 1
we find

ū =
α

τ + α + σ
< 1, v̄ =

τ + σ

τ + α + σ
< 1.

Set now

ṽ∗ =
τ + α + 2σ

A
.

The center of (20) becomes

ũ0 = 1 +
τ + α + 2σ

A
= ṽ∗ − 2ṽ0, ṽ0 = − σ

A
,

its axes intersections are then the origin and (0, ṽ∗). Its
asymptotes are finally

v = ṽ0, v = −u− ṽ∗ + ṽ0.

Studying the intersection with u + v = 1 we have

ṽ =
σ

τ + α + σ
, ũ =

τ + α

τ + α + σ
.

To study the flow in the unit simplex Ω we need to de-
termine the mutual positions of the hyperbolae (19) and
(20). To do this, we can discriminate between their
slopes at the origin, on top of using the informations
summarized above. In particular we find that the slope
at the origin of (19) is larger than the one of (20) if the
following inequalities are satisfied

C + βV + τ + α > 0 (21)

C + βU + τ + σ >
ασ

C + βV + τ + α
> 0,

or

B < 0 (22)

F >
ασ

B
,

ασ

B
< 0.

Conversely the slope at the origin of (20) is larger than
the one of (19) if the following inequalities are satisfied

B < 0 (23)

F <
ασ

B
< 0,

or

B > 0 (24)

F <
ασ

B
,

ασ

B
> 0.

On the border u + v = 1 of the unit simplex Ω in the
uv phase plane the flow is directed upwards (increasing
v) if

u < u† ≡ 1
2

τ − 2α

τ + σ − α
. (25)

Notice that u† < 1
2 if and only if τ + σ > α. The point

(u†, 1 − u†) on the line u + v = 1 represents thus a
saddle. Above it the flow goes upwards, below it goes
downwards.

We need finally to determine the flow inside the unit
simplex in the uv phase plane. To this end the infor-
mations on the two conics (19) and (20) need to be
merged. There are several pictures that can be drawn
corresponding to several cases of possible intersections
among the two curves and positions of the other rele-
vant points on the coordinate axes.

6 Conclusions
We summarize the ultimate behavior of the system here
below, identifying when possible its ω-limit points.
There are some cases in which the system trajectories
naturally evolve toward the line u+v = 1 which corre-
sponds to the disease-free environment, since it means
i = 0 in the three dimensional phase space uvi, recall-
ing (5). These are the equilibria we should strive for.

Some instances in which they are found are as follows.

For D > 0, A > 0, ũ0 > 0, ṽ0 > 1 and u∗ > 1 in cases
(21) or (22) an internal saddle point arises, the origin is
a stable equilibrium, implying from u = v = 0 that i =
1 i.e. the epidemics spreads to the whole population.
But then there is also a stable equilibrium on the line
i = 0 so that it is enough that trajectories lie in its basin
of attraction for the disease to vanish.

An endemic stable equilibrium is found instead for the
case C + βV < 0, C + βU > 0 with ũ > ū. But in
the same situation instead with ũ < ū the stable equi-
librium moves on the line u + v = 1.

Other situations leading to the same final outcome are
A < 0, D > 0, ṽ0 > 0, 0 < ṽ∗ < ṽ0, ũ < ū.

Also A < 0, D > 0, ṽ0 < 0, ṽ∗ < 0 < ṽ0, ũ < ū.

Again A < 0, D > 0, ṽ0 > 0, 1 < ṽ∗, 0 > ṽ0, ũ < ū.

One more D < 0, A < 0, ũ < ū.

But also D < 0, A < 0, ũ > ū.

Again D > 0, A > 0, 1 < ṽ∗, ũ < ū.

And D < 0, A < 0, ũ0 > 0, 1 < ũ∗, ũ < ū.

Finally for D < 0, A > 0, ṽ0 > 0, ũ < ū and for
D < 0, A < 0, ũ0 < 0, ṽ∗ < 0 < ṽ0, ũ > ū.
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In all possible cases, the above result show that it would
be possible to eradicate the epidemics by acting appro-
priately on the relevant parameters of the model, so
as to satisfy the conditions leading to stable disease-
free equilibria. Moreover there is also the possibility
of choosing which parameters to act upon, so that the
above inequalities are satisfied. This allows some free-
dom for the policy maker in the choice of the most ap-
propriate means of fighting the epidemics. In partic-
ular there would be the possibility of better enforcing
the vaccination program, so as to augment σ and at the
same time decrease α, or rather to act on preventive
measures, such as to counteract the biohazards which
are prone to spread the disease horizontally. This can be
implemented by taking suitable biosafety restrictions,
so as to diminish the disease incidence βU and βV , and
also to reduce the possibility of importing the disease
through external vectors, thus obtaining a smaller τ .
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