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Abstract  

In this paper the design and validation of three-segment human body model is presented. The 

model is aimed at reconstruction of motion trajectories of shank, thigh and HAT (Head-Arms-

Trunk) segments in sit-to-stand transfer. For this purpose the Extended Kalman filter (EKF) is 

applied for fusion of model data and data acquired through measurements with low cost 

inertial motion sensors (consisting of accelerometers and rate gyroscopes). The 

simplifications, like motion constraint to sagittal plane, symmetry of movement, assumption 

of ideal joints, etc., are introduced in the model. Three-segment human body model is 

constructed using principles of Lagrangian dynamics resulting in three nonlinear, highly 

coupled second order differential equations. From these equations human body model in 

Matlab- Simulink environment is constructed and implemented. In conjunction with classical 

definition of angle, angular rate of change and angular acceleration one can get complete set 

of data describing human sit-to-stand movement. The inputs that were used in the modeling 

phase include moments at three joints (ankle, knee and hip joint) by using inverse dynamic 

approach and free-body diagram technique. Calculated moments include both active and 

passive joint moments. Several EKF architectures were tested in search for optimal 

performance. Model validation (in conjunction with EKF) was performed on simulated data 

using Matlab-Simulink environment, and on actual measurements data acquired with 

Optotrak optical motion analysis system. Obtained results are presented and discussed, and 

conclusions are drawn.  
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1 Background 

Over the last few years the miniature inertial sensors 

have become widely available. Because of their low 

cost and miniature size they are practical for wide 

range of applications such as biomechanical analysis 

of human motion [1,2,3,4,5,6], virtually reality [7], 

ergonomic studies [8] etc.  

In dynamic analysis of rigid body motion, the 

knowledge of translational and angular velocities and 

accelerations of body center of mass is crucial [5,9]. 

Traditionally these variables are measured by optical 

motion tracking systems (like Optotrak-Northern 

Digital Inc.). However, these systems have number of 

shortcomings, as are: high cost, restriction to 

laboratory settings, markers are easily obscured, 

markers require time-consuming setting up procedure 

etc. More recently, body mounted inertial sensors 

have been used for measurement of kinematic data 

[3,4,5,7]. These sensors consist of accelerometers and 

gyroscopes mounted in the casing which is then 

attached to measured human body segment whose 

kinematic parameters are of interest. 

Inertial sensors (accelerometers and gyroscopes) are 

not without errors [5]: two accelerometer signal 

components, the dynamic and gravitational, can’t 

easily be distinguished during faster movements while 

drift of the gyroscope output results in large 

integration errors. The accuracy can be improved by 

adding magnetometer to the inertial sensor setup, and 

using Kalman filtering techniques for data fusion with 

accelerometer and gyroscope data [6,7]. This 

technique is widely used and shows good results under 

certain restrictions, one of them is lack of large metal 

or magnetic objects in the vicinity [10]. Such objects 

can potentially introduce disturbance signal to the 

magnetometer readings.  

In this study we assume that magnetometers can (in 

certain applications) be substituted by incorporation of 

dynamic human body model [4,11]. In this approach 

the Extended Kalman Filtering (EKF) technique is 

used to fuse data acquired from inertial sensor 

measurements (accelerometers and gyroscopes) with 

data from the dynamic human model. In this way we 

believe that better kinematic measurements in 

ambulatory settings where number of metallic objects 

and instruments (with their electromagnetic fields) 

exist are possible. 

Paper presents the development and validation of 

proposed method for model based inertial sensing of 

human body motion kinematics in sit-to-stand 

movement. The structure of this paper is as follows.  

In Section 2 three-segment dynamic human body 

model is constructed and described.  Then Extended 

Kalman Filter is designed to incorporate all necessary 

measurements and estimates. In Section 3 results for 

simulated and measured data are presented and 

discussed. Finally in Section 4 some conclusions are   

drawn based on acquired results. 

2 Materials and methods 

2.1 Model description 

The proposed three-segment human body model in sit-

to-stand transition [11] is restricted in the two-

dimensional (sagittal) plane and consists of three 

segments: shank, thigh and HAT (Head-Arms Trunk). 

Restriction to the sagittal plane is valid if symmetry of 

sit-to-stand movement is assumed. The segments are 

represented as rigid bodies with their masses 

contained at center of mass (Figure 1). Joints are 

assumed to be ideal with no added friction during 

rotation. Inputs to the model are joint moments M1, 

M2 and M3 at ankle, knee and hip joint respectively. 

These moments are calculated using Newton-Euler 

inverse dynamic approach [2,9] based on data 

measured by optical motion tracking system and force 

plate(s).  

Mathematical description of three-segment sit-to-stand 

model is based on Lagrangian dynamics approach. In 

that approach well known equations of motion for 

rigid body are derived from  
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where:  L – Lagrangian function (L=K-V)  

            T – generalized forces/moments on  

                   i-th segment 

            K – kinetic energy of i-th segment 

            V – potential energy of i-th segment 

 

 

             Fig. 1 Three segment human body model 

Using Lagrangian dynamics and model notation in 

Figure 1 the following equations are derived: 
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where 

il  - segment length, 

ic  - distance of segmental CoM from distal joint, 

xiI  - segmental moment of inertia. 

Equations (2), (3) and (4) describe the motion of the 

shank, thigh and HAT segment, respectively. 

Segmental masses, lengths, center-of-mass (CoM) 

positions and moments of inertia are calculated using 

anthropometric data [12].  

As it can be seen, the above equations form non-

linear, highly coupled system of differential equations. 

Outputs from the model are angle, angular rate and 

angular acceleration for every segment from which 

linear acceleration can be calculated.  

 

2.2 Extended Kalman Filter design 

In the proposed approach the Extended Kalman filter 

has a key role. It is aimed for fusion of data acquired 

through measurements with data obtained from 

developed dynamic human body model. Kalman 

filtering is a common approach in multisignal 

integration tasks [7,9]. In EKF, the model is 

represented by nonlinear state space description 

incorporating state and measurement equations 

                           ),u,x(fx k
w

kk1k

rrr
=+                      (5)           

                                )v,x(hz kkk

rrr
=                          (6) 

In equation (5) nonlinear function (in general) relates 

the state vector x
r
 and the input u

r
 at time step k to the 

state at step k+1. In equation (6) measurement vector 

h
r

 relates the state vector to the measurement kz
r

. 

Vectors kw
r

 and kv
r

 represent white process and 

measurement noise, respectively. It is assumed that 

these noises are Gaussian distributed, have zero mean 

and that they are uncorrelated.  

During the EKF design process several filter 

architectures were tested. The chosen filter structure 

incorporates the state and measurement vectors  

defined as:  
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where 

321 ,, ΘΘΘ  - shank, thigh and HAT  angles in  respect 

to y axis, 

321 ,, ΘΘΘ &&&  - shank, thigh and HAT angular rates of 

change, 

321 ,, ΘΘΘ &&&&&&  - shank, thigh and HAT angular 

accelerations 

321 M,M,M  - ankle, knee and hip joint moments, 

yia  - linear acceleration of the i-th segment in y 

direction, 

zia  - linear acceleration of the  i-th segment in z 

direction. 

Variables in state and measurement vector are selected 

so that they can be measured directly or indirectly by 

inertial sensors. Directly measured variables are 

angular rates and linear accelerations (for every 

segment), while moments 1M , 2M  and 3M  are 

measured indirectly via inverse dynamic calculation 

using measured values.  

The proposed EKF design has the advantage that the 

state equation    
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                                    k1k
ˆˆ xx =−

+                             (13) 

Equations (9)-(13) form the complete set of equations 

for the EKF algorithm used in this paper. Matrix P  

defines estimate error covariance, while matrix kH is 

the Jacobian matrix of partial derivates of ()h  with 

respect to x : 

                              )0,(
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is linear, while measurement equation (8) is still highly  

non-linear. 
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In (8) meaning of the parameters is as follows 
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The EKF algorithm is implemented according to [9] as 

shown below  

Measurement update is 

            1
k

T
kkk

T
kkk )( −−− += RHPHHPK            (9) 

                  ))0,ˆ((ˆˆ
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−− −+= xhzKxx              (10) 
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and time update is 

                         k
T

kkk1k QAPAP +=−
+                  (12) 

                                   

The filter is in all instances initialized with a state 

estimate corresponding to the true system state. 

3 Results 

3.1 Results for simulated data 

In order to validate the developed dynamic model and 

designed EKF, they were implemented in Matlab-

Simulink environment and evaluated by simulated 

data. 

The model (2), (3) and (4) was constructed in 

Simulink generating data for description of true model 

dynamics. The white noise with zero mean was added 

to data, simulating noisy sensor readings. In the 

simulation run the moments 1M , 2M  and 3M  were 

known in advance, and three-segment dynamic model 

was used in configuration of pendulum where the 

resulting motion was the result of joint moments 1M , 

2M , 3M  and gravity. The inputs into EKF presented 

simulated sensor readings, while actual data was used 

for comparison. The sampling frequency in simulation 

run was 50Hz. The results of simulated three segment 

model motion and it’s estimated joint angles are 

presented below. 

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM



 

           Fig. 2. Comparison of estimated and actual 

                                   segment angels 

 

                    Fig. 3. Angle estimation errors 

 

           Fig. 4. Root mean square error (RMSE) for 

                         segment angle estimates 

From presented results it can be seen that constructed 

dynamic human three-segment model and proposed 

EKF design perform well on simulated data. Smallest 

estimation errors occur for the first segment of the 

model while the error increases for subsequent 

segments. This is attributed to the fact that the 

equations for linear acceleration of second and 

especially third segment ( 6h , 7h , 8h  and 9h  in 

equation (8)) are rather complex and depend on 

several system variables (e.g. equation for linear 

acceleration of third segment depends on angle of the 

first and second segment).  

 

3.2 Results for measurement data 

After validation by simulation, the same procedure 

was applied on real data measured with Optotrak 

optical motion capture system. Measurement setup 

can be seen in Figure 5.  In measurement data certain 

amount of measurement noise is added, therefore 

higher discrepancies between estimated and Optotrak 

were expected.  

 

  Fig. 5. Measurements with Optotrak optical motion 

                                analysis system 

Moreover, the single and double differentiation is 

performed on measured data to obtain linear velocity 

and acceleration, respectively [2,9]. This procedure 

introduces additional error source (numerical error) to 

the signal.  

Moments in ankle, knee and hip joint ( 1M , 2M  

and 3M ) are not known in advance. They are 

calculated using Newton-Euler inverse dynamics 

approach before EKF implementation (see procedure 

on Fig. 6).  

 

         Fig. 6. Conceptual scheme of model based EKF 

            implementation for human body kinematics 

                        reconstruction in standing up 
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As an example, calculated hip moment is presented in 

Fig. 7. 

 

  Fig. 7. Comparison of hip moment calculated with 

                                  different methods 

From Fig. 7 it can be seen that there is difference 

between hip moments calculated using Newton-Euler 

inverse dynamics/free body diagram approach (solid 

line) and using Lagrangian dynamics when measured 

angles, angular rates and angular accelerations are 

used in Equation (4). The difference is attributed to 

several reasons: a) simplifications are introduced to 

the model in modeling phase, b) the numerical errors 

are introduced during Optotrak data processing, c) in 

measurements no special care was taken to constrain 

subject with respect to sagittal plane. All of these facts 

contribute to difference in calculated hip moments. 

However the result makes possible to verify the 

performance of EKF filter in presence of large errors.  

Comparison of estimation of three angles with angles 

obtained with Optotrak kinematic measurements are 

presented in Figure 8. 

 Fig. 8.  Comparison of estimated segment angels with 

                reference measurements obtained with 

                                 Optotrak system 

 

     Fig. 9. Angle estimation errors in comparison to  

                          Optotrak measurements 

       
Fig. 10. Root mean square error (RMSE) for segment 

angle estimates in comparison to Optotrak 

measurements 

From Figure 8 it can be seen that EKF takes some 

time to settle in (around 0.2 seconds), after which 

estimation error reduces and eventually becomes zero. 

Settling time of 0.2 sec is somewhat large for total 

time of 1.4 seconds, but we think this could be 

reduced by increasing measurement sampling rate. 

The tuning of EKF was done manually, what is time 

consuming and the procedure does not guarantee that 

the chosen matrices R, Q and P are optimal, so further 

improvements are needed and possible [13]. 

By inspecting estimation errors in Figure 9 similar 

conclusion can be drawn for all segments. Estimation 

error is large in the beginning while the EKF settles 

in, after that the error value decreases and approaches 

zero. Segment two (thigh) has the largest error in 

transition phase. This can be partially explained by 

large error in joint moment ( 2M ) 

measurement/calculation procedure. 

Figure 10 depicts root mean square error values. As 

expected, the error is smallest for shank orientation 

estimation while it is largest for thigh orientation 

estimation. By comparing these values with those 

obtained from simulated runs, similar system 

performance in terms of RMSE can be observed. The 

only difference are larger measurement errors present 

in real measurements. 
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4 Conclusions 

The procedure for reconstruction of motion 

trajectories of shank, thigh and HAT segment in 

sagittal plane during sit-to-stand movement using 

dynamic human body model and Extended Kalman 

filter is presented. The work is a first step toward 

development of measurement system based on 

miniature inertial sensors. 

Good tracking performance is demonstrated on 

simulated motion of three-segment pendulum. The 

estimation error is the smallest for the shank 

orientation and it increases for every subsequent 

segment. This is primarily due to more complex (and 

coupled) equations used for segments 2 and 3 than for 

segment 1. It is worth noting that estimation error, 

although has large RMSE value for segments 2 and 3, 

oscillates around zero value meaning that the mean 

value is close to zero.  

The tracking performance on measurement data is 

encouraging, however less accurate than in the case of 

simulated data. There are several reasons for this 

observation: a) low measurement sampling rate,        

b) numerical errors during signal processing, c) large 

errors in “measured” joint moments, d) manual EKF 

tuning, e) model simplifications and f) not ideal 

measurement setup. If all of these factors are taken 

into account we can conclude that the presented 

system performs well in presence of large errors.   

To improve system performance in terms of 

estimation accuracy, certain improvements should be 

introduced. Higher sampling rate during measurement 

should improve EKF settling time. Introduction of 

automatic EKF tuning methods should also improve 

EKF estimation accuracy. More attention should be 

payed to measurement setup in regards to sagittal 

plane motion restriction. Significant improvements are 

expected by reducing the error in calculated joint 

moments. One direction could be to integrate joint 

moment calculation in EKF algorithm. Finally, three-

segment dynamic human body model could be 

enhanced in a way that certain phenomenons (like 

joint friction) are included in the model. 

The above improvements are planned to be 

incorporated in the system in the further development 

stage. 
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