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Abstract

Operational optimization of ocean vessels, both off-line and in real-time, is becoming increas-
ingly important due to rising fuel cost and added environmental constraints. Accurate and
efficient simulation models are needed to achieve maximum energy efficiency. In this paper
a grey-box modeling approach for the simulation of ocean vessels is presented. The model-
ing approach combines conventional analysis models based on physical principles (a white-box
model) with a feed forward neural-network (a black-box model). Two different ways of com-
bining these models are presented, in series and in parallel. The results of simulating several
trips of a medium sized container vessel show that the grey-box modeling approach, both serial
and parallel approaches, can improve the prediction of the vessel fuel consumption significantly
compared to a white-box model. However, a prediction of the vessel speed is only improved
slightly. Furthermore, the results give an indication of the potential advantages of grey-box
models, which is extrapolation beyond a given training data set and the incorporation of physi-
cal phenomena which is not modeled in the white-box models. Finally, included is a discussion
on how to enhance the predictability of the grey-box models as well as updating the neural-
network in real-time.

Keywords: ocean vessel, operational optimization, grey-box modeling, serial approach,
parallel approach.
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Nomenclature
Symbols
a Parameters (a = (a1, ..., aN ))
F A function
fc Fuel consumption (liters per nautical mile)
H Wave-height
M Number of measurements
n Engine rotational speed
N Number of parameters
p Propeller pitch
P Propulsion power
PG Electrical consumption
r Residual function
R Vessel resistance
RAW Added resistance due to surface waves
t Time
TA Aft draft
TF Forward draft
V Vessel speed (relative to water)
Vcu Sea current speed in direction of the vessel
Vw Wind speed (relative to vessel)
v̇f Fuel flow rate (liters per hour)

Greek symbols
λ Wave-length
µ Wave-direction
∇ Vessel displacement
θw Wind direction (relative to vessel)

Subscripts
c Calculated variable
m Measured variable

Acronyms
BB Black-Box
FFNN Feed Forward Neural-Network
GB Grey-Box
RMSE Root-Mean-Squared Error
WB White-Box

1 Introduction
Achieving maximum energy efficiency of transport and
cargo vessels is a goal from the standpoint of both the
vessel designer and operator. With rising oil prices and
an increase in emission restrictions, this becomes in-
creasingly important. The operational cost of an ocean
vessel is high and depends on several factors. Presently,
the largest operational cost factor is the fuel cost, or
40% of the overall operational cost for a typical con-
tainer vessel as shown in Figure 1. The annual fuel
cost for a cargo vessel can be in the order of millions
of dollars, therefore, a few percent off the vehicle fuel
consumption can lead to considerable annual savings.
This gives great incentive to minimize the vessel fuel
consumption.

Maximizing the energy efficiency of an ocean vessel
needs to be done in both design and operation. The
vessel designer can maximize the vehicle energy effi-
ciency by designing the hull for minimum resistance

Fig. 1 A breakdown of the operational cost for a typical
medium-sized container vessel [1].

and maximizing the propeller efficiency, and selecting
appropriate sub-systems, such as the main and auxiliary
engines, for a given operating profile. During operation
the energy efficiency can be maximized by controlling
the vessel speed and selecting the optimal route, as well
as maximizing the efficiency of the sub-systems. Since
this is a complicated process, both off-line and real-time
simulation and optimization can play an important part
in operational optimization of marine vessels.

1.1 White-Box Modeling

A performance analysis model of a given ocean ves-
sel that is to be used for operational optimization must
be able to account for the ship dynamics, as well as
the effects of the environment on the vehicle, such as
wind, currents and surface waves. Furthermore, a real-
time performance analysis requires a computationally
efficient model. The common approach to model the
powering requirement of ships involves applying phys-
ical principles and results from model and full-scale
experiments. This is referred to as white-box model-
ing. Usually the ship resistance is divided into three
main components: (1) still-water resistance (including
added resistance due to hull fouling), (2) added resis-
tance due to surface waves, and (3) wind resistance.
A semi-empirical approach based on results of system-
atic model experiments has been successful in model-
ing of still-water resistance [2, 3]. These methods are
intended for use during conceptual design and can pro-
vide an approximate value of ships powering require-
ment in calm weather and still water. These methods
also give a good indication of the changes in ship pow-
ering requirements related to any changes in the hull
dimensions and configuration, and are therefore a valu-
able tool in the design process. Models that account for
the effects of wind are also semi-empirical and based on
systematic model experiments [4]. An accurate predic-
tion of the wind effects on vessel resistance is difficult
to obtain using semi-empirical models since flow past
the superstructure of ships is complicated and quite dif-
ferent between ships. Calculating the added resistance
due to surface waves is also difficult and depends on
information of the state of the surface waves, such as
wave-height, wave-length and wave-direction. Theo-
retical methods for the estimation of the time-averaged
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added resistance due to surface waves are available [5].
It should be noted that white-box models are normally
based on first principles and/or empirical data. There-
fore, the associated assumptions and uncertainties that
are implicit will affect the applicability and predictabil-
ity of the models.

1.2 Black-Box Modeling

Another approach to model the ship powering require-
ment is to use black-box methods [6, 7, 8]. A black-box
model is a mathematical model describing relations be-
tween input and output data for a given process or a sys-
tem. In contrast to white-box modeling, the black-box
modeling approach does not need any prior knowledge
or theoretical consideration about the modeled process.
The relations between input and output data are mod-
eled building only on experimental data to forecast the
system behavior. A black-box modeling approach is
useful when the behavior of a process is not fully under-
stood or indeed when an available white-box model es-
timating the process lacks predictability. The main dis-
advantage of the black-box modeling method is the de-
pendence on the data used to model the process which
can result in limited extrapolation properties beyond the
data that it is derived from.

1.3 Grey-Box Modeling

The approach termed as grey-box modeling can be
found in the literature [8, 9, 10]. The grey-box mod-
eling method is a combination of white-box and black-
box modeling methods. Several terms are used in
the literature referring to grey-box modeling approach,
e.g. semi-physical modeling [9, 11], hybrid modeling
[10, 12] and semi-mechanistic modeling [13]. The def-
initions of these approaches differ slightly, but they all
aim at bringing different advantages of white-box and
black-box modeling together in one model.

The objective of the present research is to apply a grey-
box modeling approach to model the performance of a
given ocean vessel. More specifically, the objective is to
model the fuel consumption of a container vessel using
a grey-box modeling approach. The conjecture is that
the white-box model will retain the physical behavior
of a ship with respect to its speed and state, and the
black-box model will scale the output from the white-
box model to fit operational data of a given ship, as well
as attaining any phenomena which is not modeled in the
white-box model. The grey-box model should therefore
yield an accurate model of the ship performance which
is suitable for use in off-line and real-time operational
optimization.

2 Methodology
Grey-box modeling methods can be distinguished into
two main categories depending on how they are applied.
These modeling approaches are called serial modeling
and parallel modeling [7, 11, 14]. Figure 2 emphasizes
the composition of white-box and black-box modeling
into grey-box modeling and its division into serial and
parallel modeling.

Fig. 2 An overview of the combination of the grey-box mod-
eling method.

The serial approach involves modeling a process by
configuring two or more models in a series [14].
Whereas the approach as a whole is classified as a grey-
box modeling method, at least one model is a white-box
and one is a black-box. An example of this approach
would be to configure two models in series where the
first model relates input data to a particular value by
some black-box methodology, and feeds this value as
an input parameter to the second model which is based
on a physical principle. Here the role of the first sub-
model can be considered as preprocessing of data [14].
The serial approach is indeed applicable when some pa-
rameter values have to be estimated for a given process
by regressing them to some value [7]. The approach is
applicable when some part of a process is not known or
needs to be improved.

The parallel modeling approach involves: (1) modeling
a white-box model, (2) ‘training’ a black-box model
by minimizing the difference between the white-box
model output and the desired output, and (3) combining
the white-box and black-box models in parallel. The
white-box model provides an output for a given set of
input parameters and the black-box model ‘corrects’ the
estimated output. Hence, the black-box model works
as an algorithm that forecasts and corrects the residu-
als between the white-box model output and the desired
output [7, 11, 14].

In the present research, the white-box model models
the resistance of the hull, the performance of the pro-
peller and the performance of the main and the aux-
iliary engines. The hull resistance is estimated with
two models, one for the still-water resistance and the
other for the wind resistance. The still-water resistance
is calculated using a semi-empirical model by Holtrop
et al. [3], which is based on systematic model exper-
iments. Included is a model for added resistance due
to hull fouling [1]. The wind resistance is calculated
using Isherwood’s semi-empirical model for merchant
ships [4]. The resistance model neglects any other re-
sistance components, such as added resistance due to
surface waves and added resistance due to steering.
The propeller performance is calculated using a semi-
empirical model based on the Wageningen B-screw se-
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ries [15]. The performance of the main and auxiliary
engines is modeled according to a typical Diesel en-
gine cycle [16] and available operational data from the
manufacturers. Properties of other mechanical devices
are also included in the model, such as the gear between
the main engine and the propeller and shaft between the
gear and the propeller.

An important feature of this white-box model is that it
is implicit in the sense that the vessel speed relative to
the water, V , is determined by a non-linear equation,
balancing the vessel resistance, R, with the propulsion
power, P ,

V ·R (∇, TF , TA, Vw, θw, V )) = P (n, p, V ) , (1)

where the resistance depends on vessel displacement
(∇), fore and aft draft (TF , TA) and wind speed and di-
rection (Vw, θw), apart from the vessel speed, whereas
the propulsion power depends on the rotational speed of
the main engine (n), and the propeller pitch (p), apart
from the vessel speed. This equation is solved by the
Newton-Raphson iterative method. Defining for fixed
values of all the parameters except the speed

F (V ) = V ·R(V )− P (V ), (2)

the iterative step is

V (i+1) = V (i) − F
(
V (i)

)
d

dV F
(
V (i)

) (3)

where V (i) denotes the i-th iterative value of the speed,
and the derivative can be approximated numerically.
Knowing the value of V , the fuel flow rate, v̇f in litres
per hour, can be calculated explicitly from engine infor-
mation on how the specific fuel consumption depends
on engine-load and rotational speed. In terms of energy
optimization, however, the fuel consumption in litres
per sailed nautical mile, relative to the ground, is usu-
ally of more interest, in which case v̇f has to be divided
by V + Vcu, where Vcu denotes an estimate of the sea
current speed in the direction of motion of the vessel.

The choice of a feed forward neural-network [17] as
a black-box model is made since neural networks are
considered to be good and versatile function approxi-
mators [18]. In relation to this it is emphasized that
any other black-box model could have been chosen in
this study, e.g. some other method from the machine
learning class, like support vector machines [19] or a
nonlinear multiple regression model.

The fact that the underlying white-box model is im-
plicit, presents difficulties in using a black-box model
as a data preprocessing tool in a serial grey-box ap-
proach as described above. Thus, in this research a
serial approach was applied with the white-box sub-
model preceeding the black-box sub-model as depicted

in Figure 3. However, it is also considered how black-
box data preprocessing can be implemented in the im-
plicit setting, where the role of the black-box model
can, e.g. be to improve empirical predictions of the re-
sistance effect of wind or waves.

In the serial grey-box model the input to the white-box
sub-model is propeller pitch, engine speed, vessel dis-
placement, fore and aft draft, electrical consumption,
and the relative wind speed and direction. The white-
box feeds an estimate of the fuel flow rate (v̇f

′) and the
vessel speed through the water (V ′) to the black-box
model, which provides a forecast of the actual fuel flow
rate (v̇f ) and vessel speed (V ).

Fig. 3 A serial grey-box model of a container vessel.

In this research a parallel grey-box model was also con-
structed as shown in Figure 4, with the black-box mod-
eling the residual of the measured and calculated fuel
flow rate (r(v̇f )) and vessel speed (r(V )). The input to
both the white-box model and black-box model are the
same as the input to the white-box model in the serial
model.

Fig. 4 A parallel grey-box model of a container vessel.

3 Results
The container vessel is called Dettifoss and was built
in 1995. The vessel is 166 m long and 29 m wide. Its
deadweight is 17 thousand metric tons, of which the
cargo capacity is 10 thousand metric tons. The main en-
gine is a diesel engine and the maximum brake-power is
20 thousand horsepowers (14.8 MW) and the propeller
is a controllable pitch propeller with a diameter of 6.5
m. There are three auxiliary engines with a total of 3.38
MW capacity. The design cruise speed is 20 knots and
the average fuel consumption is 56.5 metric tons/24h.

3.1 Data

The duration of one voyage of Dettifoss is approxi-
mately two weeks. The voyage is divided into eleven
legs, each leg lasting between two consecutive destina-
tions. Here, each leg is divided further into three stages
according to the operation of the vessel: (1) leaving har-
bor, (2) cruising, and (3) steaming to harbor. The oper-
ation of the engines and the nature of the sailing pro-

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM



cess differs significantly between these stages. As an
example, starting the engine and accelerating the vessel
requires different operation and power than maintain-
ing the vessel speed while cruising. The present study
is restricted to cruising (stage 2). The operational data
is gathered from March to August in 2006, when Detti-
foss was operating in the North-Atlantic sea. The data
was resampled, but otherwise there was no preprocess-
ing. Figures 5 to 7 show typical operational data of the
vessel speed, the propulsion system, and the weather
for two legs and four different trips.
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Fig. 5 Typical operational data for the vessel speed. Shown
is data for two legs and four different trips.
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Fig. 6 Typical operational data for the propulsion system and
power generation. Shown is data for two legs and four differ-
ent trips.

3.2 Numerical Simulation

A two-layered network was selected as it is commonly
viewed as a standard feed-forward neural network [18,
20]. Five neurons were selected for the hidden layer.
The transfer function selected for the network layers
is the sigmoid function. The objective of the neural
network is to minimize the sum of squared error be-
tween actual data and network output. The Levneberg-
Marquardt algorithm together with Bayesian regulation
was chosen to be the training method.

A leave-one-out cross validation is used to validate the
models. The Root-Mean-Squared Error (RMSE) was
used as the validation metric. The data is divided into
four equally sized data sets. The method validates the
data-sets where each set is used once in turn as a test set
and the remaining three sets as a training set.
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Fig. 7 Typical data for the relative wind speed and wind di-
rection. Shown is data for two legs and four different trips.
Note: Head-wind at θw = 0 deg, Tail-wind at θw = 180 deg.

Figure 8 shows a comparison of the grey-box models to
the white-box model and the black-box model. Clearly
there is a significant improvement in the validation met-
ric for the fuel consumption, or approximately 65% re-
duction in RMSE, for both the grey-box models and
the black-box model compared to the white-box model.
However, only a slight reduction in the prediction of
the vessel speed is shown by the grey-box and black-
box models compared to the white-box models. Note
that the RSME of the vessel speed is on the order of
0.65 knots and the uncertainty in measurements of the
vessel speed is approximately 0.5 knots.
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Fig. 8 A comparison of the validation metrics, RMSE of
fuel flow rate v̇f and vessel speed V , for the constructed
models.

Figures 9 and 10 give an indication of the potential ad-
vantages of the grey-box models over the white-box
models on one hand and the black-box models on the
other. Figure 9 gives an indication of the extrapolation
ability of the grey-box model and the inability of the
black-box model to extrapolate. Figure 10 indicates that
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the grey-box model, as well as the black-box model,
was able to follow the operational data relatively well,
while the white-box failed. In this example it is believed
that environmental components, which are not modeled
by the white-box model, were a larger factor than in a
normal operation.
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Fig. 9 An indication of the extrapolation properties of a grey-
box model.
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Fig. 10 An indication of a grey-box model gaining advan-
tages of the black-box model.

Thus, while these results are still too limited to be con-
clusive, they show more promise with regards to grey-
box modeling than those of Kristjansson [20]. He ap-
plied a black-box method to model the powering re-
quirement of a fishing vessel with a feed-forward neural
network (FFNN). Investigated were different modeling
approaches of a pure black-box approach and different
modeling approaches involving a combination of white-

box models and black-box models. The results showed
that a two-layered FFNN-model with three neurons in
the hidden layer outperformed the grey-box modeling
methods and the forecast of a pure white-box model.

4 Discussion
The models discussed in this paper can be used as a
tool for energy optimization in two ways. Firstly, cal-
culated estimates of fuel consumption per nautical mile,
relative to the ground, are a necessary input into meth-
ods for global optimal vessel routing with respect to,
e.g. currents and wind [21]. Secondly, the models
can be used to control optimal speed locally based on
measurements of environmental factors such as sea cur-
rents, wind, and sea-state. In this case the fuel cost per
nautical mile has, however, to be balanced against an
estimate of costs caused by delays of reaching a desti-
nation on time [22]. Note also that by fixing the speed
of the vessel in equation (1), it can be solved for the
pitch, p, by an iterative approach, similar to that used
for solving it with respect to speed. Thus, the optimal
cost can be determined not only with respect to speed,
but also with respect to pitch.

There are some problems applying grey-box modeling
in the present context that have not yet been properly
addressed, but are likely to affect the success of this
approach. Firstly, the measurements of many of the
critical input parameters such as wind speed and wave-
height are often not very accurate and other, such as
vessel speed, include considerable noise. Secondly, and
perhaps more importantly, measurements are collected
under operational conditions, which implies in some
cases limited variation in the input values, which in turn
makes the training of neural networks less reliable.

As already mentioned, it is of particular interest to be
able to apply a serial black-box approach when some
parameter values have to be estimated for a given sub-
process for which the physics are not sufficiently well
known. In order to illustrate how that can be handled
in the present context, let us assume that one wishes
to include the effect of surface waves on the resistance
using a neural-network rather than theoretical methods
as presented, e.g. in [5]. Thus, we further assume that
there are available measurements of the sea-state, such
as wave-height Hi, wave-length λi, and wave-direction
µi, in addition to the existing measurements at M dif-
ferent times, ti, i = 1, ..., M . Letting a = (a1, ..., aN ),
denote the parameters of the neural-network, a modified
implicit model becomes, cf. equation (1),

V · (R (∇, TF , TA, Vw, θw, V ) + RAW (a,H, λ, µ, V ))
= P (n, p, V ),

(4)

where R is the total vessel resistance excluding RAW ,
which is the added resistance due to surface waves. R is
calculated using a white-box model and RAW is calcu-
lated using a black-box model, a neural-network in this
case. In training the neural-network one does, however,
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not have any direct measurements of its output, RAW ,
but only of the vessel speed, V (or possibly only some
quantity derived from the speed such as the fuel con-
sumption rate) and the sea-state parameters H , λ, and
µ. Thus, the training of the network has to be based
on the sum of the squared error between the measured
speed, Vi,m, and the calculated speed, Vi,c, at the M
times of measurement, i.e., on

E =
M∑

i=1

(Vi,c − Vi,m)2 . (5)

Most network training algorithms rely on the gradient
of this error with respect to the network parameters.
Thus, in making use of these algorithms

∂

∂aj
E = 2

M∑

i=1

(Vi,c − Vi,m)
∂

∂aj
Vi,c (6)

has to be related to the corresponding derivatives of the
network ouput, RAW , with respect to the parameters.
Defining

Fi (V, a) = V · (Ri(V ) + RAW,i(a, V ))− Pi(V ) (7)

we have that

Fi (V (a), a) = 0 (8)

and hence that

V
∂RAW,i

∂aj
+

∂Fi

∂V
· ∂V

∂aj
= 0, (9)

so,

∂Vc,j

∂aj
= − Vc,i

∂Fi

∂V |V =Vc,j

∂RAW,j

∂aj
, (10)

giving the necessary relationship. It should be noted
that the derivative ∂Fi

∂V |V =Vc,j is the same one that is re-
quired when solving equation (4) for V by the Newton-
Raphson iterative method, cf. equation (3). The full
training process involves a double iteration. After each
update of the network parameters by the network train-
ing algorithm, the corresponding Vi-values are calcu-
lated by the Newton-Raphson method for i = 1, ..., M .

5 Conclusions
The grey-box models, both serial and parallel, improve
the predictability of the vessel fuel consumption signifi-
cantly compared to a pure white-box model. One of the
reasons is that the white-box model only accounts for
part of the vehicle resistance components and neglects
important parts, such as added resistance due to surface

waves. The black-box is able to improve the prediction
by accounting for any physical phenomena that is not
modelled in the white-box model, as well as enhancing
the prediction of the white-box model. However, only a
slight improvement in the prediction of the vessel speed
is shown by the grey-box model compared to the white-
box model. The reason for this is not fully understood.

The potential advantages of grey-box models over
white-box and black-box models were indicated in two
different simulations. One simulation gave an indica-
tion of the extrapolation ability of the grey-box model,
while another simulation gave an indication on how a
grey-box model is able to incorporate the effects of
physical phenomena which has been neglected in the
white-box model. These properties are not obtained by
using a pure black-box model. However, these results
are as yet not extensive enough to fully assess the po-
tential advantages of grey-box modeling and therefore
further research is required.

It is clear that grey-box modeling could be used to
improve the performance analysis of an ocean vessel
and therefore has the potential to be used in off-line
and real-time operational optimization. However, fur-
ther improvements to the grey-box modeling approach
present in this paper are neccessary. For example, in-
formation about the state of the surface waves, such as
wave-height, wave-length and wave-direction, are nec-
cessary to improve the prediction of the vessel speed.
Furthermore, the ability to update the black-box in
real-time would allow the grey-box model to continu-
ously improve by taking into account new data and any
changes in the vessel behavior. Using a black-model
to improve, e.g. empirical predictions of the resistance
effect of waves, within the framework of the overall im-
plicit white-box model, as outlined in the discussion
above, offers a promising approach to deal with both
these issues.
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