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Abstract

Evolutionary Computation is a popular soft-computing approach to solve problems in a nature-
inspired way. Evolutionary Algorithms (EAs) are well-known optimization methods that belong
to this domain. All EAs work with population of organisms which represent solutions of op-
timized problem. Organisms compete for survival and gradually evolve to higher fitness. EAs
can be seen as algorithms which traverse the search-space in a parallel way. Diversity is an
essential aspect of each EA. It describes the variability of organisms in the population. The lack
of diversity is a common problem. It means that all organisms are very similar to each other and
that they are located around a single point in the search-space. Diversity should be preserved in
order to evade local extremes (premature convergence). Niching algorithms are modifications
of classical EAs. Niching is based on dividing the population into separate subpopulations - it
spreads the organisms effectively all over the search-space and hence making the overall popula-
tion diverse. Using niching methods also requires setting of their parameters, which can be very
difficult. This paper presents a novel way of diversity visualization based on physical system
simulation. It is inspired by intermolecular forces and employs overall energy minimization.
This minimization is done via known unconstrained optimization numerical methods, namely,
Steepest Descent, Conjugated Gradients or Quasi-Newton. The visualization is helpful when
designing and tuning niching algorithms, but it has also other uses. The visualization will be
presented on NEAT - the evolutionary algorithm which optimizes both the topology and the
parameters of neural networks. We compare our approach with a related method of dimension
reduction devised by Sammon.
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1 Introduction
We have organized the paper as follows. In Section 2 di-
versity and niching algorithms are briefly described. In
Section 3 diversity visualization problem is defined and
a new method based on simulation of physical system
model is proposed. The visualization itself is performed
via physical system energy minimization. The choice of
an optimization algorithm for this minimization is cov-
ered in Section 4. In Section 5 the experimental results
are presented.

2 Diversity and niching algorithms
Evolutionary Algorithms (EAs) are general optimiza-
tion methods based on evolution processes as we know
from the Nature. EAs always work over a population
of models (solutions, organisms, individuals). Each in-
dividual is described by a genome (chromosome). The
genotype of a particular organism is its exact genome
(chromosome) setup – it is one specific genome in-
stance. The phenotype of an organism represents its ac-
tual physical properties (height, weight, eye color, etc.).

Typically EA run converges when the population of in-
dividuals accumulates nearby a certain point of a search
space. When this point represents a local optimum then
we speak about the premature convergence. This phe-
nomenon is often explained by the lack of diversity in
the population, in other words, all organisms in the pop-
ulation become similar. The diversity has to be to some
extent preserved in order to avoid local extremes.

Niching algorithms were originally designed to simul-
taneously search for multiple global optima in multi-
modal functions, however, it has been shown that they
are generally a good way to solve the problem of pre-
mature convergence for any EA. There exist many nich-
ing techniques, some of them are fitness sharing [1] or
crowding [2]; a good discussion can be found in [3].
Their common problem is that they add new parameters
to EA which are often very hard to find. This difficulty
motivated the search for a new diversity visualization
algorithm which should be helpful when incorporating
a niching method into any existing EA, comparing dif-
ferent niching algorithms, etc.

3 Diversity visualization
As we have stated in Section 2, diversity describes the
variability of organisms in the population, therefore a
similarity measure (distance) dij of organisms i and j
can be defined. Distance can be based on genotypic or
phenotypic similarity. For genetic algorithm as a spe-
cial type of EA, where chromosomes are encoded in
binary strings, genotypic distance dij is often defined
as a Manhattan distance of organisms i and j. Pheno-
typic distance is often difficult to define as it is problem-
dependent, nevertheless, it is generally preferred for
niching. Clearly

dii = 0, (1)
dij = dji (2)

for i, j = 1..N . Distances can be represented in the
matrix form. The distance matrix is symmetric with
zero diagonal.

3.1 Problem definition

The distance matrix can be trivially visualized in the
N − 1 dimensional Euclidean space. Three points that
represent solutions can be projected on a 2–D plane
forming a triangle. Solutions have Euclidean distances
lij = dij on the plane. Four points can be similarly
projected to the 3–D space. Larger distance matrices
cannot be visualized in 2–D or 3–D. The problem of
visualization in 2–D can be then defined as:

For a given distance matrix D find representative
points (xi, yi) in the plane such that the 2–D distances
lij =

√
(xi − xj)2 + (yi − yj)2 (Euclidean distance)

approximate as closely as possible the original dis-
tances dij . Figure 1 depicts an example situation.

Fig. 1 Diversity visualization example. Population of
size N = 4 is projected from 3–D to a 2–D plane. New
distances lij approximate original distances dij .

The niching algorithms divide the population into sev-
eral species. These species (almost) independently tra-
verse the search-space. The visualization should show
different species as clusters in 2–D. Stanley in [4] pro-
posed such visualization, it was however limited to the
so-called explicit fitness sharing. Explicit fitness shar-
ing is a modified fitness sharing, where species cannot
overlap.

3.2 Solution inspired by physics

The solution we propose is based on modeling of
physical phenomena. It is inspired by intermolecular
forces [5]. Atoms in molecules are exposed to attrac-
tive and repulsive forces. Attractive forces prevail for
long distances while repulsive forces for short.

We used the above scheme, associating solutions with
atoms, and modified it to:

1. the shorter the distance dij is, the stronger the at-
tractive force is,

2. the shorter the 2–D distance lij is, the stronger the
repulsive force is,

3. 1 prevails for longer distances, 2 for shorter.

For such system energy can be computed (see next sub-
section) and the minimum energy can be found (Sec-
tion 4). The item 2 prevents the system from collapsing
into a single point.
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3.3 Energy and force equations

The total energy to be minimized is defined as

ΦTOTAL =
N−1∑

i=1

N∑

j=i+1

Φij , (3)

where Φij is an energy contribution from the solutions
i and j. The force contribution Fij can be evaluated as
a gradient of Φij taken with minus sign. We have de-
veloped two different sets of energy and force equations
(A and B). The first denoted set A is

ΦA
ij =


 lij

dij + d0
−

arctan
(

lij

a

)

a


 , (4)

FA
ij = −∂φA

ij

∂lij
= − 1

dij + d0
+

1
l2ij + a2

, (5)

where d0 and a are constants. The equations of set B
read

ΦB
ij =

lij

(dij + a)2
+

1
lij + a

− 2
dij + a

, (6)

FB
ij = −∂φB

ij

∂lij
= − 1

(dij + a)2
+

1
(lij + a)2

, (7)

where a is a small positive constant which prevents di-
vision by zero. The difference between these sets is in
the influence of dij for longer distances (in A the influ-
ence is stronger). Both A and B were found empirically,
however, they are very similar to the real-world equa-
tions [5]. The elements dij of the distance matrix D are
always normalized such that max dij = 1 in order to
keep parameter settings uniform.

The Figure 2 gives a summary of the whole visualiza-
tion process.

Fig. 2 Tuning niching EA using the proposed visual-
ization. We extract population data from the niching
EA and use them to compute a distance matrix D. We
choose a set of equations (A or B) and continue with
minimization of energy ΦTOTAL. The minimization is
done via an unconstrained minimization algorithm (See
Section 4). At last the solution is visualized on a plane.
Species are visualized as clusters. This information can
be used to tune the niching EA.

3.4 Sammon’s projection

The well known Sammon’s projection algoritm [6] can
make similar job for diversity visualisation. Sammon’s
projection minimizes the quadratic error between orig-
inal distances dij and projected distances lij . The error
(or energy) can be obtained from the following equa-
tion:

ΦS
TOTAL =

∑N−1
i=1

∑N
j=i+1

(dij−lij)
2

dij∑N−1
i=1

∑N
j=i+1 dij

. (8)

The problem of Sammon’s projection is that solutions
with very small dij are projected into a single point.
This behavior is not suitable for visualization purposes
and therefore the positions of projected solutions must
be artificialy moved.

3.5 Interactive distance information

The proposed algorithm performs a dimension reduc-
tion, and in many cases this cannot be done perfectly.
Therefore the visualization was extended by a possibil-
ity of selecting a single solution. The intensities of col-
ors of the other solutions are then adjusted using the
following equation:

Ij =
1

1 + ε−α( 1
2−dij)

. (9)

The function is depicted in the Figure 3. Again the
equation was devised empirically. It renders solutions
similar to i with brighter colors and fades dissimilar.
We found that useful settings of α lay in the range of
〈1..100〉 when D is normalized. This extension is very
useful when tuning energy and force equations but also
when distinguishing between overlapping clusters.

0
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I j
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Fig. 3 Color intensity adjustment function. Similar so-
lutions to the selected one are brighter, dissimilar are
faded.

4 Optimization algorithms involved in vi-
sualization

This section describes optimization algorithms used to
minimize the energy (3):

min
X∈R2N

ΦTOTAL(X), (10)
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where X is a vector containing coordinates (xi, yi) for
all i = 1 . . . N solutions (again, N is the size of the
population). In ordinary EAs population sizes range
from tens to thousands of organisms. It is clear that
a special attention should be paid to the choice of op-
timization algorithm for (10). We made several exper-
iments with numerical methods for unconstrained opti-
mization, starting with simple Steepest Descent to com-
plex Quasi-Newton method. This section briefly de-
scribes methods used, the experiments are described in
Section 5.

4.1 Steepest Descent with fixed step and momen-
tum

Steepest Descent is a simple gradient method in which
steps are taken in the direction of a negative gradient,
see [7]. At first we have implemented the Steepest De-
scent method with a fixed step (SDF) - no line mini-
mization was used. The properties of the method were
greatly improved by using a momentum (with m = 0.9)
which is a well-known technique in optimization of
neural networks [8].

4.2 Steepest Descent with line search

We have also implemented a Steepest Descent with a
line search (SD). Two line search methods were tested:
Brent’s algorithm using derivatives [9] and a method
satisfying Strong Wolfe conditions using cubic interpo-
lation [10] (which was a default in further tests).

4.3 Conjugated Gradients

As the next method we have implemented much more
sophisticated Conjugated Gradient method (CG) [7, 11,
12]. The line searches were the same as in Subsec-
tion 4.2. Our experiments have shown that Hestenes–
Stiefel [7] update works best (compared to Fletcher–
Reeves and Polak–Ribière).

We have also experimented with Phylogenetic Analysis
Library (PAL) implementation of Conjugated Gradients
(CG-PAL) [13]. Here the line search uses numerical
derivatives, while the algorithm itself uses analytic gra-
dient. Again, Hestenes–Stiefel update worked the best.

4.4 Quasi-Newton

The last method which we have tested was the
Quasi-Newton method implemented in UNCMIN pack-
age [14] (QN-UNCMIN). The More-Hebdon trust re-
gion update was found to be the best.

5 Results
This section contains results of our experiments. It is
divided as follows: the first Subsection shows the prop-
erties of equations (4), (5), (6) and (7) on artificial data
and compares them to Sammon’s projection (8). The
second Subsection shows the visualization properties
on real-world data. The third Subsection compares op-
timization algorithms used for energy minimization as
presented in Section 4. The last Subsection shows that
our algorithm can be used not only for diversity visual-
ization but also as a general method for visualization of

classification datasets. The initial coordinates (xi, yi)
were randomly distributed in a square with side a = 0.1
centered at origin and with a uniform distribution. Pa-
rameter settings for the equation set A were d0 = 1.1,
a = 1.005, for the equation set B a = 1.10−6.

5.1 Artificially generated clusters

Prior to the experiments on the real-world data the
experiments with artificially generated data were per-
formed. For this purpose we have used an algorithm
which generates the distance matrix D. The input of
the algorithm is the set of cluster sizes C and two real
intervals X = 〈xmin, xmax〉 and Y = 〈ymin, ymax〉.
The algorithm then creates |C| clusters of given sizes,
where the dij’s inside a single cluster are random num-
bers from X . The distances dij for i and j belonging
to different clusters are random numbers from Y . We
have used uniformly distributed random numbers.

For example, the following matrix represents the cluster
set C = {2, 3}:

dij =




0 x y y y
x 0 y y y
y y 0 x x
y y x 0 x
y y x x 0


 , (11)

where x ∈ X and y ∈ Y .

In the first place we made experiments with ”coarse”
clusters - with X = 〈0.1, 0.1〉, Y = 〈0.9, 0.9〉. Figure 4
shows the situation for the distance matrix of N = 50
and the cluster set C = {2, 3, 15, 30} generated for A.
The Figure 5 shows the same using equation set B. Note
that the resulting figures need not to be similar as they
depend on details of acting forces and on random ini-
tialization.

The second series of figures shows the situation for
medium-sized clusters C = {2, 3, 15, 30, 75, 175}
(N = 300) - Figure 6 was generated by equations A,
while Figure 7 by equations B. We can see that the the
smallest clusters projected by equations A were dis-
rupted by larger clusters. This problem disappeared
when equations B were used. It is clear that for B equa-
tions large distances dij have small influence. In the
Figure 8 we show the visualization of the same data us-
ing Sammons projection.

Figures 9 and 10 depict the similar situation where
X and Y were changed to X = 〈0.1, 0.5〉 and Y =
〈0.5, 0.9〉. Tthe distinct clusters are still clearly visible.

5.2 Real world application - NEAT niching algo-
rithm

The real-world experiments were performed on data
from NEAT (NeuroEvolution of Augmenting Topolo-
gies) algorithm [4]. NEAT is a system which evolves
neural network parameters and topology simultane-
ously. It uses a niching algorithm as its integral part.
Here, we have used the modified NEAT with determin-
istic crowding [2]. Neural networks were learned to
the classic XOR classification problem. The popula-
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Fig. 4 Small coarse clusters, equation set A. Each cross
represents a single organism in the population. The
clusters were artificially generated in order to imitate
species evolved by a niching evolutionary algorithm.
Population size was N = 70 creating four clusters of
different sizes. See text for more details.
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Fig. 5 Small coarse clusters, equation set B. Same data
as in the previous Figure. Notice that influence of dij

for longer distances is smaller (in comparison with the
set A).

tion size was N = 100. NEAT uses genotypic distance
measure (for details see [4]).

Figures 11 and 12 show the visualization of D using
equation set B for the first and for the last generation of
the evolutionary run. In the first generation all solutions
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Fig. 6 Medium-sized coarse clusters, equation set A.
Each cross represents a single organism in the popula-
tion. Population size was N = 300 creating six clusters
of different sizes. See text for more details. Notice that
small clusters are broken apart.
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Fig. 7 Medium-sized coarse clusters, equation set B.
Same data as in the previous Figure. Equation set B has
better visualization capabilities as it is more resistant to
disruption of small clusters.

are randomized and the whole population forms a sin-
gle cluster as expected, although similar solutions are
nearby (as can be seen using color intensity corrections
from Subsection 3.5). The last generation shown in
Figure 12 clearly depicts distinct species that emerged
through the evolution. Thus the visualization confirms
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Fig. 8 Medium-sized coarse clusters, Sammon’s projec-
tion. Same data as in the previous two Figures. Simi-
larly to equation set A, Sammon’s projection tends to
break apart small clusters.
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Fig. 9 Medium-sized randomized clusters, equation set
A. Population size was N = 300 creating six clusters of
different sizes with randomized inter- and intra-cluster
distances.

that niching algorithm was correctly searching for more
optima simultaneously. Comparing similar figures can
bring much more information, e.g., species number,
sizes or solution distribution inside species.
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Fig. 10 Medium-sized randomized clusters, equation
set B. Same data as in the previous Figure.
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Fig. 11 NEAT XOR training first generation. Equation
set B. In the first generation the population of EA is
fully randomized forming only one large species which
was visualized as a single cluster. Population size N =
100.

5.3 Projection of classification datasets

The use of our method is not limited only to visualiza-
tion of diversity of EA populations. It can be used as a
general dataset visualization method. We are currently
making research in this area. One of our results can
be seen in the Figure 13. It shows the visualization of
a well-known Iris classification dataset [15]. All three
classes (Setosa, Versicolor and Virginica) form separate
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Fig. 12 NEAT XOR training last generation. Equation
set B. During the evolutionary process the species were
developed. They were visualized as different clusters.
Population size N = 100.

clusters. Versicolor and Virginica are known to be not
linearly separable which is clearly reflected in the visu-
alization.

5.4 Optimization algorithms comparison

This Subsection contains experiments with optimiza-
tion algorithms described in Section 4. We have made
tests on three sizes of population: small (N = 50),
medium (N = 300) and large (N = 1000). That
makes 100, 600 and 2000 dimensions to optimize. The
data were generated as described in the Subsection 5.1.
The optimization algorithms are compared using the av-
erage energy reached AVG (the lower the better), the
number of functional value evaluations (energy) FE and
the number of gradient evaluations (force) GE.

The comparison of optimization algorithms is done
for the equation set A, equation set B and Sammon’s
projection separately. Originally Sammon’s projection
used only Steepest Descent with fixed step which is, as
it will be shown, the worst possible choice.

The results on small populations can be found in ta-
bles 1, 2 and 3 for equations sets A, B and for Sam-
mon’s projecion. It is clear that the equation set A is the
fastest of all, while equation set B is much slower than
both equation set A and Sammon (on the other hand it
has better visualization capabilities as it tends to keep
smaller clusters unbroken).

Tables 4, 5 and 6 show the results for medium-sized
populations. It can be seen that equations A speedup
against Sammon’s projection is even greater than on
small populations.

In tables 7 and 8 the results for large populations are
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Fig. 13 Use of our method for a general classifica-
tion dataset visualization - Iris dataset, equation set B.
Three classes: Setosa (red), Versicolor (green) and Vir-
ginica (blue) form clusters. Versicolor and Virginica
are known to be not linearly separable which is clearly
reflected in the visualization (green and blue clusters
overlap).

Tab. 1 Comparison of optimization algorithms on a
small population. Equation set A. Parameter settings
were N = 50, C = {2, 3, 15, 30}, X = 〈0.1, 0.1〉,
Y = 〈0.9, 0.9〉. Tested on 100 runs for different ran-
domly initialized X. AVG stands for average energy
reached (the lower the better). FE for number of func-
tional value evaluations and GE for gradient evalua-
tions.

METHOD AVG FE GE
CG -4.4133 186.63 186.63
CG-PAL -4.4137 79.22 179.78
QN-UNCMIN -4.4138 97.91 96.25
SD -4.4135 499.04 499.04
SDF -4.1234 125377.74 125377.74

Tab. 2 Comparison of optimization algorithms on a
small population. Equation set B.

METHOD AVG FE GE
CG 1141.84 2843.82 2843.82
CG-PAL - - -
QN-UNCMIN 1141.21 792.78 739.53
SD 1142.76 16392.78 16392.78
SDF - - -

shown. Here, we ommited the equation set B because
of the long computational times.

It is clear from the tables that Quasi-Newton (QN-
UNCMIN) gave the unmatched results for the small
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Tab. 3 Comparison of optimization algorithms on a
small population. Sammon’s projection.

METHOD AVG FE GE
CG 8.96 347.47 347.47
CG-PAL 9.01 104.1 236.01
QN-UNCMIN 8.92 177.19 173.99
SD 9.08 827.34 827.34
SDF 9.29 3251.51 3251.51

Tab. 4 Comparison of optimization algorithms on a
medium population. Equation set A. Parameter settings
were N = 300, C = {2, 3, 15, 30, 75, 175}. Tested on
100 runs for different randomly initialized X.

METHOD AVG FE GE
CG -27.64 242.36 242.36
CG-PAL -27.65 140.9 316.11
QN-UNCMIN -27.64 50.84 48.02
SD -27.62 663.92 663.92
SDF - - -

Tab. 5 Comparison of optimization algorithms on a
medium population. Equation set B, 10 runs.

METHOD AVG FE GE
CG 59501.43 9501.6 9501.6
CG-PAL - - -
QN-UNCMIN 59526.91 2945.3 2771.5
SD 59580.50 61352.4 61352.4
SDF - - -

Tab. 6 Comparison of optimization algorithms on a
medium population. Sammon’s projection, 100 runs.

METHOD AVG FE GE
CG 877.19 1544.39 1544.39
CG-PAL 888.17 430.49 945.31
QN-UNCMIN 887.76 155.65 155.65
SD 922.84 9398.82 9398.82
SDF - - -

Tab. 7 Comparison of optimization algorithms on a
large population. Equation set A. Parameter settings
were N = 1000, C = {25, 25, 50, 100, 200, 600}.
Tested on 20 runs for different randomly initialized X.

METHOD AVG FE GE
CG -91.71 239.15 239.15
CG-PAL -91.75 142.1 322.65
QN-UNCMIN - - -
SD -91.65 564.35 564.35
SDF - - -

population in terms of function and gradient evalua-
tions. However, the Quasi-Newton algorithm had a big
overhead which made it unusable for larger populations
due to unacceptable computational time. Both Conju-
gated Gradient methods gave stable results for all sizes

Tab. 8 Comparison of optimization algorithms on a
large population. Sammon’s projection, 100 runs.

METHOD AVG FE GE
CG 12544.59 7682.4 7682.4
CG-PAL 12053.91 928.8 2030.85
QN-UNCMIN - - -
SD 12674.16 24551.05 24551.05
SDF - - -

of population, except for equation set B where CG-PAL
was too slow. Steepest Descent method with line search
(SD) performed well on small populations. However,
it became too slow for medium and large populations.
SDF was found quite useful when constructing the en-
ergy and force equations, which was done on small
populations - we were able to animate the optimiza-
tion process and tune parameter settings intuitively. We
have also performed experiments with populations of
N > 2000; it turned out that only Conjugated Gradient
methods were able to find reasonable solution.

6 Conclusion
This article proposes a novel method of diversity visu-
alization in evolutionary algorithms based on modeling
of intermolecular forces. We have created two sets of
energy equations (sets A and B) to simulate the system.
and compared various optimization methods for mini-
mization of energy of the system. We recommend to
use Conjugated Gradients methods (CG or CG-PAL) as
they worked best for all sizes of populations. Other ex-
periments have shown visualization properties on both
artificial and real-world data.

We have also shown that the use of this method is not
limited to diversity visualization. It is able to visualize
any clustered data or, in other words, any multidimen-
sional data with defined distances (similarity measure).

The comparison with Sammon’s projection method
showed that our equation set A is faster to optimize (the
speedup is more evident for larger populations). On
the other hand the proposed equation set B gives bet-
ter visualization results as it does not tend to disrupt the
smaller clusters.

There are many areas to be explored. First, it is the cre-
ation of a new set of equations overcoming the problem
of small cluster disruption which could be optimized
faster than equations B. It might be also possible to
show the whole evolutionary process from the first gen-
eration to the last (by adding the time axis thus making
the visualization 3-D).
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