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Abstract

Reliable extrapolation – simulation or prediction – of system output is an invaluable departure
point for the control system design. For application of model-based techniques, the knowl-
edge of the model structure is essential. It can be based purely on the physical point of view
or estimated from process data while the system is considered as ablack box. Mixing of both
methods results ingrey boxmodelling. Often, modelled systems are governed by severalknown
physical laws and each of these laws implies a model, which should match the data. Neverthe-
less inevitable uncertainties often make simulated outputs of respective models unreliable. The
problem is especially pronounced for systems with a significant time delay. This motivates
search for methods, which utilize all available models at once and mix their outputs with the
aim to get better results. In the paper, four variants of mixing are considered, discussed and
their performance compared on industrial data. Seeming alternative – a simple complex model
is discussed as well. Data for experiments came from a cold rolling mill.
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1 Introduction

Having data from a real system at disposal, construc-
tion of a linear model that extrapolates measured data
seems to be simple. The construction relies on the fol-
lowing key steps: i) determine the sampling period;
ii) choose the maximal model order respecting the dy-
namic properties of the system; iii) create the regression
vector containing all available explanatory data (regres-
sors); and iv) estimate model parameters, typically by
least squares [1, 2]. Unfortunately, this purely “black
box” modelling often fails in practice due to unknown
correlation of data channels, imperfect measurements,
unmeasurable disturbances, etc. Moreover, the gained
models are usually over-parameterized and unsuitable
for simulation or multi-step prediction. Thus, at least
rough respecting of known physical relations seems un-
avoidable in model building.

Many real systems behave according to several known
physical laws. A simple model based on a particu-
lar law could be sufficient providing the available data
are uncorrupted and informative enough. This case is,
however, rare. The systematic grey-box model build-
ing [3] is to be used whenever possible to counteract
this problem. Often, however, the complexity of the
resulting model is too high. Under this situation, ad-
dressed here, it is necessary to utilize all available sim-
ple models, each representing a particular anticipated
relation among data. The particular model outputs are
then combined into the overall model output. The paper
inspects promising combination possibilities and tests
them on real data. They are related to rolling mills
[4, 5]. The tested case is exceptional by an inherent
significant transport delay and high demands on extrap-
olation quality.

All considered modelsιM, ι ∈ ι∗ ≡ {1, 2, . . . , ι̊}, of a
systemS have the form:

ι
M : yt = ιθ ιψ′

t + ιξt, (1)

whereι labels the model;t stands for the discrete time;
yt denotes system output;ιθ is a vector of unknown
regression coefficients;ιψt is the regression vector; and
ιξt denotes the zero mean white noise. Often, the noise
can be assumed to be normal with a constant variance
rι. Then, the outputyt is equivalently described by the
normalNyt

(·, ·) probability density function (pdf)

f (yt|
ιψt,

ιΘ) = Nyt
( ιθ ιψ′

t, rι),
ιΘ ≡ ( ιθ, rι). (2)

ParametersιΘ are estimated recursively using data
measured on the system. Estimatesιθ̂ of parameters
ιθ serve for extrapolation of the output course. They
provide output predictionsιŷt

ιŷt = ιθ̂t−k
ιψ′

t. (3)

The subscriptt−k at ιθ̂t−k stresses that the estimates are
based on data recordsd1:t−k ≡ (d1, . . . .dt−k), where
k ≥ 1 is a known estimation delay. The data recorddt

contains all measurements made at timet.

2 Mixing principles

Use of a single model with regressors obtained as a
union of regressors of all models is the most straight-
forward combination way. This approach is often
applicable. Generally, it has a tendency to over-
parametrization and consequently to unreliable extrap-
olations. This property is expected to be fatal for the
considered systems with a significant estimation de-
lay. Moreover, the computational complexity increases
sharply as the estimation complexity increases quadrat-
ically with the size of regression vector. This makes
us avoid this option completely and focus on mixing of
simple models. Considered mixing principles are dis-
cussed below.

2.1 Bayesian averaging (BA)

Bayesian paradigm [1] interprets all unknown quanti-
ties as random variables. Estimation then evaluates pos-
terior pdf on them. For linear normal models of the
type (2), the Gauss-inverse-Wishart pdf [6] of the un-
known Θ = (θ, r) reproduces during updating. The
updating algorithmically coincides with recursive least
squares (RLS) initiated via prior pdf. The predictive
pdf f

(
yt

∣∣ ιψt, d
1:t−k, ι

)
is then Student pdf with ex-

pected valueιŷt (3). Under uncertainty about the ade-
quate model structure, the pointerι to respective models
ι
M is to be taken as random variable. Then, the proper
combined predictor becomes

ι̊+1
M : f

(
yt

∣∣{ ιψt}ι∈ι∗ , d
1:t−k

)
= (4)

∑

ι∈ι∗

f
(
ι
∣∣d1:t−k

)
f

(
yt

∣∣ ιψt, d
1:t−k, ι

)
,

where the probabilistic weightsf
(
ι
∣∣d1:t−k

)
evolve ac-

cording to the Bayes rule

f
(
ι
∣∣d1:t−k

)
= (5)

f
(
yt

∣∣ ιψt, d
1:t−k, ι

)
∑

ι∈ι∗ f
(
yt

∣∣ ιψt, d1:t−k, ι
)
f

(
ι
∣∣d1:t−k−1

)

starting from some, say uniform, prior pdf. The corre-
sponding point prediction is

ŷt =
∑

ι∈ι∗

f
(
ι
∣∣d1:t−k

)
ιŷt. (6)

This Bayesian processing [7] was given the name
Bayesian averaging [8].

The computational overhead is small compared to par-
allel estimation and prediction with̊ι simple models.

2.2 Mixture model (MM)

Bayesian averaging weights individual predictions
well. At the same time, it does not respect the pos-
sibility that for some data configurations some simple
models should not be updated as the data do not belong
to the model-validity domain. Noticing that the overall
predictor is a mixture of predictors, it is reasonable to
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consider the mixture model as the basic one
ι̊+1

M : f (yt| {
ιψt,

ιΘ, αι}ι∈ι∗) = (7)
∑

ι∈ι∗

αιNyt
( ιθ ιψ′

t, rι)

in which probabilistic weightsαι, ι ∈ ι∗ extend the set
of unknown parameters. The choice is supported by
the universal approximation property [9] of the popular
mixture models [10].

The mixture (7) of a fixed structure can be effectively
estimated in recursive mode using so called projection-
based Bayesian estimation [11]. Algorithmically, it
runs̊ι weightedRLS. The weights reflect a degree with
which the processed data are in harmony with the up-
dated model. In this way, drawback of the Bayesian
averaging is suppressed. It makes us expect a better per-
formance of the obtained predictor. At the same time,
the computational overhead is still relatively small.

2.3 Predictions as regressors (PR)

Both Bayesian averagingBA and prediction by mix-
ture modelMM provide the overall prediction as a con-
vex combination of individual predictions. This causes
troubles if the predicted output is outside the convex
hull of individual model outputs. This problem can be
simply overcome if we take individual predictions as
regressors in the overall modelι̊+1

M combining them.
It has the form (1) with

ι̊+1ψt = [ 1ŷt, . . . ,
ι̊ŷt, 1]. (8)

The (̊ι+ 1)st model provides the combined prediction

ι̊+1ŷt = ι̊+1θ̂t−k
ι̊+1ψ′

t (9)

with parameter estimateι̊+1θ̂′t−k updated by ordinary
RLS. The weights of the respective predictions are gen-
erally real numbers. This, together with estimation of
the offset, can provide predictions outside the convex
hull. This overcomes the drawback of previous meth-
ods. Thus, we expect that it outperforms Bayesian av-
eraging. At the same time, it suffers from the drawback
justifying use of mixtures: the estimated parameters of
the model ι̊+1

M are assumed to be good for all data
configurations.

The combination costs just a single RLS of sizeι̊+ 1.

2.4 Predictions as regressors in mixture (PM)

The remaining drawback implies the favorite model for
combining predictors, namely, mixture with its compo-
nents “sitting” on scaled individual predictions

ι̊+1
M : f (yt| {

ιŷt, aι, bι, rι, αι}ι∈ι∗) = (10)
∑

ι∈ι∗

αιNyt
(aι

ιŷt + bι, rι) .

The combination reduces to estimation of this simple
mixture. Projection-based estimation runs on compo-
nents parameterized by scaling parameters(aι, bι), and
variancerι. The resulting point prediction need not be
within the convex hull of individual predictions.

2.5 Expected performance of respective variants

Previous discussion implies that mixturesMM, PM are
expected outperform both Bayesian averaging and use
of predictions as regressors. Behavior of the last com-
bined extrapolator should be the best from those dis-
cussed. Taking into account the form of individual pre-
dictions, we see, that it may happen that the mixture
model MM will outperform PM if: i) all individual
models are enriched by offset; ii) estimated regression
coefficients become product of the scaling factorιa and
of original, physically motivated, coefficients. On the
other hand, the use of predicted values as regressors
brings added advantage: noise entering the regression
vector is suppressed.

Approximate nature of mixture estimation may even
destroy advantageous properties of mixture models.
Thus, at the current state of the knowledge, just exper-
imental evidence and computational demands may de-
termine preferences between the proposed methods. At
the same time, we do not expect a substantial gain by
considering the most general mixtures with probabilis-
tic weights depending on regression vectors. This is due
to the need to cope with the considered time-delay in es-
timation, see the next section. Essentially, we have to
make very long-term extrapolations and thus we have
to either: i) rely on a weak dependence of individual-
predictors quality on data or: ii) find time-invariants of
such dependence. At present, the latter case cannot be
practically solved as it requires numerical integrations
in high dimensions. Thus, we have to rely on assump-
tion that i) is valid. Possible slow variations are coun-
teracted by a version of forgetting [6, 12].

3 Time delay problem

As mentioned in Introduction, the addressed problem
was motivated by the transport delay problem inherent
for rolling mills. The situation is sketched on Fig. 1.
Data measurement is triggered by the strip shift of∆
length units. Current data for creating the regression
vectorψ are available at timeτ , i.e., for the piece of
the strip in the rolling gap. The system outputy – out-
put strip thickness – is measured afterk steps at timet.
The task consists in the extrapolation ofyτ , τ = t− k,
i.e., the strip thickness just leaving the rolling gap is
predicted.

Fig. 1 Transport delayk ≈ L/∆, k is a natural number.
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Estimates ιθ̂ of ιθ parameterizing particular models
ι
M (1) can be updated at timet when the outputyt

complements the regression vectorιψt into data vector
ιΨt = [yt,

ιψt]. For prediction at timeτ , just k-steps
“old” parameter estimates and weights are available as
indicated in (3). Utilization of the “old” parameters ob-
viously deteriorates particular predictions. Therefore,
the mixing of several predictions can be vital for coun-
teracting this drawback.

4 Experiments

Experiments provide an insight into behavior of pro-
posed methods and help us select the favorite one for
the considered application. Moreover, they indicate
whether the achieved improvement is worth increased
computational demands. Comparisons are made on a
typical data sample of the length 2000. In order to sup-
press influence of the tuning phase, characteristics of
predictions are computed for the last 1600 data records.

Three underlying modelsιM of the first order are used.
They deal with the physical signals measured on the
cold rolling mill. The signals are characterized in Ta-
ble 1.

Tab. 1 Signals used in the combined models

No Meaning Units
1 output strip thickness µm
2 input strip thickness µm
3 rolling force MN
4 input strip speed m/s
5 output strip speed m/s
6 ratio of speeds
7 screwdown position µm

All models predict signal on channel 1. Structure of re-
gression vectors of respective simple models, combin-
ing the above channels and their delayed values, were
determined from elementary physical laws, like mass
conservation (mass-flow) principle, as well as from the
inspection of extensive historical data. The transport
delay between the rolling gap where prediction is made
and the output measurements isk = 25. Thus pre-
dictions are calculated with utilization ofk-step ”old”
parameters and weights.

The processing imitated recursive real-time use. The
respective simple models are estimated with forgetting
factor 0.999. The compound modelsι̊+1

M are esti-
mated with forgetting factor0.97.

The results related to respective methods are presented
individually in the order corresponding to the method
description. Comparison based on elementary descrip-
tive statistics characterizing prediction errors follows.

In order to get impression about character of the pre-
dicted output, Fig. 2 shows output, the best composite
prediction and prediction error of the simple model1

M.
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Fig. 2 Left plot: output and the best prediction; right
plot: prediction error of the model1M

4.1 Bayesian averaging (BA)

Trajectories of the weights, i.e., posterior probabilities
of respective modelsf

(
ι
∣∣dt−k

)
(5), are displayed in

the top-down order in Fig. 3. Exponential forgetting is
applied to them in order to influence speed of their vari-
ations. The trajectories of these weights for forgetting
rates corresponding to expected slow and fast variations
of simple-models validity are shown in Fig. 3.
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Fig. 3 Character ofBA weights influenced by the value
of forgetting factor. Left plot: forgetting factor 0.97,
right plot: 0.99

In order to get overall picture, the trajectory of the out-
put is displayed in the left part of Fig. 4, the output pre-
diction in its right part. Qualitative behavior is similar
in other cases and that is why predictions are not dis-
played in some figures.

4.2 Mixture model (MM)

Unlike a general mixture, the treated one has known
structure. Its components are the combined models and
this determines the number of components. The esti-
mated component weights provide directly weights of
the combined models. For the mixture, predicted and
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Fig. 4 System output (left plot) and itsBA prediction at
the rolling gap (right plot)

observed properties may differ mainly due to the non-
negligible error of approximate estimation. As seen in
the overall comparison, Table 2, such a deterioration
occurred but still the mixing provides observable im-
provement comparing to individual models.

For the mixture-based output extrapolation, smooth be-
havior of estimates of component weights is character-
istic, see left part of Fig. 5.
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Fig. 5MM estimates of component weights (left plot).
The best prediction of the output byPR (right plot)

4.3 Predictions as regressors (PR)

Application of this model combination outperformed
expectations connected with it. For the considered ap-
plication, it was found as the best one. The positive
shift in the quality is due to the exactly implementable
Bayesian estimation. The corresponding prediction is
in the right part of Fig. 5.

4.4 Predictions as regressors in mixture (PM)

This combination method was expected to provide the
best results. Nevertheless they did not come up to ex-
pectation as shown in Table 2. Still the method gives
good results.

4.5 Comparison of efficiency of respective methods

Qualitative comparison of considered methods is re-
flected on Fig. 6 where their prediction errors are dis-
played. Fig. 7 compares histograms of predictions er-
rors.
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Fig. 6 Prediction errors for particular methods in the
order BA, MM, PR, PM

Sample statistics evaluating prediction errors for three
simple models and four combination methods respec-
tively are summarized in Table 2.

Tab. 2 Sample statistics of prediction errorsê401:2000

E[ê] min[ê] max[ê] std[ê] E[ê2]
1
M 0.28 -14.63 13.43 4.13 17.15

2
M 0.37 -19.20 15.73 5.24 27.64

3
M 0.27 -13.76 14.23 4.16 17.39

BA 0.27 -13.76 14.23 4.16 17.39
MM -0.51 -14.73 11.44 4.03 16.49
PR -3e-4 -11.19 9.23 2.94 8.67
PM -0.14 -17.95 15.54 3.57 12.83

It is worth noticing that the best combination methods
from the view point ofE[ê2] are also the most “stable”
(seemin[ê] andmax[ê]). The improvement of the best
methodPR comparing even to the best simple model
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Fig. 7 Histograms of prediction errors for particular
methods in the orderBA, MM, PR, PM

1
M is obviously significant. Even the worst combina-

tion method achieves the quality comparable with the
best simple model. This feature is important as the ob-
served order of methods can be case dependent.

5 Conclusions

The paper presented four promising methods of com-
bining outputs of physically motivated extrapolation
models to a single one. For the considered rolling mill
application, characterized by a significant transport de-
lay, the combination of individual predictions by a static
regression model seems to be the best solution. Due to
the approximations involved, the result can be case de-
pendent. Thus, the presented general discussion should
be taken into account when tailoring the methods to
other types of applications.
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