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Abstract 

Dynamic simulation and dynamic optimization of an industrial hydrogenation reactor system 
were developed and investigated in the present work.  The process consists mainly of three 
adiabatic fixed bed hydrogenation reactors in series in addition to one heater before the first 
reactor and three coolers after each reactor for interstage cooling.  The feed flow rate to the unit, 
the feed temperature or the carbon monoxide content of the feed may change and causes 
variations of the outlet temperature of reactors. Therefore, it is essential to control the inlet 
temperature of each reactor. There is a temperature controller before each reactor and also one 
after the third reactor. The tuning parameters of the controllers were optimized dynamically in 
three different cases, taking into account the process constraints and catalyst deactivation. In 
each case, a special disturbance is forced to the process. Optimization of the process was done by 
the use of a hybrid GA-SQP method. The new hybrid method was developed to overcome the 
difficulties of both methods. The genetic algorithm (GA) which is a stochastic method, is 
relatively slow, but is not sensitive to the initial point. In contrast, sequential quadratic 
programming (SQP) method is a deterministic method which is fast, but very sensitive to the 
starting point and gets trapped in local optima. In the newly developed hybrid method, the SQP 
method speeds the solving procedure, while the GA enables the algorithm to escape from local 
optima. An industrial acetylene hydrogenation system is used to provide the necessary data to 
adjust kinetics and to validate the approach. 
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1 Introduction 
There are various problems of dynamic optimization in 
chemical engineering. Dynamic optimization of batch 
reactors [1-3] is one of these problems. Another 
category is determining the optimal flow rate for a plant 
or inlet temperature profile of reactors [4]. 
Determination of the optimal set of some essential 
parameters for a special operational unit is another 
example of optimization problems [5].  

Different methods are used in dynamic optimization. 
Good illustrations are numerical solutions and 
sequential strategies [1], genetic algorithm [2], 
evolutionary algorithms [3], sequential quadratic 
programming (SQP) [5]. 

Determination of optimal set of control tuning 
parameters is a relatively new area in dynamic 
optimization. Duty of a controlling system in an 
industrial plant is to control the essential parameters 
such as temperature, pressure, level and flow rates. An 
appropriate controlling system must be able to control 
disturbances rapidly. The speed of controlling system is 
very important in emergency situations. Moreover, it is 
desired to reach the steady state conditions as soon as 
possible in start-up of the plant. These facts show the 
importance of a fast and robust controlling system.  

Besides the speed of controllers, another capability, 
which is expected from a controlling system, is to 
control any kind of disturbance. A controlling system 
should respond properly to any disturbance occurring in 
the plant. This is important because a controlling 
system may control a disturbance very fast, however, 
when another disturbance occurs, the controllers might 
case oscillation. Therefore, the set of tuning parameters 
of the controller should be set such that enable the 
controller to control any kind of disturbances. 

In this work, the set of optimal control tuning 
parameters were determined by a newly developed 
optimization method. To test each controlling system, 
its response to typical disturbances should be studied. 
Thus, three common disturbances which normally 
occur in a real plant were used for testing the 
parameters. 

2 Process modeling 
The duty of the hydrogenation system in an olefin plant 
is to eliminate acetylene, propyne and propadiene, 
butadiene and other higher unsaturated olefins from dry 
cracked gas stream by converting them in a catalytic 
selective hydrogenation step to lower unsaturated 
olefins and paraffins.  The hydrogenation is performed 
in three adiabatic fixed-bed reactors in series.  The 
reactor design is identical for all three hydrogenation 
reactors.  The heat of the exothermic reaction is 

removed against cooling water down stream of each 
reactor.  Six reactions take place in these reactors. 
These reactions are shown in Tab. 1. 

As shown in Fig. 1, the hydrogenation is performed in a 
system with multiple adiabatic fixed bed reactors (R1, 
R2, R3) in series with coolers (E1, E2, E3) after each 
reactor.  The heat of the exothermal reactions is taken 
off by cooling water.  Before the first reactor and also 
after each reactor, there is one temperature controller 
(TC-1, TC-2, TC-3, TC-4).  The inlet temperature of 
the first reactor can be controlled by LP steam flow 
rate.  The pressure of this steam flow is controlled by 
PC.  The temperature of the cracked gas down stream 
of each reactor can be adjusted by bypassing the 
coolers.  In case of a too high outlet temperature of the 
reactor, additionally cooling water flow to the coolers 
can be increased.  The feed is heated by LP steam via 
heater (H).   

 

Fig. 1 Schematics of the hydrogenation system 

Tab. 1 Hydrogenation reactions considered in this work 

Component 
No. 

Component 
Name 

Hydrogenation 
Reaction 

1 acetylene C2H2 + H2 → C2H4 
2 ethylene C2H4 + H2 → C2H6 
3 propyne C3H4 + H2 → C3H6 
4 propadiene C3H4 + H2 → C3H6 
5 1-butene 3-yne C4H4 + H2 → C4H6 
6 1,3-butadiene C4H6 + H2 → C4H8 

 
The rates of the reaction listed in Tab. 1 were adopted 
from Gobbo et al. [6]: 
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The catalyst becomes deactivated as the operation 
proceeds.  The reaction rate on the deactivated catalyst 
could be expressed by: 

)(, tairdir =                                                              (3) 

Brown et al. [7] assumed that there is a uniform fouling 
of green oil over the length of the reactor so that there 
would be an average catalyst deactivation term for the 
entire bed.  Considering that the formation of green oil 
is proportional to the acetylene concentration and 
taking into account the main deactivation equations in 
the literature [7, 8], the following empirical equation 
was proposed by Gobbo et al. [6]: 
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The kinetic parameters for these equations were 
determined by Mansoornejad [9]. Tab. 2 presents these 
kinetic parameters. 

Tab. 2 Kinetic parameters 

Parameter Unit Value 
k0,Acetylene m6/mol.kgcat .s 1.96×109 
EAcetylene J/mol 30.90 
k0,Ethylene m6/mol.kgcat .s 1.02×107 
EEthylene J/mol 25.12 
k0,Propyne m6/mol.kgcat .s 1.38×109 
EPropyne J/mol 48.88 
k0,Propadiene m6/mol.kgcat .s 2.63×108 
EPropadiene J/mol 43.93 
k0,1,3-butadiene m6/mol.kgcat .s 1.87×109 
E1,3-butadiene J/mol 25.25 
k0,1-Butene 3-yne m6/mol.kgcat .s 1.33×109 
E1-Butene 3-yne J/mol 49.17 
k0,Hydrogen mol/m3 5.01×104 
EHydrogen J/mol 84.57 
k0,CO mol/m3 2.00×105 
ECO J/mol 43.93 
ka m3θ/ molθ.s 3.69×108 
Ea J/mol 0.389 
θ - 4.11 

 

The inlet temperature of the first reactor and the outlet 
temperature of all three reactors must be controlled.  
Disturbances in temperature may occur because of 
variation in cracked gas flow rate, malfunction of 
propylene refrigerant system which causes the increase 
or decrease the inlet temperature of cracked gas to 
hydrogenated unit and changes in the carbon monoxide 

content of the feed can make some deviations in 
reactors temperature. All of these cases force the 
system to have fast and robust controllers.  Considering 
the controllers to be Proportional – Integral (PI), 
according to Eq. (5), the optimum set of Kp and Ki 
parameters for all controllers should be found. 
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3 Optimization problem definition 
Optimization techniques are used to find a set of design 
parameters, x = {x1,…,xn}, of a system, that can lead the 
system to its optimal conditions.  In a more advanced 
formulation, the objective function, f(x), to be 
minimized or maximized, might be subject to 
constraints in the form of equality, inequality and/or 
parameter bounds. A general optimization problem 
definition could be stated as: 
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where x is the vector of n design parameters, f(x) is the 
objective function, which returns a scalar value and the 
vector function G(x) returns a vector of length m 
containing the values of the equality and inequality 
constraints evaluated at x.  Design parameters, xi, are 
the decision or control variables by changing which the 
optimum point of the objective function could be found. 

In the present work, the controller tuning parameters 
were determined by optimization.  This objective 
function must show the effect of controlling time and 
error simultaneously.  The difference between set point 
and process value divided by set point in each 
controller was considered as the error.  The duration in 
which the error becomes zero was considered as the 
controlling time. Thus, the objective function in this 
work was defined as the integral of the product of time 
and error. 
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where the error is  

SP
PVSPe −

=                                                          (8) 

 The optimization technique was used to determine the 
decision variables, i.e., the controller tuning parameters, 
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so that the objective function given in Eq. (7) would be 
minimized. 

 

4 Genetic algorithm (GA) 
The GA is a stochastic method for solving both 
constrained and unconstrained optimization problems 
and is based on natural selection, the process that drives 
biological evolution.  This algorithm could be applied 
to solve a variety of optimization problems that are not 
well suited for standard optimization algorithms, 
including problems in which the objective function is 
discontinuous, nondifferentiable, stochastic, or highly 
nonlinear.  The GA starts with an initial random 
population which presents the first generation.  Each 
population consists of some individuals and each 
individual is made of a number of genes.  These genes 
are decision or control variables.  The objective 
function is calculated for each individual on the basis of 
its genes.  Populations will be repeatedly modified to 
reach the solution which would be the best individual.  
At each step, the GA selects the individuals from the 
current population on the basis of their scores to 
represent the parents and uses them to produce children 
or the next generation.  Over successive generations, 
the population evolves towards an optimal solution.  

4.1 Termination criteria 

The GA creates generations by selecting and 
reproducing parents until a termination criterion is met.  
One of the stopping criterions is a specified maximum 
number of generations.  Another termination strategy 
involves population convergence criteria.  In general, 
the GA forces the majority the population to converge 
to a single solution.  When the sum of the deviations 
among individuals becomes smaller than some 
specified threshold, the algorithm could be terminated.  
The algorithm could also be terminated due to a lack of 
improvement in the best solution over a specified 
number of generations. 

5 Sequential quadratic programming 
(SQP) 

The SQP methods are appropriate for solving smooth 
nonlinear optimization problems when the problem is 
not too large, functions and gradients can be evaluated 
with sufficiently high precision and the problem is 
smooth and well-scaled (Hock and Schittkowski, [10]). 
Consider the general form of an optimization problem, 
such as the one shown in Eq. (6).  All the functions, 
including the objective function f(x) and constraints 
G(x), must be continuously differentiable.  The solution 
procedure is on the basis of formulating and solving a 
quadratic sub-problem in each iteration.  The sub-

problem is obtained by linearizing the constraints and 
approximating the quadratic Lagrangian function [10]: 

1
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At each iteration, an approximation is made of the 
Hessian of the Lagrangian function using a quasi-
Newton updating method [10]. 

The process would be proceeded from given iteration 
xk, which is an approximation of the solution, λk an 
approximation of the multiplier and Hk which is an 
approximation of the Hessian of the Lagrangian 
function.  Then, the following quadratic programming 
(QP) sub-problem is formed to solve: 
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The matrix Hk is a positive definite approximation of 
the Hessian matrix of the Lagrangian function.  This 
sub-problem is a QP sub-problem whose solution is 
used to form a search direction dk for a line search 
procedure.  In other words, the solution is used to form 
the next iterate: 

kkkk dxx α+=+1                                                   (11) 

The step length parameter ακ is determined by an 
appropriate line search procedure so that a sufficient 
decrease in a merit function is obtained.  The merit 
function of the following form is used in this 
implementation: 
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where υi is the penalty parameter which is initially set 
to 
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This ensures larger contributions to the penalty 
parameter from constraints with smaller gradients 
which would be the case for active constraints at the 
solution point. 

6 Hybrid GA-SQP 
The problem of determination of control tuning 
parameters has lots of local optima.  Deterministic 
methods would get trapped in these local minimum.  On 
the other hand, GA converges to the solution very 
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slowly, especially in final generations in which the 
objective function is very close to the optimal solution.  
Nevertheless, deterministic methods such as SQP 
would lead to the final solution very fast, if there is a 
good initial point.  Thus, it could be proposed to 
combine these two methods in which GA is applied 
first to produce the proper starting point after which the 
calculations would shift to SQP.  In other words, GA 
and SQP would be used in series. 

Jang et al. [11] combined GA and quadratic search in 
parallel for optimization.  When becoming close to a 
local minimum, it takes time for the GA to escape from 
this local minimum.  Jang et al. [11] tried to reduce the 
time required for the GA to escape from the local 
minima by using the quadratic search in these 
situations.  In each GA population, an additional 
individual would be made by the quadratic search using 
individuals close to the local optimum.  Therefore, both 
GA and quadratic search would be used in parallel to 
make optimal individuals.  Of course, the problem 
would be solved by the GA and quadratic search is used 
only to create an individual near the optimum point. 

Initially, it might be proposed to use the same idea and 
combine the GA and SQP in parallel (i.e., applying the 
faster SQP method when the GA is not able to escape 
from the local minimum) in order to speed up the 
calculations and reach the final solution with fewer 
function evaluations.  However, we found that using 
GA and SQP in parallel does not necessarily make the 
calculations faster since the gradient becomes very 
small in the local optima zones [9].  This drawback 
could be attributed to the large number of decision 
variables in this work (10 decision variables in this 
work compared to 4 in Jang et al. [11]).  As discussed 
by Jang et al. [11], when the size of the cluster of 
individuals is small enough, the space corresponding to 
the cluster could be estimated by a quadratic model and 
the solution obtained by the quadratic search would be 
very close to the optimum for a continuous objective 
function.  In the present work, however, the objective 
function is not smooth and also the gradients are very 
small when close to the local optima which make this 
method very slow.  In fact, it could be demonstrated 
that it takes longer for SQP than GA to find the local 
optima in the problem of this work [9]. 

Based on the above discussion, a new hybrid algorithm 
was proposed in this work which uses the GA and the 
SQP in series.  The algorithm starts with the GA since 
the SQP is not sensitive to the starting point.  The 
calculation continues with the GA for a specific number 
of generations (defined by the user) during which the 
approximate solution becomes close to the final 
solution.  The algorithm then shifts to the SQP which is 
a faster method. If the step size of the SQP is not large 

enough to proceed, the algorithm will shift to the GA 
again. Otherwise, it continues until no improvement in 
the objective function is observed.  This sequence of 
shifting between GA and SQP in series could be 
applied more than once until the final solution is 
reached.  Details of this procedure are illustrated in the 
flowchart shown in Fig. 2. 

7 Results and Discussion 
The set of industrial hydrogenation reactors and heat 
exchanger network were simulated on INDISS (Ver. 
1.5.3) platform. The operating conditions and the 
specification of the inlet and outlet flow of each reactor 
are given in Tab. 3. It is worth noting that the middle of 
run (MOR) is 10 months and the end of run (EOR) is 24 
months after the start of run (SOR).  Because of catalyst 
deactivation, reaction rates decrease during the process.  
Therefore, the inlet temperature of each reactor has to 
be increased with time in order to compensate the 
reduction in reaction rates. 

Tab. 3 Operating conditions of the hydrogenation 
reactors 

Param
eter Unit Reactor 1 Reactor 2 Reactor 3 

  In Out In Out In Out 
Temp.     
SOR ºC 55 75.1 55 70.2 55 59.7 
MOR ºC 72.5 92.5 72.5 87.6 72.5 76.9 
EOR ºC 90 110 90 105 90 94.7 
Pres. bar(a) 35.4 34.6 34.4 33.7 33.5 32.7 
H2 mole % 29.5 29 29 28.7 28.7 28.6 

C2H2 mole % 0.2 0.1 0.1 0.05 0.05 0 
C2H4 mole % 32.3 32.6 32.6 32.8 32.8 32.9 
C2H6 mole % 16.1 16.4 16.4 16.6 16.6 16.5 
C3H4 mole % 0.13 0.1 0.1 0.06 0.06 0.04 
C3H6 mole % 3.8 3.9 3.9 4.05 4.05 4.1 
C4H4 mole % 0.02 0.01 0.01 0 0 0 
C4H6 mole % 0.85 0.42 0.42 0.17 0.17 0.01 
C4H8 mole % 0.45 0.89 0.89 1.16 1.16 13.3 

 

The data were gathered from the hydrogenation unit of 
Marun Petrochemical Plant (south of Iran) at start of the 
run, middle of the run and end of the run of the reactors 
so that catalyst deactivation could be also investigated 
by these data.  The INDISS simulation platform was 
then linked to MATLAB which would perform the 
optimization by the algorithms described above.  At 
each iteration, the temperature data obtained from the 
simulator were used by the optimization program for 
evaluating the objective function.  The program was 
written in such a way that if the controlling system can 
not control the disturbances after 20 minutes, it would 
stop and a new set of parameters would be applied. This 
procedure continues until the sum of deviations 
between process values and set points become lower 
than the specified value. 
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Fig. 2 Flowchart of the GA-SQP hybrid algorithm 
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Lower and upper bounds of the parameters are 
given in Tab. 4. There are some inequality 
constraints for temperature due to the 
temperature alarms which are applied for the 
outlet temperature of each reactor in plant. These 
constraints are presented in the Tab. 5.  

Tab. 4 Lower and upper bounds of the 
parameters 

Parameter Lower bound Upper bound 
KP 0 10 
Ki 0 10 
T 55 90 

 

Tab. 5 Inequality constraints 

Unit operation Constraint (°C) 
1st reactor TOUT ≤ 140 
2nd reactor TOUT ≤ 130 
3rd reactor TOUT ≤ 120 

 
7.1 Determination of control tuning 

parameters 

The problem was solved for three cases. In each 
case, a disturbance was imposed to the system.  
Disturbances were selected according to the 
typical disturbances which could happen in the 
real plant.  The disturbances are listed below: 

• 10% change in feed temperature  
• 10% change in feed flow rate 
• 100% change in CO mole fraction 

7.1.1 Change in feed temperature  

In the first case, it was assumed that the inlet 
temperature of the first reactor would be reduced 
by 10%.  The control tuning parameters derived 
from hybrid algorithm are presented in Tab. 6.  
Moreover, the variations of temperatures which 
are controlled are shown in the Fig. 3.  The 
disturbance occurred in the inlet of the system, 
so it influences most on the first controllers. As 
the first controller controls the disturbance, it 
does not affect the next controllers.   

Tab. 6 Parameters derived from GA-SQP for the 
first disturbance 

Controller KP unit Ki unit 
PIC 1.984 1/bar 2.385 s-1 

TIC-1 1.785 1/°C 27.547 s-1 

TIC-2 0.398 1/°C 5.329 s-1 

TIC-3 0.412 1/°C 1.753 s-1 

TIC-4 0.418 1/°C 1.497 s-1 
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Fig. 3 Temperature deviations vs. time for first 
disturbance 

This problem was solved by the GA and the 
SQP, separately and then by the hybrid GA-SQP 
method.  

SQP is not an appropriate algorithm for solving 
the problem. The results of solving the problem 
with the SQP using different initial points are 
shown in Tab. 7. By comparing the objective 
function value at the first and final iterations, it 
could be seen that almost no improvement has 
happened and the algorithm has been trapped in 
the local optima in all trials. 

Tab. 7 Result of solving the problem with the 
SQP 

Initial 
Point 

Function 
evaluation 

Objective 
function 
value in 
the first 
iteration 

Final 
value of 
objective 
function 

Upper 
Bound 69 1.951 1.944 

Lower 
Bound 63 1.989 1.983 

Middle 
Point 91 1.903 1.847 

Same as 
GA 107 1.917 1.830 

 

The results of solving the problem with the GA 
and hybrid GA-SQP are presented in Tab. 8. 

Tab. 8 Number of objective function evaluations 
in the GA and GA-SQP 

Algorithm No. of function 
evaluations Best f 

GA 2460 0.9170 
GA-SQP 1192 0.9166 
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It can be observed that the required number of 
objective function evaluations for the hybrid 
algorithm is less than the half of that for the GA 
alone.  As it was mentioned before, in this part 
the duration in which the program runs is not 
constant, however, each trial takes between 40 to 
60 seconds.  Hence, this difference leads to a 
drop of about 17 hours in the time duration 
required for solving the problem on a Pentium 4 
(3 GHz) computer. 

Another considerable point is that the optimized 
controllers are able to take the system under 
control in about 10 minutes with a maximum 
deviation of less than 1.5 °C from the set point, 
while the parameters used in the real plant 
control it with the deviation of around 1.4°C in 
16 minutes. 
7.1.2 Change in feed flow rate  

In this case, the feed flow rate was reduced by 
10%. The parameters derived for this change 
using the GA-SQP method are presented in Tab. 
9. Temperature deviations can be observed in 
Fig. 4. At first, this change would result in a 
dramatic temperature rise at the outlet of 
exchangers. As a consequence of this growth, the 
inlet and so the outlet temperature of each 
reactor would increase.  

Tab. 9 Parameters derived from GA-SQP for the 
second disturbance 

Controller KP unit Ki unit 
PIC 1.961 1/bar 2.335 s-1 

TIC-1 1.741 1/°C 33.427 s-1 

TIC-2 0.357 1/°C 4.789 s-1 

TIC-3 0.363 1/°C 1.993 s-1 

TIC-4 0.367 1/°C 1.933 s-1 
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Fig. 4 Temperature deviation vs. time for second 

disturbance 

It must be mentioned that the optimized set of 
controller parameters enables the controlling 
system to control the unit in about 5 minutes 
with maximum temperature deviation of less 
than 3°C, while the parameters used in the real 
plant control it with the deviation of around 
2.9°C in 10 minutes.  This problem was also 
solved with SQP and GA techniques and the 
same trend of the previous case was observed in 
reaching the final solution for the three methods. 

7.1.3 Change in CO mole fraction 

In this case it was considered that the carbon 
monoxide content of the feed would be doubled. 
The parameters obtained in this phase are 
illustrated in Tab. 10. The variation of 
temperature with time is shown in Fig. 5. This 
change would cause the reaction rates to 
decrease, and, therefore, a temperature drop 
would happen, because carbon monoxide leads 
the reaction rates to become slow.   

Tab. 10 Parameters derived from GA-SQP for 
the third disturbance 

Controller KP unit Ki unit 
PIC 1.962 1/bar 2.287 s-1 

TIC-1 1.742 1/°C 27.789 s-1 

TIC-2 0.357 1/°C 4.766 s-1 

TIC-3 0.362 1/°C 1.972 s-1 

TIC-4 0.367 1/°C 1.683 s-1 

 

-3

-2

-1

0

1

0 200 400 600
Time (s)

E
rr

or
 (C

) TIC-1

TIC-2

TIC-3

TIC-4

 
 

Fig. 5 Temperature deviation vs. time for third 
disturbance 

In this case, using parameters used in plant 
results in controlling the disturbance in 
approximately 11 minutes with the deviation of 
around 2.8°C. On the contrary, as can be seen 
from the Fig. 5, with parameters obtained from 
optimization technique the disturbance is 
controlled in about 5 minutes with the deviation 
of about 3°C.  
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7.2 Choosing final control tuning parameters 

As can be observed in Tabs. 6, 8 and 9, the 
parameters obtained from the algorithm are 
different from each other, though there is an 
ignorable difference between the parameters 
derived for cases 2 and 3.  To determine the final 
set of the control tuning parameters, the second 
disturbance, i.e., decreasing the inlet flow rate, 
was used to test the first set of parameters 
derived from the first disturbance, which was 
decreasing the inlet temperature. The result is 
presented in Fig. 6.  It is obvious that this set is 
not able to control this disturbance. On the other 
hand, the first disturbance, i.e., decreasing the 
inlet temperature, was used to test the second set 
of parameters derived from the second 
disturbance, which was decreasing the inlet flow 
rate.  The result is revealed in Fig. 7.  This set of 
parameters succeeded to control the disturbance 
with less temperature deviation, i.e., nearly 1°C, 
although in a longer time, which was 1000 s.  
This is in fact expected since the second set of 
parameters makes the controllers to become 
slower, which in turn, will result in less 
overshoot.  Therefore, one can choose the second 
set as the final set of the controlling parameters. 
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Fig. 6 Temperature deviation vs. time for the 

case of decreasing the inlet flow 
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Fig. 7 Temperature deviations vs. time for the 

case of increasing the inlet temperature 

8 Conclusions 
Control tuning parameters of 5 PI controllers 
were determined the temperature and 
concentration data from an industrial 
hydrogenation unit.  Stochastic methods, like the 
GA, are proper choices for solving such 
problems.  However, deterministic methods, 
such as SQP, are not the proper choice for 
solving these kinds of problems. In fact, SQP is 
more vulnerable to get trapped in the local 
minima than the GA which has the ability of 
escaping from these points. However, the GA is 
generally slower than SQP.  Therefore, the more 
robust GA with faster SQP were combined 
together in order to develop a robust and fast 
optimization technique.  It was shown that the 
new GA-SQP hybrid method is able to determine 
the final solution considerably faster than the 
pure GA while it is not sensitive to the initial 
point. 

9 Nomenclature 
a activity of catalyst 
C concentration (mol/m3) 
d SQP independent variable 
dk  search direction 
E activation energy (J/mol) 
Ea apparent activation energy for catalyst 

deactivation 
e error 
f objective function (mol2/m6) 
G constraint function 
H Hessian matrix 
Ki Integral parameter in the function of 

controller (s-1) 
Kp Proportional parameter in the function 

of controller (%/error) 
ka pre-exponent of catalyst deactivation 

rate constant (m3θ/ molθ.s) 
kCo adsorption constant for carbon 

monoxide 
kd deactivation rate constant (s-1) 
kH adsorption constant for hydrogen 
ki reaction rate constant (m6/mol.kg cat.s) 
k0,i pre-exponential factor for reaction rate 
L Lagrangian function 
m number of constraints 
me number of equality constraints 
R gas constant (J/mol.K) 
ri reaction rate for component i (mol/kg 

cat.s) 
ri,d  reaction rate for component i on 

deactivated catalyst (mol/kg cat.s)  
T temperature (K) 
t time (s) 
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x vector of the control parameters 
 
Greek letter 
α step length parameter 
ε bed voidage 
θ order of apparent deactivation rate 
λ multiplier vector 
ρs catalyst density (kg/m3) 
υ penalty parameter 
ψ merit function 
 
Subscripts 
CO carbon monoxide 
Cte constant 
f final time 
H hydrogen 
i component i 
ind industrially measured value 
j data point 
k parameters related to quadratic space 
l number of data point 
m model predicted value 
n number of components 
s catalyst 
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