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Abstract  

The article covers a design of parallel computing in information systems of a simulator. The 
concept is based on computers that create a distributed computer system of a flight simulator. 
This information system is created by computers and program applications of mathematic 
models. An important part of this article describes high performance computing with tasks, a 
compute cluster, a job scheduler and parallel execution. It explains job admission by a 
command line interface and creation of these jobs, mathematic models of a flying simulator. 
Mathematic modeling is the art of transformation of a problem from an original application 
into a theoretic area to mathematical formulations for a numerical analysis. 
A significant part of this article describes the implementation of aircraft computation speed 
depending on fuel supply and an elevator, high performance computing implemented by 
single-processor architecture. Simulation of a horizontal and vertical flight is defined by the 
angles and angular velocities around axises of the aircraft. This is accomplished by some 
computers, which are able to create a distributed computer system for a flight simulator. The 
programme loop for calculation parameters of mathematic model is created on the high 
performance cluster. This distributed mathematical model of an aircraft in longitudinal 
direction speed computes in real time. Flying simulator modeling processes on these 
computers also create a time benefit in a parallel system. 

Keywords: high performance computing, cluster, parallel task, mathematic model, 
flying simulator. 
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1 Introduction 
Future high - performance computing (HPC) systems, 
in which users have access to application and system 
services, will need support in a traditional batch 
execution system. As the use of high performance 
spreads to various application domains, some services 
will rely on immediate and interactive program 
execution. These characteristics will need to reserve 
resources, while some others will need a varying set of 
processors. Hardware and software applications of a 
defined computer system compute by a mathematic 
model of a flying simulator in real time. 

2 An Overview of a Compute Cluster 
Server for Operations 
User regularly prepares a job to run in a compute 
cluster, the job runs through three stages (admission, 
allocation and activation). 

Microsoft® Windows® Compute Cluster Server 2003 
brings high-performance computing (HPC) to industry 
standard, low-cost servers. Jobs – discrete activities 
scheduled to perform on a compute cluster. In some 
situations, tasks are serial – running one after another; 
in others, they are parallel – running all at the same 
time [1]. 

A basic principle of job operation in Windows 
Compute Cluster Server 2003 relies on three key 
concepts: 

1. Admission, or job submission; 
2. Allocation, or job scheduling; 
3. Activation or job launch. 

These three concepts form an underlying structure of a 
job life cycle in HPC. Fig. 1 illustrates a relationship 
between each aspect of job operation. Every time a 
user prepares a job to run in a compute cluster, the job 
runs through the three stages. 

 

 
Fig. 1 The HPC job life cycle 

The cluster itself consists of a head node and compute 
nodes. The head node is designed to run by a job 
scheduler, add or remove compute nodes, view job 

and node status. In other words, the head node 
manages cluster operations [1]. Compute nodes are 
designed to run application jobs. 

A cluster is a top-level organizational unit of an HPC 
cluster platform. A cluster consists of the following 
elements [2]: 

1. Node – a single compute node with one or 
more processors; 

2. Queue – an organizational unit that provides 
queuing and job scheduling; 

3. Job – a collection of tasks that a user initiates. 

A task represents execution of a program on given 
compute nodes. A task can be a serial program (single 
process) or a Message Passing Interface (MPI) 
program with multiple parallel processes. 

The Job Scheduler queues jobs and their sub-tasks. It 
allocates resources to these jobs; initiates tasks on 
compute nodes of the cluster, and monitors a status of 
jobs, tasks, and compute nodes. Job scheduling is 
performed through a set of rules called scheduling 
policies. 

3 Parallel Execution Support 
Users would like to use various programming 
languages that suit their needs and personal 
preferences while enjoying platform independence and 
reliable execution, the use of a particular 
programming language, execution mode, and the like 
[3].   

 

 
 

Fig. 2 Parallel task execution on HPC 

Tasks operate in either serial or parallel mode. In a 
serial mode, tasks run sequentially on available 
resources in the nodes. Fig. 2 illustrates how a task 1 
is assigned to a processor on the second node; then a 
task 2 is assigned to the same processor, a task 3 
moves to a processor of a third node, and so on. 

Parallel tasks typically call upon Microsoft® Message 
Passing Interface (MPI) software (called MS MPI) 
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through the mpiexec task launcher on compute nodes 
[4]. Task processes are started through the MPI-
specific nodal daemon for Single Program Multiple 
Data (SPMD) programming. 

Users create jobs by first specifying the job properties, 
including priority, run time limit, number of required 
processors, requested nodes, and a node exclusivity. 
After defining the job properties, users can assign 
tasks to the job. Users use either Compute Cluster Job 
Manager or CLI to create jobs. 

4 Development Issues and Compiling  
First, build a Windows XP or Windows Server 2003 
machine. Place this machine in an MPICH domain 
and create a user in the domain with the same name as 
your MCS user name. Use your MCS password for 
this new account. This isn’t a requirement; you can 
create any username you want with any password you 
want and it doesn’t have to be part of the MPICH 
domain [8]. 

To build MPICH2, you will need: 
1. Microsoft Developer Studio .NET 2003; 
2. Microsoft Platform SDK; 
3. Cygwin - full installation; 
4. Intel Fortran compiler IA32; 
5. Intel Fortran compiler EMT64. 

The easiest way to build an MPICH2 distribution is to 
use a Developer Studio environment and a 
makewindist.bat script from the top level of an 
mpich2 source tree. You can check out mpich2 from 
CVS or you can simply copy this batch file from the 
distribution. The batch file knows how to check out 
mpich2 so it is the only file required to make a 
distribution. The product GUIDs needs to be changed 
when a new release is created. 

The makefile in an mpich2\winbuild directory builds a 
distribution based on what compilers are specified in 
the environment so it can be used to compile any 
version of MPICH2. The following targets can all be 
built with this mechanism: 

• Win64 X64 
• Win64 IA64 
• Win32 x86 

But first you need to have mpich2 checked out and 
configured before building. 

This section describes how to set up a project to 
compile an MPICH2 application MS Developer 
Studio NET 2003. 

1. Create a project and add your source files. 
2. Navigate to Configuration 

Properties::C/C++::General 
3. Add C:\Program Files\MPICH2\include to the 

“Additional Include Directories” box. 
4. Navigate to Configuration 

Properties::Linker::General 

5. Add C:\Program Files\MPICH2\lib to the 
“Aditional Library Directories” box. 

6. Navigate to Configuration 
Properties::Linker::Input 

7. Add cxx.lib and mpi.lib and fmpich2.lib to 
the “Additional Dependencies” box. If your 
application is a C application then it only 
needs mpi.lib [8]. 

 

4.1 User Credentials 

User credentials mpiexec must have the user name and 
password to launch MPI applications in the context of 
that user. Run mpiexec - register to save your 
username and password. Then mpiexec will not 
prompt you for this information. 

The user context under which the script is run must 
have credentials saved so mpiexec doesn’t prompt for 
them. So scripts won’t hang, mpiexec provides a flag, 
-noprompt, that will cause mpiexec to print out errors 
in cases when it normally would prompt for a user 
input. This can also be specified in the environment 
with the variable MPIEXEC NOPROMPT.  

You can also save more than one set of user 
credentials. Add the option -user n to the -register, -
remove, -validate, and mpiexec commands to specify 
a saved user credential other than the default. The 
parameter n is a non-zero positive number. 

For example this will save credentials in slot 1: 

mpiexec -register -user 1. 

And this command will use the user 3 to launch a job: 

mpiexec -user 3 -n 4 mathmod.exe. 

 

4.2 MPICH2 

MPICH2 for Windows comes with multiple complete 
implementations of MPI. These are called channels 
and each build represents a different transport 
mechanism used to move MPI messages. The default 
channel uses sockets for communication. There is a 
channel that uses both sockets and a shared memory 
[8]. There is a channel that uses Infiniband. And has a 
thread-safe version of a sockets channel. Short names 
for the channels are: sock, shm, sshm, ssm, mt. 
These channels can be selected at runtime with an 
environment variable: MPICH2 CHANNEL. The 
following is an example that uses an Infiniband 
channel instead of a default sockets channel: 

mpiexec -env MPICH2_CHANNEL ib -n 4 math.exe 

or 

mpiexec -channel ib -n 4 math.exe. 

Windows comes with a default firewall that is usually 
turned on by default. Firewalls block all TCP ports by 
default which renders MPICH2 applications 
inoperable because sockets on arbitrary ports assigned 
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by the operating system are a default communication 
mechanism used by MPICH2. 
 

5 Mathematic Modeling in an MPI 
Flying Simulator 
Mathematic model of a flying simulator is running at a 
cluster computer system, Fig. 2. Mathematical 
modeling is the art of translating problems from an 
application area into tractable mathematical 
formulations. Theoretical and numerical analyses are 
provided inside the system and are fully available to 
users. They are generally important for accurate 
modeling. 

From [5] mathematic model in transfer function for 
longitudinal direction speed arise ∆V(s) (∆ = increase 
in value), with two input values ∆δT(s), ∆ δB (s) is 
defined: 
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In a numeric formulation, the transfer function amount 
increase speed of fuel supply Eq. (1) has a form: 
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In a numeric formulation, the transfer function speed 
of elevator Eq. (1) has a form: 
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From [5] mathematic model in transfer function for 
longitudinal direction angle of attack arise ∆α(s) (∆ = 
increase in value), with two input values ∆δT(s), ∆ δB 
(s) is defined: 
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s – Laplace operator in differential equations, ∆(s) – 
determinant of a transfer function, ∆ij(s) – minor of the 
determinant a given element aij (i-th row and j-th 
column) in system equations [7]. 
In a numeric formulation, the transfer function amount 
increase speed on fuel supply Eq. (5) has a form: 
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In a numeric formulation, the transfer function speed 
of elevator Eq. (5) has a form: 
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In Eq. (3), (4) or (6), (7), respectively the unit step 
input ∆δT(s), i. e. ∆δT(s)=1/s or ∆δB(s), respectively, i. 
e. ∆δB(s)=1/s.  

6 Models of a Flying Simulator in a 
Cluster 
Mathematic modeling at a computer system is realized 
by 5 computers (1 head node and 4 compute nodes). 
Each computer has a Pentium IV 2.4 GHz processor, 
memory 512 MB RAM, hard disk 40 GB 5400 rpm, 
fast Ethernet card 100 Mb/s. The head node computer 
has same parameters. The Scheduler runs on a stand 
alone computer (a head node computer) connected to a 
real computer system through Ethernet. 

This section describes important options of 
mpiexec.exe 
• -n x or -np x specify the number of processes to 
launch. In our case – n 5. 
• -localonly x or –localonly, specify that the processes 
should only be launched on a local host. This option 
can replace the -n x option or be used in conjunction 
with it when it is only a flag. 
• -machinefile filename. Use the specified file to get 
host names to launch processes. 
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• -hosts n host1 host2 host3 ... Specify that the 
processes should be launched on a list of hosts. This 
option replaces the -n x option. 
• -hosts n host1 m1 host2 m2 host3 m3 ... Specify that 
the processes should be launched on a list of hosts and 
how many processes should be launched on each host. 
A total number of processes launched is m1 + m2 + 
m3 + ... mn. In our case, n 193.87.64.122, 
193.87.64.112, 193.87.64.110, 193.87.64.101, 
193.87.64.120. 

To start a job through the CLI, type the following 
command mpiexec.exe, see Fig. 3. There is a desktop 
wrapper in the figure. It normally would prompt the 
user to input services. A radio button defines the path 
name of application mathematic models 
“empichtest.exe”. A user defined number of 
processors is 5 (host 5), see Fig. 3. The number of IP 
addresses of computers that create an MPI compute 
cluster (hosts) is defined in the host dialog box. Short 
names for the channel rewrite sock, nonblocked 
communication between computers. 

 
 

Fig. 3 Dialog window mathematic models of a flying 
simulator in MPI 

Node1 execution file, that represents an execution 
program (an aircraft job) of the part of a mathematic 
model of aircraft speed dependence on fuel supply Eq. 
(3). Node2 execution program of the part of a 
mathematic model of aircraft speed dependence on the 
elevator Eq. (4). Node3 represents the execution 
program of the part of a mathematic model of aircraft 
attack angle dependence on fuel supply Eq. (6). Node4 
execution program of the part of a mathematic model 
of aircraft attack angle dependence on the elevator Eq. 
(7). Source code of mathematic models of aircraft is 
written in C++ language. This approache provides  
much flexibility for confirmation of the job of aircraft 
in cluster [6]. 

 

 

Time dependence
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Fig. 4 System response Eq. (3) to a unit step input 

∆δT(s), in Matlab (up), model of at the flying 
simulator in MPI - node 1 (down) 

The Fig. 4 compares results of a compute time 
response to the unit step of a mathematic model in an 
increment speed of aircraft Eq. (3) in the Matlab or in 
the node 1 the MPI system, respectively. From 
comparison of results it can be derived that the speed 
change dynamics is approximately the same in both 
Matlab and MPI at the node 1. The steady state of a 
speed increment is in both systems compatible. 
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Time dependence
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Fig. 5 System response to a unit step input ∆δB(s), in 
Matlab (up), model of at the flying simulator in MPI - 

node 2 (down) 

The Fig. 5 compares a graphics output compute time 
of a response to the unit step a mathematic model in 
increment speed of aircraft Eq. (4) in the Matlab or in 
the node 2 the MPI system, respectively. From 
comparison of results it can be derived that the speed 
change dynamics is approximately the same in both 
Matlab and MPI at the node 2. The steady state of a 
speed increment is in both systems compatible. 

The results from speed modeling on high performance 
computing are shown in the table below. 

  

Tab. 1 Steady state of a mathematic models on a stand 
alone computer versus cluster computers (MPI) 

Single 
computer 
Matlab 

Cluster, MPI Mathemat
ic model 

Steady 
state 

Ti
me 
[s] 

Steady 
state 

Ti
me 
[s] 

Distort
[%] 

Speed 
from fuel 
supply 

31.1 
m/s 

22-
23 

31.01 

node 1 

24 -0.3 

Speed 
from 
elevator 

-15.61 
m/s 

20-
21 

-15.68 

node 2 

23 0,5 

Angle of 
attack on 
fuel supply 

7.03 
deg 

21-
22 

7.02 
deg 

node 3 

20 -0.2 

Angle of 
attack on 
elevator 

-3.93 
deg 

20-
21 

-3.94 
deg 

node 4 

22 0.3 

 

7 Conclusion and Future Work 
This paper described our approach to support of a 
computational application in a dynamic mathematic 

model of a flying simulator by high - performance 
computing. 

Father tests and evaluations are being conducted 
continuously to determine reliability of our 
implementations and to determine performance and 
overheads of the system, respectively. 

Opportunities for future development include:  
• Real-time aircraft mathematic model 

implementation  
• Aircraft mathematic model multitasking 

processes  
• Web-based computing. 

The system demonstrated that with these application 
processes of mathematic models programmers can 
create highly adaptable, dynamic, service-oriented 
applications for a flying simulator. 
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