
HIGH PERFORMANCE CLUSTER COMPUTING
ON A FLYING SIMULATOR

Peter Kvasnica1, Igor Kvasnica2,

1Alexander Dubček University of Trenčín, Center of Information Technology,
911 50 Trenčín, Študentská 2, Slovak Republic

2Kardinal, spol. s r.o.,
 911 05 Trenčín, Kvetná 25, Slovak Republic

kvasnica@tnuni.sk (Peter Kvasnica)

Abstract

The article covers a design of parallel computing in information systems of a simulator. The
concept is based on computers that create a distributed computer system of a flight simulator.
This information system is created by computers and program applications of mathematic
models. An important part of this article describes high performance computing with tasks, a
compute cluster, a job scheduler and parallel execution. It explains job admission by a
command line interface and creation of these jobs, mathematic models of a flying simulator.
Mathematic modeling is the art of transformation of a problem from an original application
into a theoretic area to mathematical formulations for a numerical analysis.
A significant part of this article describes the implementation of aircraft computation speed
depending on fuel supply and an elevator, high performance computing implemented by
single-processor architecture. Simulation of a horizontal and vertical flight is defined by the
angles and angular velocities around axises of the aircraft. This is accomplished by some
computers, which are able to create a distributed computer system for a flight simulator. The
programme loop for calculation parameters of mathematic model is created on the high
performance cluster. This distributed mathematical model of an aircraft in longitudinal
direction speed computes in real time. Flying simulator modeling processes on these
computers also create a time benefit in a parallel system.

Keywords: high performance computing, cluster, parallel task, mathematic model,
flying simulator.

Authors’ Biographies
Peter Kvasnica. He has been spending several years by researching
mathematical models of flying objects and programming virtual reality
applications. He publishes in the area of application of mathematical
methods of flying objects, in scientific programs with the emphasis on
modelling of such systems. He graduated in Technical University of Brno
(VUT Brno), and was awarded by Doctor of Philosophy (PhD.) of M. R.
Štefánik Military Academy of Aviation in Košice. He is involved in the
development of adapted mathematical models and use of distributed
computer system in flight simulators for real-time applications.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

mailto:kvasnica@tnuni.sk

1 Introduction
Future high - performance computing (HPC) systems,
in which users have access to application and system
services, will need support in a traditional batch
execution system. As the use of high performance
spreads to various application domains, some services
will rely on immediate and interactive program
execution. These characteristics will need to reserve
resources, while some others will need a varying set of
processors. Hardware and software applications of a
defined computer system compute by a mathematic
model of a flying simulator in real time.

2 An Overview of a Compute Cluster
Server for Operations
User regularly prepares a job to run in a compute
cluster, the job runs through three stages (admission,
allocation and activation).

Microsoft® Windows® Compute Cluster Server 2003
brings high-performance computing (HPC) to industry
standard, low-cost servers. Jobs – discrete activities
scheduled to perform on a compute cluster. In some
situations, tasks are serial – running one after another;
in others, they are parallel – running all at the same
time [1].

A basic principle of job operation in Windows
Compute Cluster Server 2003 relies on three key
concepts:

1. Admission, or job submission;
2. Allocation, or job scheduling;
3. Activation or job launch.

These three concepts form an underlying structure of a
job life cycle in HPC. Fig. 1 illustrates a relationship
between each aspect of job operation. Every time a
user prepares a job to run in a compute cluster, the job
runs through the three stages.

Fig. 1 The HPC job life cycle

The cluster itself consists of a head node and compute
nodes. The head node is designed to run by a job
scheduler, add or remove compute nodes, view job

and node status. In other words, the head node
manages cluster operations [1]. Compute nodes are
designed to run application jobs.

A cluster is a top-level organizational unit of an HPC
cluster platform. A cluster consists of the following
elements [2]:

1. Node – a single compute node with one or
more processors;

2. Queue – an organizational unit that provides
queuing and job scheduling;

3. Job – a collection of tasks that a user initiates.

A task represents execution of a program on given
compute nodes. A task can be a serial program (single
process) or a Message Passing Interface (MPI)
program with multiple parallel processes.

The Job Scheduler queues jobs and their sub-tasks. It
allocates resources to these jobs; initiates tasks on
compute nodes of the cluster, and monitors a status of
jobs, tasks, and compute nodes. Job scheduling is
performed through a set of rules called scheduling
policies.

3 Parallel Execution Support
Users would like to use various programming
languages that suit their needs and personal
preferences while enjoying platform independence and
reliable execution, the use of a particular
programming language, execution mode, and the like
[3].

Fig. 2 Parallel task execution on HPC

Tasks operate in either serial or parallel mode. In a
serial mode, tasks run sequentially on available
resources in the nodes. Fig. 2 illustrates how a task 1
is assigned to a processor on the second node; then a
task 2 is assigned to the same processor, a task 3
moves to a processor of a third node, and so on.

Parallel tasks typically call upon Microsoft® Message
Passing Interface (MPI) software (called MS MPI)

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

through the mpiexec task launcher on compute nodes
[4]. Task processes are started through the MPI-
specific nodal daemon for Single Program Multiple
Data (SPMD) programming.

Users create jobs by first specifying the job properties,
including priority, run time limit, number of required
processors, requested nodes, and a node exclusivity.
After defining the job properties, users can assign
tasks to the job. Users use either Compute Cluster Job
Manager or CLI to create jobs.

4 Development Issues and Compiling
First, build a Windows XP or Windows Server 2003
machine. Place this machine in an MPICH domain
and create a user in the domain with the same name as
your MCS user name. Use your MCS password for
this new account. This isn’t a requirement; you can
create any username you want with any password you
want and it doesn’t have to be part of the MPICH
domain [8].

To build MPICH2, you will need:
1. Microsoft Developer Studio .NET 2003;
2. Microsoft Platform SDK;
3. Cygwin - full installation;
4. Intel Fortran compiler IA32;
5. Intel Fortran compiler EMT64.

The easiest way to build an MPICH2 distribution is to
use a Developer Studio environment and a
makewindist.bat script from the top level of an
mpich2 source tree. You can check out mpich2 from
CVS or you can simply copy this batch file from the
distribution. The batch file knows how to check out
mpich2 so it is the only file required to make a
distribution. The product GUIDs needs to be changed
when a new release is created.

The makefile in an mpich2\winbuild directory builds a
distribution based on what compilers are specified in
the environment so it can be used to compile any
version of MPICH2. The following targets can all be
built with this mechanism:

• Win64 X64
• Win64 IA64
• Win32 x86

But first you need to have mpich2 checked out and
configured before building.

This section describes how to set up a project to
compile an MPICH2 application MS Developer
Studio NET 2003.

1. Create a project and add your source files.
2. Navigate to Configuration

Properties::C/C++::General
3. Add C:\Program Files\MPICH2\include to the

“Additional Include Directories” box.
4. Navigate to Configuration

Properties::Linker::General

5. Add C:\Program Files\MPICH2\lib to the
“Aditional Library Directories” box.

6. Navigate to Configuration
Properties::Linker::Input

7. Add cxx.lib and mpi.lib and fmpich2.lib to
the “Additional Dependencies” box. If your
application is a C application then it only
needs mpi.lib [8].

4.1 User Credentials

User credentials mpiexec must have the user name and
password to launch MPI applications in the context of
that user. Run mpiexec - register to save your
username and password. Then mpiexec will not
prompt you for this information.

The user context under which the script is run must
have credentials saved so mpiexec doesn’t prompt for
them. So scripts won’t hang, mpiexec provides a flag,
-noprompt, that will cause mpiexec to print out errors
in cases when it normally would prompt for a user
input. This can also be specified in the environment
with the variable MPIEXEC NOPROMPT.

You can also save more than one set of user
credentials. Add the option -user n to the -register, -
remove, -validate, and mpiexec commands to specify
a saved user credential other than the default. The
parameter n is a non-zero positive number.

For example this will save credentials in slot 1:

mpiexec -register -user 1.

And this command will use the user 3 to launch a job:

mpiexec -user 3 -n 4 mathmod.exe.

4.2 MPICH2

MPICH2 for Windows comes with multiple complete
implementations of MPI. These are called channels
and each build represents a different transport
mechanism used to move MPI messages. The default
channel uses sockets for communication. There is a
channel that uses both sockets and a shared memory
[8]. There is a channel that uses Infiniband. And has a
thread-safe version of a sockets channel. Short names
for the channels are: sock, shm, sshm, ssm, mt.
These channels can be selected at runtime with an
environment variable: MPICH2 CHANNEL. The
following is an example that uses an Infiniband
channel instead of a default sockets channel:

mpiexec -env MPICH2_CHANNEL ib -n 4 math.exe

or

mpiexec -channel ib -n 4 math.exe.

Windows comes with a default firewall that is usually
turned on by default. Firewalls block all TCP ports by
default which renders MPICH2 applications
inoperable because sockets on arbitrary ports assigned

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

by the operating system are a default communication
mechanism used by MPICH2.

5 Mathematic Modeling in an MPI
Flying Simulator
Mathematic model of a flying simulator is running at a
cluster computer system, Fig. 2. Mathematical
modeling is the art of translating problems from an
application area into tractable mathematical
formulations. Theoretical and numerical analyses are
provided inside the system and are fully available to
users. They are generally important for accurate
modeling.

From [5] mathematic model in transfer function for
longitudinal direction speed arise ∆V(s) (∆ = increase
in value), with two input values ∆δT(s), ∆ δB (s) is
defined:

() () () () (),ssWssWsV BVTV
BT δδ δδ ∆−∆−=∆

 (1)
where

() ()
() ,11

s
sasW T

xV
T

∆
∆

−= δδ

 () ()
()

()
() ,3121

s
s

a
s
sasW B

mz
B

yV
B

∆
∆

−
∆

∆
−= δδδ

s – Laplace operator in differential equations, ∆(s) –
determinant of a transfer function, ∆ij(s) – minor of the
determinant a given element aij (i-th row and j-th
column) in system equations. Coefficients of a transfer
function are computed next [5]:

,5−=
∂
∆∂−

=
x

Pa T
x
δ

11,0−=
∂

∆∂−
=

B
Ya B

y δ
δ

42,0−=
∂

∆∂−
=

B
mza B

mz δ
δ (2)

In a numeric formulation, the transfer function amount
increase speed of fuel supply Eq. (1) has a form:

() ().
09,466,288,6213,1

32,2578,6212,1
5 234

23

s
ssss

sss
sW T

T
V δ
δ

∆
++++

+++
=

 (3)
In a numeric formulation, the transfer function speed
of elevator Eq. (1) has a form:

() () () ().
09,466,288,6213,1

01,1081,942.097,62081,911,0
234 s

ssss
ss

sW B
B

V δ
δ

∆
++++

−−⋅−+⋅−
=

 (4)
From [5] mathematic model in transfer function for
longitudinal direction angle of attack arise ∆α(s) (∆ =
increase in value), with two input values ∆δT(s), ∆ δB
(s) is defined:

() () () () (),ssWssWs BT

BT δδα δ
α

δ
α ∆−∆−=∆

 (5)
where

() ()
() ,12

s
sasW T

x
T

∆
∆

−= δδ
α

 () ()
()

()
() ,3222

s
s

a
s
sasW B

mz
B

y
B

∆
∆

−
∆

∆
−= δδδ

α

s – Laplace operator in differential equations, ∆(s) –
determinant of a transfer function, ∆ij(s) – minor of the
determinant a given element aij (i-th row and j-th
column) in system equations [7].
In a numeric formulation, the transfer function amount
increase speed on fuel supply Eq. (5) has a form:

()

().*
09,466,288,6213,1

1,02518,0002,05 234

2

s
ssss

sssW

T

T

δ

δ
α

∆
++++

−−
=

 (6)

In a numeric formulation, the transfer function speed
of elevator Eq. (5) has a form:

() ()

() ().
09,466,288,6213,1

02514,04138,042.0
09,466,288,6213,1

4525,2012422,08862,011,0

234

2

234

23

s
ssss

ss
ssss

ssssW

B

B

δ

δ
α

∆
++++

−−−−

++++
−++−−

=

 (7)

In Eq. (3), (4) or (6), (7), respectively the unit step
input ∆δT(s), i. e. ∆δT(s)=1/s or ∆δB(s), respectively, i.
e. ∆δB(s)=1/s.

6 Models of a Flying Simulator in a
Cluster
Mathematic modeling at a computer system is realized
by 5 computers (1 head node and 4 compute nodes).
Each computer has a Pentium IV 2.4 GHz processor,
memory 512 MB RAM, hard disk 40 GB 5400 rpm,
fast Ethernet card 100 Mb/s. The head node computer
has same parameters. The Scheduler runs on a stand
alone computer (a head node computer) connected to a
real computer system through Ethernet.

This section describes important options of
mpiexec.exe
• -n x or -np x specify the number of processes to
launch. In our case – n 5.
• -localonly x or –localonly, specify that the processes
should only be launched on a local host. This option
can replace the -n x option or be used in conjunction
with it when it is only a flag.
• -machinefile filename. Use the specified file to get
host names to launch processes.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

• -hosts n host1 host2 host3 ... Specify that the
processes should be launched on a list of hosts. This
option replaces the -n x option.
• -hosts n host1 m1 host2 m2 host3 m3 ... Specify that
the processes should be launched on a list of hosts and
how many processes should be launched on each host.
A total number of processes launched is m1 + m2 +
m3 + ... mn. In our case, n 193.87.64.122,
193.87.64.112, 193.87.64.110, 193.87.64.101,
193.87.64.120.

To start a job through the CLI, type the following
command mpiexec.exe, see Fig. 3. There is a desktop
wrapper in the figure. It normally would prompt the
user to input services. A radio button defines the path
name of application mathematic models
“empichtest.exe”. A user defined number of
processors is 5 (host 5), see Fig. 3. The number of IP
addresses of computers that create an MPI compute
cluster (hosts) is defined in the host dialog box. Short
names for the channel rewrite sock, nonblocked
communication between computers.

Fig. 3 Dialog window mathematic models of a flying
simulator in MPI

Node1 execution file, that represents an execution
program (an aircraft job) of the part of a mathematic
model of aircraft speed dependence on fuel supply Eq.
(3). Node2 execution program of the part of a
mathematic model of aircraft speed dependence on the
elevator Eq. (4). Node3 represents the execution
program of the part of a mathematic model of aircraft
attack angle dependence on fuel supply Eq. (6). Node4
execution program of the part of a mathematic model
of aircraft attack angle dependence on the elevator Eq.
(7). Source code of mathematic models of aircraft is
written in C++ language. This approache provides
much flexibility for confirmation of the job of aircraft
in cluster [6].

Time dependence

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

Time modeling [s]

D
is

pl
ac

em
en

t s
pe

ed
 [m

/s
]

Fig. 4 System response Eq. (3) to a unit step input

∆δT(s), in Matlab (up), model of at the flying
simulator in MPI - node 1 (down)

The Fig. 4 compares results of a compute time
response to the unit step of a mathematic model in an
increment speed of aircraft Eq. (3) in the Matlab or in
the node 1 the MPI system, respectively. From
comparison of results it can be derived that the speed
change dynamics is approximately the same in both
Matlab and MPI at the node 1. The steady state of a
speed increment is in both systems compatible.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

Time dependence

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

0 5 10 15 20 25 30

Time modeling [s]

D
is

pl
ac

em
en

t s
pe

ed
 [m

/s
]

Fig. 5 System response to a unit step input ∆δB(s), in
Matlab (up), model of at the flying simulator in MPI -

node 2 (down)

The Fig. 5 compares a graphics output compute time
of a response to the unit step a mathematic model in
increment speed of aircraft Eq. (4) in the Matlab or in
the node 2 the MPI system, respectively. From
comparison of results it can be derived that the speed
change dynamics is approximately the same in both
Matlab and MPI at the node 2. The steady state of a
speed increment is in both systems compatible.

The results from speed modeling on high performance
computing are shown in the table below.

Tab. 1 Steady state of a mathematic models on a stand
alone computer versus cluster computers (MPI)

Single
computer
Matlab

Cluster, MPI Mathemat
ic model

Steady
state

Ti
me
[s]

Steady
state

Ti
me
[s]

Distort
[%]

Speed
from fuel
supply

31.1
m/s

22-
23

31.01

node 1

24 -0.3

Speed
from
elevator

-15.61
m/s

20-
21

-15.68

node 2

23 0,5

Angle of
attack on
fuel supply

7.03
deg

21-
22

7.02
deg

node 3

20 -0.2

Angle of
attack on
elevator

-3.93
deg

20-
21

-3.94
deg

node 4

22 0.3

7 Conclusion and Future Work
This paper described our approach to support of a
computational application in a dynamic mathematic

model of a flying simulator by high - performance
computing.

Father tests and evaluations are being conducted
continuously to determine reliability of our
implementations and to determine performance and
overheads of the system, respectively.

Opportunities for future development include:
• Real-time aircraft mathematic model

implementation
• Aircraft mathematic model multitasking

processes
• Web-based computing.

The system demonstrated that with these application
processes of mathematic models programmers can
create highly adaptable, dynamic, service-oriented
applications for a flying simulator.

8 References and Citations
1 Nelson Ruest and Danielle Ruest: Using

Microsoft Windows Compute Cluster Server 2003
Job Scheduler, November 2005.

2 Pota, S., Sipos, G., Juhasz, Z., Kacsuk, P.:
Distributed and Parallel Systems, Parallel
Program Execution Support in the JGRID System,
Springer Science, New York 2005, ISBN 0-387-
23094-7, p. 13-19.

3 Feitelson, D., G., Rudolf, L.: “Parallel Job
Scheduling: Issues and Approaches“ Lecture
Notes in Computer Science, Vol. 949, p. 1-xx,
1995.

4 Sun Microsystems, Jini Technology Core
Platform Specification,
http://www.sun.com/jini/specs, 2005.

5 Krasovskij, A., A.: Sistemy avtomaticeskogo
upravlenja poletom i ich analiticeskoje
konstruirovanie, Nauka, Moskva 1980, pp. 589.

6 John H. Blakelock: Automatic Control of Aircraft
and Missiles, John Wiley & Sons. Inc., New
York, 1991.

7 Rolfe J.M., Staples K.J.: Flight Simulation,
Cambridge University Press, 1986.

8 Ashton D.: MPICH2 Windows Development
Guide, Version 1.0.3, Mathematics and Computer
Science Division Agronne National Laboratory,
2005

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

http://www.sun.com/jini/specs

