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Abstract

Today’s high-tech products, such as civil aircraibhgs, are designed by multidisciplinary
teams of experts. Dedicated modeling and simuldbofs are used to assess the behavior of
the design for each relevant discipline. The regfliconsistency among the different single
discipline models is achieved by using an integratesign model, which includes a (large)
set of design parameters on which each of thepliseimodels is based. In order to find the
best design, the application of optimization altoris in combination with the modeling and
simulation tools is common practice nowadays. Havefor products that require complex
models and extensive simulations to assess theavoa, like aircraft wings, such design
optimizations may become infeasible due to comp@itacomputational sequences or
excessive computational cost. To alleviate suchplications, the products’ behavior should
be assessed more efficiently. This paper presentset@-modeling approach, applied to
aircraft wing design where aircraft range and ftmisumption are optimized. This approach
allows to quickly and conveniently evaluate the gvimehavior, and to virtually fly through
the considered wing design space. Extensive opmiioizs, exploiting thousands of meta-
model evaluations, are performed using multi-olyecgenetic algorithms, yielding sets of
Pareto optimal wing design points. These pointsesgnt those wing designs that have the
best feasible fuel consumption for each value ofgea and hence directly provide the
designer with the most relevant design information.

Keywords: multidisciplinary analysis, integrated design model, meta-modeling, Pareto
front, multi-objective optimization.

Presenting Author’s biography

E. Kesseler received his Drs degree in physics 9801from the
University of Amsterdam. He has worked at NLR Amdéen, the
Netherlands for over 20 years on a variety of I@l aarospace topics.

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM



Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

. unambiguously defined and stored in a single ckentra
1 Introduction database (the integrated design model [4]) andidtec]

Engineering and design analyses nowadays invol@ometric wing parameters such as span (lengtheof t
extensive numerical simulation techniques in otder Wings), chord (wing width) and sweep (wing angle in
predict the behaviour of the system undehorizontal plane), as well as “aircraft operational
consideration for various conditions of use. FoP€ttings” such as maximum take-off weight (MTOW)
example in aeronautic design, advanced singfhd cruise altitude. With the design parameters. (Fi
discipline simulations such as structural mechanicy): the multidisciplinary analysis system considen
and fluid dynamics analyses are commonly useden tigenerates the aircraft and wing geometries (Fitha)
aircraft design processes. Although these simuiatio@re used in the different wing analyses (aerodyosmi
provide a wealth of possibilities for assessmerits §tructural mechanics, etc., Fig. 3).

design variations, the organization of integrate’
design analysis simulations often remains a chgdlen
in terms of efficient computational execution aradad wlf:‘szgds“”v‘;;:' )
exchange and storage. One approach to deal wh tl,gjes “
challenge is the use of simplified but adequat
representations of the key aspects of interesthef t
considered design, which can be achieved by seetall "9 ="
meta-models or response surface methods [1]. coordinate

wing semi span
A\ and
8 \crank span fraction

This paper describes an investigation o
multidisciplinary design and optimisation of trangn
aircraft wings for civil air transport. The design
objectives considered are the alrcr_aft’s pe_rfor_manc Wing Intier rid
terms of range and fuel. The first objective is outer dihedral
common driver in aircraft design and the latter ha.

environmental as well as economic relevance.

The design objectives in this investigation are Fig. 1 Geometric design parameters of the wing
evaluated with an integrated multidisciplinary ys& planform as used in the multidisciplinary analysis
system for aircraft wings. In order to effectivelgal system. Besides these parameters, also other
with the two design objectives simultaneouslyparameters, like the positions of wing control acefs,
optimisations with multi-objective genetic algonts  \wing tanks and landing gears, can be varied in the
are used to explore the considered design space. To multidisciplinary analysis system.

limit, in this optimisation, the number of

computationally expensive multidisciplinary wing

design evaluations, simplified representations (or

meta-models) of the considered design objectives ar

used instead. These simplified representations &
created according to an advanced meta-modellir
approach [1]. The result of the multi-objective desi
optimisation is a set of Pareto optimal [2] desigt
points, from which the most promising design pdsnt
carefully selected. The range and fuel values ia th
most promising design point as predicted by theamet
models are validated by accurate evaluations kigh t
multidisciplinary analysis system.

The subsequent sections give further details on tl
wing design study performed, the meta-models ar
optimisation approach used, the results found aed t
main conclusions and discussion.

2 Multidisciplinary aircraft wing design Fig. 2: lllustration of several different wing

analyses geometries (coloured left wing), as generated by th
This multidisciplinary analysis system simulates themultldlsc!pllnary analysis system with various \esu
for wing span, sweep angle and chords. Also

aircraft behaviour, i.e., it evaluates, among athére . 3 .
aircraft range and fuel as a function of an extemset illustrated are the fixed geometries for fuselage a
empennages.

of design parameters [3]. The design parameters are
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The multi-objective optimisation algorithm that is
used to solve this design optimisation problem is
based on a Pareto optimum search procedure [5] that
typically requires thousands of objective evaluaio
b= ST s S T g i T i = = 15';% The meta-models that are made for the objective
functions for range and fuel are further descriired
the following section.
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4 Meta models

In order to create the meta-models, first a suitabl
sample of the aircraft behaviour in the considered
wl 1 design domain is pursued. This is achieved by a
— MissionEval'uaﬁon limited number of evaluations with the MDO
simulation system in certain selected design points
St T These design points are defined according to a
sequence of fractional factorial (i.e., fractiorfsful-
Fig. 3: Schematic overview of the multidisciplinary factorial) sets of samples [6] of the four dimemsib
analysis system. The data communication among theéesign space (i.e., parameter space of the design
different analyses, as indicated by the arrowsdak parameters: wing semi-span, outer wing sweep angle,
place through a single central database (the iategr wing chord, and aircraft MTOW). The semi-span is
design model). varied between 29 m and 32 m. The outer wing sweep
angle is varied between 21 deg and 39 deg. The wing
chords at 3 stations (wing root, crank and tip) are
From the outcomes of the multidisciplinary analysegqually varied by one single chord scale factorictvh
the corresponding aircraft behaviour is predictad iis varied between 1.000 and 1.075. MTOW is varied
terms of specific results (e.g., weight breakdowhetween 150000 and 280000 kg.

information) and more glopal results (g.g., maximu_qh total, 99 design points are created in this petar
range and fuel consumptlon). Just like the des'gﬂ)ace and are evaluated with the full MDO simutatio
parameters, these analysis results are also stothd system, yielding (among many other data available i

integrated design model. the integrated design model) the values of rangke an

For each of the disciplinary analyses in this MDJuel consumption in these design points. As a quick
simulation system, a different operational conditid ~ preliminary design assessment, these range and fuel
the aircraft is considered as most relevant loae ca values are ordered according to a basic Paretongnk
because a valid aircraft design must withstandrséve procedure [7] in order to obtain a first indicatiofthe
critical loading conditions while progressing thgbu interesting design regions. In this ranking procedu
the various flight phases. For example, the engames the best (or non-dominated) design points, i.es¢ho
sized for power during take-off with maximumpoints having the best values for range and fuel
take-off weight. The wing structural components, ogonsumption, are assigned Pareto rank 1, the set of
the other hand, are sized by structural optimisatiosecond best points are assigned Pareto rank 2and
using finite element analyses for the loads ocngrri forth until all design points have been assignesné
during a +2.5 pull-up manoeuvre, as required by thevalue.
certifying authorities. The wing aerodynamic lites resulting rank values for these 99 design ppints
drag pe_rformance IS eva!uated by Computatlona_t?lFlubnd their distribution in the objective space alneirt
Dynamics (CFD) simulations for the cruise condition parameter values are given in Fig. 4 below. It &hou
be noted that fuel consumption in this study is
expressed as fuel-efficiency, i.e. the number of
3 Optimisation of aircraft range and fuel kilometres flown per litre of fuel burnt per pasgen
by wing design whlc_:h allows _ for easy ~ comparison _of the
environmental impact of air transport with other
The aircraft design parameters considered in tHeansport modes.
present ()lptlm!sat|(|)n St#dy are t?}e évmg Semi-Spag, resulting data set with the values of the design
gﬁé'e;g%gelew';? d Z?r%tra)f:c \I\I/IVI'?gV\(; c¥h§’o%}’et‘ztriv‘gén?ﬁjarameters gnd of_ the range and fuel objectives in
this optimisation study are to find those desigm{zo ese 99 design points, is then used to createnéta
that yield the best possible range and minimum fu
consumption.

mass
LCs
Aero-loads

L o o o ) ) o) i o e ] e e T e

weights Range

rr|10dels. The meta-models shall approximate as good
s possible the objectives in each point of the
parameter space.
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Datapoints and their Pareto Ranks (colors) in Range-FuelEff objective space Design pararneter values of all datapoints and their Pareto Ranks (colors)
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Fig. 4 The range and fuel results in the 99 desaintp in objective space (left) and in parametercep(right),
coloured by their Pareto rank.

A number of different polynomial functions (polyn i that the kriging-linear-Exponential (kle) [8] and
Tab. 1 and Tab. 2), kriging models (kriging-xy in Tabsecond order polynomial (poly2) fit functions prd®i

1 and Tab. 2), neural networks (ann in Tab. 1 and Tathe best fits for range and fuel-efficiency, resmety

2) and radial basis functions (rbf in Tab. 1 and Tgb. (99/9-column in Tab. 1 and 2 below). However, this
are applied [1], and the best fit functions amdmgse assessment represents the accuracy of the fitdyrao
are determined. These best fit functions are fourldcal region around the rank-one data points. beor
through various cross-validation assessments on tte obtain a more global accuracy assessment we
data set, such that these functions’ predictionthef include some more validation points by adding the 1
design objectives (range, fuel efficiency) have th@areto rank-two data points to the validation set
smallest residuals. The residuals in these cros@9/20-column in Tab. 1 and 2 below). Because this
validations are determined by separating one @wa f validation set is rather large (20 out of 99 pdintse
points (validation points) from the data set, ceethie  validation fits are made on relatively small dagiss
fits on the remaining points, predict with theds the (79 points), and thus will differ significantly fino the
values in the validation points and compare theséull” fits made on the complete data set (99 psjnt
predictions with the actual values. Finally, thetro Therefore we also evaluate the RMS-residuals from a
mean squared (RMS) values of the residuals (or leave-1-out experiment [9] of this validation set
other words, root mean squared errors, RMSE) in th{89/1/20-column in Tab. 1 and 2 below). In this kav
validation points are calculated. Four differemiss- 1-out experiment, subsequently each point of the
validation assessments are performed by selectinglidation set is separated from the data sett & fi
different sets of validation points. made on the remaining 98 points, the residual @ th
validation point is evaluated, and the RMS of tife 2
residuals is calculated. Finally, as a real global
gecuracy assessment, we also performed a leave-1-ou

(lowest) Pareto rank values for range and fu experiment on the complete data set (99/1/99-column

efficiency (dark blue dots in Fig. 4), are used a o LT
validation points. The resulting RMS values indicat§1 Tab. 1 and 2 below). As an additional indicatain

In a first cross-validation assessment the niné-ran
one data points, i.e. those data points havingotdst
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the relative accuracy of the fits, we also inclule Tab. 2: For the fuel-efficiency data: Accuraciestu
Mean Absolute Percentage Error (MAPE) of thalifferent fit functions (identified in left columnjor
global leave-1-out residuals (99/1/99/%-column irthe different cross-validation assessments (ideditif
Tab. 1 and 2 below). in first row, by data set size and number of vdlata
f points). Values given are the root-mean-squarekeof

For the different cross validation assessmentsinge residuals (or prediction errors) in the validatimints.

reasonably consistent accuracies for most fit fonst

(Tab. 1 and 2 below). The best RMS-residual found in RMSE MAPE
each assessment is marked by the green shaded cellfitfunction| 9979  99/20 99/1/20 99/1/99(99/1/99/%
For the range data (Tab. 1), the radial basis fancti [;o1y0 4. 648 4. 182 3. 909 3. 259[ 8. 4636
(rbf) fit provides the best results for the leavetit
experiments, but very poor fit quality accordinghe ~ [PO¥* |1 984 1.4991.3680.995) 2. 3676
99/20 experiments, and is therefore not selected asoly2 0.722 0.5440.2580.264| 0.6371
best fit for range. kriging-cG|1. 746 1.422 0. 830 0. 421| 0. 6577
Based on the results of each of the 5 assessme kriging-cE[2. 435 1. 289 0. 947 0. 430| 0. 3894
performed, and in particular on the global accurasy H ' ' ' ' '
measured by the leave-1-out experiments (Tab. Ilkriging-cC|2. 103 2.251 1.198 0.576| 0. 7798
columns 99/1/99 and 99/1/99/%), it is concluded tha kriging-IG |1. 590 1. 358 0. 939 0. 443| 0. 4836
the best fit for range is found by the kriging-kme
For fuel efficiency the poly2 fit performs quite live |*riging-IC 1. 778 1.4041.3050.607) 0.6339
(Tab. 2), but its global accuracy as measured by th@ann 1.886 1.3930.6721.179| 3. 7600
-1- I 0, i
leave-1-out experiment (cplum_n 99/1/99/_/9) is worse 6. 990 66. 977 4. 740 2. 140| 1. 1210
than for some of the kriging fits. In addition, p3l

provides a least-squares regression (non-interpg)at

fit on the data, whereas the kriging models provide

exactly interpolating fits on the data. Becauseda®@ 5 Design optimisation

represents results of deterministic computer

simulations, it is concluded that the best fit fael A Pareto front optimisation of the aircraft's rangyed

efficiency is found by the kriging-constant- fuel efficiency is performed using a multi-objeetiv
Exponential (kce) fit function. genetic algorithm (based on epsilon-NSGA-Il as

described in [5]), where the best fits for rangd arel
efficiency are used as objective functions.

Tab. 1: For the range data: Accuracies of the differ | thjs optimisation a population size of 99 indivals

fit functions (identified in left column) for the ig sed, where the 99 design points from the detta s
different cross-validation assessments (identified 56 ysed as the initial generation. The boundsef t
first row, by data set size and number of validatiogearch domain for the optimisation are set to the
points). Values given are the root-mean-squar¢8eof inimum and maximum values of the design
residuals (or prediction errors) in the validatpmints. parameters of the 99 design points. In a first 8un

ISBN 978-3-901608-32-2

RMSE MAPE generations, so about 300 objective functions
fitfunction| 99/9 99720 99/1/20 99/1/99] 99/1/99% ?g:litljt?rﬂ;ogzpirlztigunnisvzggiégtee(?igiﬂz g:ggng&nme
poly0 1824. 8 1450. 2 1464. 0 993. 2|18.5785| Fig. 5 in order to give some illustration of the
poly1 789.0 720.6 541.0401.6| 6.7994| convergence history of the.geneuc algorithm. _Th_en

this resulting population is used as the initial
poly2 739.3 509.2 460.8234.1| 3.7504| population for an extensive run of about 100
kriging-cG|1386. 0 1155. 3 886. 3 400. 3| 4.2159| generations with the genetic algorithm. The total
B 1297 2 730.4 913.8 414. 1| 4. 2473 number of objective function evaluations in this
kriging-cE : : : ' ' extensive optimisation is about 10.000, and takes
kriging-cC|1025. 6 722.3 814.8 367.0| 3.8202| about 20 seconds computational time on a standard P
. (P-4, 2.8 GHz). The resulting Pareto front solution
kriging-1G H 608.7 519.3 301.7138.6) 1.7258 (red diamonds in Fig. 5) provides a set of clearly
kriging-IE | 567.6 418.8 465.5210.1| 2.2546| improved designs, as compared to the initial set of
kiigingIC | 600. 9 440.5 411.0186.8| 2. 2124| 4€SIgNS in the data set (black dots).
ann 1175.3 1053. 7 957.3859.6|12. 8121
rbf 784.15130.0 205.0 99.7| 1.1252

Copyright © 2007 EUROSIM / SLOSIM
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Datapoints (black) and the Pareto points (red) in Range-FuelEf objective space Design parameter values of datapoints (black) and Pareto points (red)
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Fig. 5 Design points of data set (black dots), pajn after 3 generations (green circles), anct®ar
front after 100 additional generations (red diang)rfdr maximum range versus maximum fuel
efficiency found with the kriging-linear-Gauss akrifjing-constant-Exponential meta-models,

respectively, for range and fuel efficiency. Respitesented in objective space (left) and in thgea

parameter sub-spaces (right) for each of the feargth parameters.

Datapoints (slack) and the Pareto points {red) and selected optimum (square} Design parameter values of datapoints (black) and Pareta points (red) and selected optimum (square)
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Datapoints (black) and Pareto sets of initial and improved meta-maodel (red, magenta)
40

Datapoints (black) and initial and improved meta-model Pareto points (red, magenta)
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Fig. 7 Pareto fronts found with the initial metaghets (red diamonds) and the improved meta-modedgémta
diamonds).

The behaviour of the aircraft in the parameter spadaurthermore, this new design point provides a
around the Pareto optimal design points (which wenealuable additional point for the data set on whioh
predicted on the basis of the meta-models) wabdurt meta-models are created, and hence the meta-models
explored and interpreted by aircraft design expertsan be further improved and used again in the multi
One candidate optimal design point was selected anbjective optimisation. Therefore the meta-modets fo
accurately evaluated by the MDO simulation systemmange and fuel efficiency were regenerated usimeg th
The results from this evaluation are given in Tab. 8ame kriging models as before (kcg for range, ded k
and Fig. 6. for fuel efficiency). In this optimisation the 1@@sign

points from the new data set are used as the linitia

generation and the bounds of the search domaiseare
result and meta-modefo the minimum and maximum values of the design
parameters of the 100 design points.

Tab. 3: MDO analysis
prediction for the candidate optimal design point.

parameters MDO analysis |meta model The resulting Pareto front (magenta diamonds in Fig.

span sweepchord MTOW frange [FuEff, range [FuE, 7) found with these improved meta-models provides a
slight improvement compared to the Pareto frond (re

32.5 25.1/1. 082850007594. 6| 27.87761.9 28.4  giamonds in Fig. 7) found with the previous meta-

models, as is shown in Fig. 7. The Pareto frontragai

helps to further guide the computationally expeasiv

When considering these results more closely, we | MDO evaluations to the most interesting design
conclude from the MDO analysis results that thi;®po ¢, the team of expert designers.

is an additional Pareto optimal design point (FY.
The meta-models predicted somewhat over-estimated
values for range and fuel efficiency for this point
(Tab. 3).
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6 Conclusions optimisations in a computationally efficient manner
) . . This efficiency allows the multidisciplinary team of
The meta-modelling approach presented in this papggsign experts to obtain more knowledge about the

allows for efficient and extensive assessment ef thhehaviour of their design in the considered paramet
investigated aircraft behaviour in the conS|deregpace, in a consistent way, i.e. the consequerfcas o
design domain. The predictive accuracy differghange in one discipline are automatically takeo in

amongst the different meta-models that are used. Feccount by the other disciplines. This providescaenm
this data set the most appropriate accuracies Weihyst design.

found for the kriging-linear-Gauss and kriging-
constant-Exponential models. The multi-objectivd he innovative capability described above supports
Pareto front results directly provide the desigihe design team when considering future design
information on which further design trade-offvariants, complying with the requirement for produc
considerations can be based by the team of desitpnilies, common for large civil aircraft designs.
experts involved. Additionally the Pareto frontoals
the design team to use the computationally expensiv
MDO design evaluations to those designs wit
relevance to the team. % References
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