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Abstract  

Today’s high-tech products, such as civil aircraft wings, are designed by multidisciplinary 
teams of experts. Dedicated modeling and simulation tools are used to assess the behavior of 
the design for each relevant discipline. The required consistency among the different single 
discipline models is achieved by using an integrated design model, which includes a (large) 
set of design parameters on which each of the discipline models is based. In order to find the 
best design, the application of optimization algorithms in combination with the modeling and 
simulation tools is common practice nowadays. However, for products that require complex 
models and extensive simulations to assess their behavior, like aircraft wings, such design 
optimizations may become infeasible due to complicated computational sequences or 
excessive computational cost. To alleviate such complications, the products’ behavior should 
be assessed more efficiently. This paper presents a meta-modeling approach, applied to 
aircraft wing design where aircraft range and fuel consumption are optimized. This approach 
allows to quickly and conveniently evaluate the wing behavior, and to virtually fly through 
the considered wing design space. Extensive optimizations, exploiting thousands of meta-
model evaluations, are performed using multi-objective genetic algorithms, yielding sets of 
Pareto optimal wing design points. These points represent those wing designs that have the 
best feasible fuel consumption for each value of range, and hence directly provide the 
designer with the most relevant design information.  

Keywords: multidisciplinary analysis, integrated design model, meta-modeling, Pareto 
front, multi-objective optimization. 
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1 Introduction 

Engineering and design analyses nowadays involve 
extensive numerical simulation techniques in order to 
predict the behaviour of the system under 
consideration for various conditions of use. For 
example in aeronautic design, advanced single 
discipline simulations such as structural mechanics 
and fluid dynamics analyses are commonly used in the 
aircraft design processes. Although these simulations 
provide a wealth of possibilities for assessments of 
design variations, the organization of integrated 
design analysis simulations often remains a challenge 
in terms of efficient computational execution and data 
exchange and storage. One approach to deal with this 
challenge is the use of simplified but adequate 
representations of the key aspects of interest of the 
considered design, which can be achieved by so-called 
meta-models or response surface methods [1]. 

This paper describes an investigation of 
multidisciplinary design and optimisation of transonic 
aircraft wings for civil air transport. The design 
objectives considered are the aircraft’s performance in 
terms of range and fuel. The first objective is a 
common driver in aircraft design and the latter has 
environmental as well as economic relevance. 

The design objectives in this investigation are 
evaluated with an integrated multidisciplinary analysis 
system for aircraft wings. In order to effectively deal 
with the two design objectives simultaneously, 
optimisations with multi-objective genetic algorithms 
are used to explore the considered design space. To 
limit, in this optimisation, the number of 
computationally expensive multidisciplinary wing 
design evaluations, simplified representations (or 
meta-models) of the considered design objectives are 
used instead. These simplified representations are 
created according to an advanced meta-modelling 
approach [1]. The result of the multi-objective design 
optimisation is a set of Pareto optimal [2] design 
points, from which the most promising design point is 
carefully selected. The range and fuel values in this 
most promising design point as predicted by the meta-
models are validated by accurate evaluations with the 
multidisciplinary analysis system. 

The subsequent sections give further details on the 
wing design study performed, the meta-models and 
optimisation approach used, the results found and the 
main conclusions and discussion. 

 

2 Multidisciplinary aircraft wing design 
analyses 

This multidisciplinary analysis system simulates the 
aircraft behaviour, i.e., it evaluates, among others, the 
aircraft range and fuel as a function of an extensive set 
of design parameters [3]. The design parameters are 

unambiguously defined and stored in a single central 
database (the integrated design model [4]) and include 
geometric wing parameters such as span (length of the 
wings), chord (wing width) and sweep (wing angle in 
horizontal plane), as well as “aircraft operational 
settings” such as maximum take-off weight (MTOW) 
and cruise altitude. With the design parameters (Fig. 
1), the multidisciplinary analysis system consistently 
generates the aircraft and wing geometries (Fig. 2) that 
are used in the different wing analyses (aerodynamics, 
structural mechanics, etc., Fig. 3).  

 

 

Fig. 1 Geometric design parameters of the wing 
planform as used in the multidisciplinary analysis 

system. Besides these parameters, also other 
parameters, like the positions of wing control surfaces, 

wing tanks and landing gears, can be varied in the 
multidisciplinary analysis system. 

 

 

 

 

Fig. 2: Illustration of several different wing 
geometries (coloured left wing), as generated by the 
multidisciplinary analysis system with various values 

for wing span, sweep angle and chords. Also 
illustrated are the fixed geometries for fuselage and 

empennages. 
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Fig. 3: Schematic overview of the multidisciplinary 
analysis system. The data communication among the 
different analyses, as indicated by the arrows, takes 

place through a single central database (the integrated 
design model). 

 

From the outcomes of the multidisciplinary analyses 
the corresponding aircraft behaviour is predicted in 
terms of specific results (e.g., weight breakdown 
information) and more global results (e.g., maximum 
range and fuel consumption). Just like the design 
parameters, these analysis results are also stored in the 
integrated design model. 

For each of the disciplinary analyses in this MDO 
simulation system, a different operational condition of 
the aircraft is considered as most relevant load case, 
because a valid aircraft design must withstand several 
critical loading conditions while progressing through 
the various flight phases. For example, the engines are 
sized for power during take-off with maximum 
take-off weight. The wing structural components, on 
the other hand, are sized by structural optimisation 
using finite element analyses for the loads occurring 
during a +2.5 g pull-up manoeuvre, as required by the 
certifying authorities. The wing aerodynamic lift over 
drag performance is evaluated by Computational Fluid 
Dynamics (CFD) simulations for the cruise condition. 

 

3 Optimisation of aircraft range and fuel 
by wing design 

The aircraft design parameters considered in the 
present optimisation study are the wing semi-span 
(i.e., single wing length), wing chords, outer wing 
sweep angle, and aircraft MTOW. The objectives in 
this optimisation study are to find those design points 
that yield the best possible range and minimum fuel 
consumption. 

The multi-objective optimisation algorithm that is 
used to solve this design optimisation problem is 
based on a Pareto optimum search procedure [5] that 
typically requires thousands of objective evaluations. 
The meta-models that are made for the objective 
functions for range and fuel are further described in 
the following section. 

 

4 Meta models 

In order to create the meta-models, first a suitable 
sample of the aircraft behaviour in the considered 
design domain is pursued. This is achieved by a 
limited number of evaluations with the MDO 
simulation system in certain selected design points. 
These design points are defined according to a 
sequence of fractional factorial (i.e., fractions of full-
factorial) sets of samples [6] of the four dimensional 
design space (i.e., parameter space of the design 
parameters: wing semi-span, outer wing sweep angle, 
wing chord, and aircraft MTOW). The semi-span is 
varied between 29 m and 32 m. The outer wing sweep 
angle is varied between 21 deg and 39 deg. The wing 
chords at 3 stations (wing root, crank and tip) are 
equally varied by one single chord scale factor, which 
is varied between 1.000 and 1.075. MTOW is varied 
between 150000 and 280000 kg. 

In total, 99 design points are created in this parameter 
space and are evaluated with the full MDO simulation 
system, yielding (among many other data available in 
the integrated design model) the values of range and 
fuel consumption in these design points. As a quick 
preliminary design assessment, these range and fuel 
values are ordered according to a basic Pareto ranking 
procedure [7] in order to obtain a first indication of the 
interesting design regions. In this ranking procedure, 
the best (or non-dominated) design points, i.e. those 
points having the best values for range and fuel 
consumption, are assigned Pareto rank 1, the set of 
second best points are assigned Pareto rank 2, and so 
forth until all design points have been assigned a rank 
value. 

The resulting rank values for these 99 design points, 
and their distribution in the objective space and their 
parameter values are given in Fig. 4 below. It should 
be noted that fuel consumption in this study is 
expressed as fuel-efficiency, i.e. the number of 
kilometres flown per litre of fuel burnt per passenger, 
which allows for easy comparison of the 
environmental impact of air transport with other 
transport modes. 

The resulting data set with the values of the design 
parameters and of the range and fuel objectives in 
these 99 design points, is then used to create the meta 
models. The meta-models shall approximate as good 
as possible the objectives in each point of the 
parameter space. 
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A number of different polynomial functions (polyn in 
Tab. 1 and Tab. 2), kriging models (kriging-xy in Tab. 
1 and Tab. 2), neural networks (ann in Tab. 1 and Tab. 
2) and radial basis functions (rbf in Tab. 1 and Tab. 2) 
are applied [1], and the best fit functions among these 
are determined. These best fit functions are found 
through various cross-validation assessments on the 
data set, such that these functions’ predictions of the 
design objectives (range, fuel efficiency) have the 
smallest residuals. The residuals in these cross-
validations are determined by separating one or a few 
points (validation points) from the data set, create the 
fits on the remaining points, predict with these fits the 
values in the validation points and compare these 
predictions with the actual values. Finally, the root 
mean squared (RMS) values of the residuals (or in 
other words, root mean squared errors, RMSE) in the 
validation points are calculated. Four different cross-
validation assessments are performed by selecting 
different sets of validation points. 

In a first cross-validation assessment the nine rank-
one data points, i.e. those data points having the best 
(lowest) Pareto rank values for range and fuel 
efficiency (dark blue dots in Fig. 4), are used as 
validation points. The resulting RMS values indicate 

that the kriging-linear-Exponential (kle) [8] and 
second order polynomial (poly2) fit functions provide 
the best fits for range and fuel-efficiency, respectively 
(99/9-column in Tab. 1 and 2 below). However, this 
assessment represents the accuracy of the fits in only a 
local region around the rank-one data points. In order 
to obtain a more global accuracy assessment we 
include some more validation points by adding the 11 
Pareto rank-two data points to the validation set 
(99/20-column in Tab. 1 and 2 below). Because this 
validation set is rather large (20 out of 99 points), the 
validation fits are made on relatively small data sets 
(79 points), and thus will differ significantly from the 
“full” fits made on the complete data set (99 points). 
Therefore we also evaluate the RMS-residuals from a 
leave-1-out experiment [9] of this validation set 
(99/1/20-column in Tab. 1 and 2 below). In this leave-
1-out experiment, subsequently each point of the 
validation set is separated from the data set, a fit is 
made on the remaining 98 points, the residual in the 
validation point is evaluated, and the RMS of the 20 
residuals is calculated. Finally, as a real global 
accuracy assessment, we also performed a leave-1-out 
experiment on the complete data set (99/1/99-column 
in Tab. 1 and 2 below). As an additional indication of 

 

 

Fig. 4 The range and fuel results in the 99 design points in objective space (left) and in parameter space (right), 
coloured by their Pareto rank. 
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the relative accuracy of the fits, we also include the 
Mean Absolute Percentage Error (MAPE) of the 
global leave-1-out residuals (99/1/99/%-column in 
Tab. 1 and 2 below). 

For the different cross validation assessments we find 
reasonably consistent accuracies for most fit functions 
(Tab. 1 and 2 below). The best RMS-residual found in 
each assessment is marked by the green shaded cell.  

For the range data (Tab. 1), the radial basis function 
(rbf) fit provides the best results for the leave-1-out 
experiments, but very poor fit quality according to the 
99/20 experiments, and is therefore not selected as 
best fit for range. 

Based on the results of each of the 5 assessments 
performed, and in particular on the global accuracy as 
measured by the leave-1-out experiments (Tab. 1, 
columns 99/1/99 and 99/1/99/%), it is concluded that 
the best fit for range is found by the kriging-linear-
Gauss (klg) fit function. 

For fuel efficiency the poly2 fit performs quite well 
(Tab. 2), but its global accuracy as measured by the 
leave-1-out experiment (column 99/1/99/%) is worse 
than for some of the kriging fits. In addition, poly2 
provides a least-squares regression (non-interpolating) 
fit on the data, whereas the kriging models provide 
exactly interpolating fits on the data. Because the data 
represents results of deterministic computer 
simulations, it is concluded that the best fit for fuel 
efficiency is found by the kriging-constant-
Exponential (kce) fit function. 

 

Tab. 1: For the range data: Accuracies of the different 
fit functions (identified in left column) for the 
different cross-validation assessments (identified in 
first row, by data set size and number of validation 
points). Values given are the root-mean-squares of the 
residuals (or prediction errors) in the validation points. 

  RMSE   MAPE 

fit function 99/9 99/20 99/1/20 99/1/99 99/1/99/% 

poly0 1824.8 1450.2 1464.0 993.2 18.5785 

poly1 789.0 720.6 541.0 401.6 6.7994 

poly2 739.3 509.2 460.8 234.1 3.7504 

kriging-cG 1386.0 1155.3 886.3 400.3 4.2159 

kriging-cE 1297.2 730.4 913.8 414.1 4.2473 

kriging-cC 1025.6 722.3 814.8 367.0 3.8202 

kriging-lG 608.7 519.3 301.7 138.6 1.7258 

kriging-lE 567.6 418.8 465.5 210.1 2.2546 

kriging-lC 600.9 440.5 411.0 186.8 2.2124 

ann 1175.3 1053.7 957.3 859.6 12.8121 

rbf 784.1 5130.0 205.0 99.7 1.1252 

 

Tab. 2: For the fuel-efficiency data: Accuracies of the 
different fit functions (identified in left column) for 
the different cross-validation assessments (identified 
in first row, by data set size and number of validation 
points). Values given are the root-mean-squares of the 
residuals (or prediction errors) in the validation points. 

  RMSE   MAPE 

fit function 99/9 99/20 99/1/20 99/1/99 99/1/99/% 

poly0 4.648 4.182 3.909 3.259 8.4636 

poly1 1.984 1.499 1.368 0.995 2.3676 

poly2 0.722 0.544 0.258 0.264 0.6371 

kriging-cG 1.746 1.422 0.830 0.421 0.6577 

kriging-cE 2.435 1.289 0.947 0.430 0.3894 

kriging-cC 2.103 2.251 1.198 0.576 0.7798 

kriging-lG 1.590 1.358 0.939 0.443 0.4836 

kriging-lE 1.692 1.378 1.187 0.539 0.4136 

kriging-lC 1.778 1.404 1.305 0.607 0.6339 

ann 1.886 1.393 0.672 1.179 3.7600 

rbf 6.990 66.977 4.740 2.140 1.1210 

 

5 Design optimisation 

A Pareto front optimisation of the aircraft’s range and 
fuel efficiency is performed using a multi-objective 
genetic algorithm (based on epsilon-NSGA-II as 
described in [5]), where the best fits for range and fuel 
efficiency are used as objective functions. 

In this optimisation a population size of 99 individuals 
is used, where the 99 design points from the data set 
are used as the initial generation. The bounds of the 
search domain for the optimisation are set to the 
minimum and maximum values of the design 
parameters of the 99 design points. In a first run 3 
generations, so about 300 objective functions 
evaluations are run with the genetic algorithm. The 
resulting population is indicated by the green circles in 
Fig. 5 in order to give some illustration of the 
convergence history of the genetic algorithm. Then 
this resulting population is used as the initial 
population for an extensive run of about 100 
generations with the genetic algorithm. The total 
number of objective function evaluations in this 
extensive optimisation is about 10.000, and takes 
about 20 seconds computational time on a standard PC 
(P-4, 2.8 GHz). The resulting Pareto front solution 
(red diamonds in Fig. 5) provides a set of clearly 
improved designs, as compared to the initial set of 
designs in the data set (black dots). 
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Fig. 5 Design points of data set (black dots), population after 3 generations (green circles), and Pareto 
front after 100 additional generations (red diamonds) for maximum range versus maximum fuel 
efficiency found with the kriging-linear-Gauss and kriging-constant-Exponential meta-models, 

respectively, for range and fuel efficiency. Results presented in objective space (left) and in the range- 
parameter sub-spaces (right) for each of the four design parameters. 

 

Fig. 6 Pareto front found with initial meta-model (red diamonds), data set (black dots), and MDO analysis 
and meta-model predictions for candidate optimal design point (black and red squares). 

 

candidate optimal design point, MDO analysis 

candidate optimal design point, meta-model prediction 
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The behaviour of the aircraft in the parameter space 
around the Pareto optimal design points (which were 
predicted on the basis of the meta-models) was further 
explored and interpreted by aircraft design experts. 
One candidate optimal design point was selected and 
accurately evaluated by the MDO simulation system. 
The results from this evaluation are given in Tab. 3 
and Fig. 6. 

 

Tab. 3: MDO analysis result and meta-model 
prediction for the candidate optimal design point. 

parameters MDO analysis meta model 

span sweep chord MTOW range FuEff. range FuEff. 

32.5 25.1 1.082850007594.6 27.8 7761.9 28.4

 

When considering these results more closely, we can 
conclude from the MDO analysis results that this point 
is an additional Pareto optimal design point (Fig. 6). 
The meta-models predicted somewhat over-estimated 
values for range and fuel efficiency for this point 
(Tab. 3). 

 

 

 

Furthermore, this new design point provides a 
valuable additional point for the data set on which the 
meta-models are created, and hence the meta-models 
can be further improved and used again in the multi-
objective optimisation. Therefore the meta-models for 
range and fuel efficiency were regenerated using the 
same kriging models as before (kcg for range, and kle 
for fuel efficiency). In this optimisation the 100 design 
points from the new data set are used as the initial 
generation and the bounds of the search domain are set 
to the minimum and maximum values of the design 
parameters of the 100 design points. 

The resulting Pareto front (magenta diamonds in Fig. 
7) found with these improved meta-models provides a 
slight improvement compared to the Pareto front (red 
diamonds in Fig. 7) found with the previous meta-
models, as is shown in Fig. 7. The Pareto front again 
helps to further guide the computationally expensive 
full MDO evaluations to the most interesting designs 
for the team of expert designers. 

 

 

Fig. 7 Pareto fronts found with the initial meta-models (red diamonds) and the improved meta-models (magenta 
diamonds). 

 

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM



6 Conclusions 

The meta-modelling approach presented in this paper 
allows for efficient and extensive assessment of the 
investigated aircraft behaviour in the considered 
design domain. The predictive accuracy differs 
amongst the different meta-models that are used. For 
this data set the most appropriate accuracies were 
found for the kriging-linear-Gauss and kriging-
constant-Exponential models. The multi-objective 
Pareto front results directly provide the design 
information on which further design trade-off 
considerations can be based by the team of design 
experts involved. Additionally the Pareto front allows 
the design team to use the computationally expensive 
MDO design evaluations to those designs with 
relevance to the team. 

The results found, indicate that the largest range is 
found for the highest MTOW, which is 
comprehensible because most fuel can then be carried 
by the aircraft. On the other hand, fuel efficiency, 
expressed as range per unit of burnt fuel per 
passenger, decreases with increasing MTOW, which is 
also a plausible result. However, the Pareto points 
indicate that the best design points for range and fuel 
efficiency are quite consistently found for the 
maximum values for span and chord, and a sweep 
angle of about 25 degrees. 

 

7 Discussion 

The creation of the various meta-models in this study 
is computationally efficient, easily allowing for the 
use of a variety of meta-models based on polynomial 
functions, kriging models, neural networks and radial 
basis functions. The meta-models, in particular when 
used in combination with the optimisation algorithms, 
consume much less computational resources then the 
MDO design evaluations. 

The results of combining meta-models with optimisers 
provide the multidisciplinary team of design experts 
with the desired information on the designs being 
considered. In this case the results directly suggest the 
optimal values for the sweep angle, semi-span and 
chord, and allow for a roughly continuous trade-off 
between range and fuel efficiency. 

When additional data comes available, for example as 
demonstrated by the candidate optimum design point 
that was evaluated with the MDO simulation system, 
the meta-model can be extended easily to incorporate 
such additional data at low computational costs. When 
the expert team wants to consider different objectives, 
new meta-models can be produced easily based on all 
the information available in the integrated design 
model.  

The use of the integrated design model allows for the 
selection of other objectives and performing 

optimisations in a computationally efficient manner. 
This efficiency allows the multidisciplinary team of 
design experts to obtain more knowledge about the 
behaviour of their design in the considered parameter 
space, in a consistent way, i.e. the consequences of a 
change in one discipline are automatically taken into 
account by the other disciplines. This provides a more 
robust design. 

The innovative capability described above supports 
the design team when considering future design 
variants, complying with the requirement for product 
families, common for large civil aircraft designs. 
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