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Abstract 

 A hybrid lattice Boltzmann and level set method (LBLSM) for two-phase immiscible fluids 
with large density differences is proposed, where the two fluids are assumed incompressible. 
The common Navier-Stokes incompressible equations are replaced by lattice Boltzmann 
method for calculating the velocities of the domain. The interface of the two fluids is captured 
by the level set function that is a robust technique for capturing sophisticated changes in 
geometry and topology. The surface tension force is replaced by an equivalent force field 
which is proportional to the curvature of the interface and the experimental coefficient of 
surface tension. The method can be applied to simulate two-phase fluid flows with density 
ratio up to 1000 and viscosity ratio up to 100. In case of zero or known pressure gradient the 
method is completely explicit. Assuming zero pressure gradient, the coalescence of two 
droplets is simulated. Besides, the entrapment of a small bubble between the interfaces of the 
two droplets was also captured in the simulation. The results are in agreement with 
experimental results, so the new method (LBLSM) is valid for simulation of droplet 
phenomena. Afterwards the coalescence of three droplets is simulated and the evolution of the 
droplets in a proposed time scale is investigated. 
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1  Introduction   
  Multiphase flows are widely used in many fields 
such as petroleum engineering, nuclear engineering, 
sprays, wave mechanics, bubble dynamics, bio 
engineering and combustion. Developing a method for 
simulation of various types of multiphase flows is one 
of the most important engineering challenges. In case 
of large density differences across the interface, due to 
the significant role of the forces between the 
components, the complexity of the simulation doubles.  

Collision dynamics of two droplets is one of the most 
fascinating and also sophisticated problems in 
computational fluid mechanics. The phenomenon of 
binary coalescence, in which two droplets merge and 
form a single droplet, is an essential feature in many 
natural and industrial processes and therefore its 
simulation may be extensively used in various 
phenomena such as spray coating, hydrocarbon 
fermentation and waste treatment [1-2]. 
  Several methods have been used for modeling of 
multiphase flows. They are divided into 
"front/interface tracking" and "front/interface 
capturing" methods.  In front tracking the position of 
the interface is calculated explicitly, and a deforming 
mesh is used in accordance with the interface. On the 
other hand, front capturing methods are much more 
robust but they need high mesh resolution.  In these 
methods an auxiliary function is used to identify each 
component. Volume of fluid methods (VOF) [3], 
phase field methods and level set methods [4-5] are 
examples of interface capturing methods. VOF 
methods are based on conservation laws, so they have 
excellent conservation properties, but encounter 
difficulties dealing with large topological changes and 
geometrical complexities. Level set methods are not as 
strong as VOF methods in conservation properties, but 
they are very robust in modeling sophisticated 
interfaces and rapid changes in topology such as 
breaking down or coalescence that cannot be handled 
by a standard front tracking method. The reader is 
referred for more information to a wide literature and, 
in particular, the books of Sethian [4] and Osher [6] 
that give a very clear introduction to these methods. 
 Sussman and Fatemi [7] developed efficient 
techniques for simulation of such problems employing 
level set methods. Similar algorithms have been 
suggested by others [8-9], but in these methods 
velocity field is calculated by solving incompressible 
Navier-Stokes equations that has its own problems 
inherent while solving second-order nonlinear PDEs. 
Besides, these two PDEs must be solved 
simultaneously. 
   In the last 15 years the Lattice Boltzmann method 
(LBM) has been used and developed for solving many 
fluid dynamic problems. LBM is developed from 
lattice gas automata (LGA) and is a kinetic-based 
approach. In contrast to the Navier-Stokes solvers that 
need to treat the nonlinear convective term, LBM 
solvers avoid the nonlinear convective term, because 

the convection becomes a simple advection term [10]. 
Imposing boundary conditions, especially those 
involving complex geometries, is simpler in LBM. 
Since the Boltzmann equation is kinetic-based, it can 
be easily and successfully used for simulation of 
micro and nano-scale fluids. For more information on 
the advantages and details of LBM we refer the reader 
to the comprehensive paper of Yu et al. [10] on the 
subject. 
  In present work we have used the method of 
Sussman and Fatemi [7], but we have replaced 
conservation laws with the LBM in order to solve the 
velocities of the domain.  The LBM adopted is the 
single-relaxation-time (SRT) model known as 
Bhatnagar-Gross-Krook (BGK) model [11]. The 
proposed algorithm makes use of the advantages of 
both LBM and level set method. 

2  Governing equations 
  The governing equations controlling the motion of 
multiphase flows are level set equations and Lattice 
Boltzmann equation. The velocity field is solved using 
LBM (BGK). 

 The calculated velocities are the input of level set 
method which determines the new position of 
interface in the velocity field. The level set equation 
used is similar to convection equation. 
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 2.1  Lattice Boltzmann method 

 In LBM the velocity of the domain is calculated 
employing the following differential equation: 
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 Where ( , , )f x tξ  is particle velocity distribution 

function; ( )eqf  is equilibrium distribution function 

(Maxwell-Boltzmann distribution function); iF  is the 

component of force in i ; xe t
∆= ∆ ; λ  is the 

relaxation time; eα is the velocity vector of the 

particle in the α  direction; Nα is a constant, which is 
decided by the lattice pattern. 
  In order to solve for f , Eq. (2) is first discretized in 
the velocity space using a finite set of velocity 
vectors{ }αξ . In present work the 2-D 9-velocity 
(2DQ9) single-relaxation-time (SRT) BGK model is 
used [11]. In 2D9Q model the finite set of velocity 
vectors consists of nine eα vectors, which is shown in 
Fig. 1. 
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Fig. 1)2-D 9-velocity model 

The equilibrium distribution used in D2Q9 model is 
approximated by a polynomial of macroscopic 
properties and is derived from conservation laws. 
  The spatial and temporal discretization of Eq. (2) by 
an explicit finite difference method yields the lattice 
Boltzmann equation (Eq. (3)): 
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where t
λτ = ∆  . The kinematic viscosity of the fluid 

can be obtained from 2( 1/ 2) sc tν τ δ= − , where 

sC is the speed of sound in lattice. 
Navier-Stokes and continuity equations can be 
recovered from lattice Boltzmann equation using 
Chapmann-Enskog expansion [12]. 
   In low Mach flows that / 1su c <<   lattice 
Boltzmann equation is first-order accurate for 
macroscopic continuity and momentum equations and 
can be extended up to second-order accuracy by using 
a suitable form for force term [13]. 

2.2  Level set method 

 Level set methods (LSM) are used to capture the 
interface. Instead of tracking the interface and dealing 
with the complex geometry of interface we capture the 
interface implicitly using an auxiliary scalar function. 
This makes it possible to simulate great topological 
changes such as coalescence and breaking-up easily. 
The level set function is typically a smooth (Lipschitz 
continuous) function, denoted here as ( , )x tφ . The 
sign of the level set function determines the phase we 
are dealing with. In our algorithm, the interface is the 
zero level set ofφ ,  

{ }| ( , ) 0x x tφΓ = = .                     (3)                                                         

 Without loss of generality assume 0φ <  in low 
density region (gas) and 0φ > in high density region 
(liquid), therefore we have 
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 The properties of the fluid, such as density and 
viscosity, are functions of ( , )x tφ . 
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and similarly, 
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 When the level set function is a smooth distance 
function, the interface will have a constant thickness. 
The unit normal of the interface, from gas into liquid, 
and the curvature of it can easily be expressed in terms 
of ( , )x tφ such as: 
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 Since the interface moves with the velocity of the 
fluid, the evolution of φ  is governed by convection 
equation, 
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2.2.1  Thickness of the interface 

  If we use Heaviside function as described in Eq. (7), 
the thickness of the interface will be assumed zero and 
we will get poor results. Besides, we will face 
difficulties in using exact Dirac delta function for 
modeling surface tension. In order to alleviate these 
problems we will give the interface a thickness of 

xε α= ∆ , where 1α > . We substitute a smoothed 
Heaviside function ( )Hε φ  for the sharp Heaviside 

function ( )H φ . The smoothed Heaviside function 

( )Hε φ  defined as below: 
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and the smoothed delta function is  
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and consequently, the thickness of the interface is 
equal to 

2ε
φ∇

 .                               (12) 

  In the present work the interface must have a 
constant thickness so that φ∇  becomes constant 
near the interface. Level set function must be a signed 
distance function and present the shortest normal 
distance to the interface, Γ . A signed distance 
function has the following properties: 

1 , 0d for d for xφ ε∇ = ≤ = ∈Γ .(13)                             

  As the interface evolves, φ  will generally drift away 
from its initialized value as signed distance, thus the 
technique presented needs to be applied periodically in 
order to keep φ  approximately equal to signed 
distance, the process is called re-initialization. In [5] 
Sussman, Smereka and Osher proposed a differential 
equation for the process as 
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( ,0) ( , )d x x tφ=  and dτ is fictitious time. Eq. (14) 
must be solved to reach steady state condition. When 
the convergence occurs the right hand side will be 
zero, so d∇  will be equal to zero. Instead of sharp 
sign function some forms of smooth sign function may 
be used as 

1( ) 2( ( ) )
2

S Hε εφ φ= − .             (16)                                              

   In order to analyze Eq. (14), we may rewrite it as 

. ( ),d

d w d S φ
τ
∂

+ ∇ =
∂

                  (17)                                             

where 

( ) dw S
d

φ ∇
=

∇
 .                       (18)                                                       

  In the present work the explicit method developed by 
Sussman and Fatemi [7] is used and the interested 
reader is referred to the literature for more details on 
the method. 

2.2.2  Surface tension modeling 

  In many fluid mechanic problems surface tension 
forces become of utmost importance. In the present 
work the macroscopic approach suggested by 
Brackbill et al. [14] has been used and surface tension 
is modeled as a body force in the vicinity of interface. 
Similar methods have been proposed by Unverdi and 

Tryggvason [15], and Chang et al. [16] that also 
represent surface tension as a body force. The 
magnitude of the force is proportional to the curvature 
of the interface ( )κ φ  and is calculated solving the 
following relation: 

. ( ) ( )
( ) ( )
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ε

σκ φ φ
σκ φ δ φ φ

= − ∇
= − ∇

.             (19) 

When the level set function is a signed distance 
function, the curvature of the interface ( )κ φ  can be 
found by solving φ  from the following relation: 

( ) . φκ φ
φ

⎛ ⎞∇
= ∇ ⎜ ⎟⎜ ⎟∇⎝ ⎠

.                    (20)                             

  As mentioned above this force is localized near the 
interface and is equal to zero far from it. 

2.3  The new method (LBLSM) 

  In the current implementation of level set method the 
velocities of the domain as the input of level set 
method must be solved. Sussman and Fatemi [7] used 
incompressible Navier-Stokes equations for 
calculating the velocities as below: 

( ) ( ) .

.(2 ( ) ) ( ) ( )
( ) , . 0

u u u p
t

D
g u

ρ φ ρ φ

µ φ σκ φ δ φ φ
ρ φ

∂
+ ∇ +∇

∂
−∇ = − ∇
+ ∇ =

        (21) 

where ρ andµ  are density and viscosity 
respectively, δ is the Dirac delta function and D is 
the rate of deformation tensor. We must use Eq. (21) 
in all the nodes, so after each time step the velocities 
will change but the densities will remain the same.  
Considering Eq. (21), we see that the left hand side is 
the single-phase Navier-Stokes equation and the right 
hand side can be considered as a body force term, so 
Eq. (21) can be replaced by the lattice Boltzmann 
equation with a force term. If we implement this 
algorithm, it is seen that after each time step the 
densities of the two neighbor nodes, especially those 
about the interface, affect each other and spurious 
vortexes form near the interface. This problem 
intensifies in case of high density ratios. In order to 
solve this difficulty the following procedure is used. 
Eq. (21) may be rewritten as  

.(2 ( ) ).
( ) ( )

( ) ( )
( )

u p Du u
t

g

µ φ
ρ φ ρ φ

σκ φ δ φ φ
ρ φ

∂ ∇ ∇
+ ∇ + −

∂
∇

= − +
.  (22)                   

  The above equation is similar to the Navier-Stokes 
equation for a fluid with the virtual density equal to 
unity and forces equal to the left hand side except for 

the 
( )
p

ρ φ
∇

 term. When pressure gradient is equal to 
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zero this term vanishes. In order to avoid this problem 

we add p∇  and 2( )( )( )
( )

uµ φ
ρ φ

∇  terms to both sides of 

the relation and Eq. (22) may be rewritten as  
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(23)                                          
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       (24)                         

where ( )ρ φ  is the virtual density approximately 
equal to unity; ( )µ φ  is the virtual viscosity and is 
equal to ( ) / ( )µ φ ρ φ , and the right hand side can be 

considered as a force term called F . When the 
pressure gradient is identical to zero or known, such as 
hydrostatic pressure, the velocities may be calculated 
easily in a completely explicit procedure. Besides, as 
Eq. (23) is solved in the frame of LBM there is no 
need to worry about the continuity equation, because 
the mass conservation is satisfied up to first or second 
order, depending on the force term modification. In 
this context the velocities are approximately 
divergence free. When the velocity field is solved by 
the present algorithm, it will be used by level set 
method to update φ  and find the new position of 
interface. The interested reader is referred to the paper 
of Mehravaran and Hannani [17] for more explanation 
on the method. 

3  Numerical method 
  In this Section it will be shown how the governing 
equations have been implemented numerically. The 
method proposed by Sussman and Fatemi [7] for the 
re-initialization process will be used. They focused on 
preserving the amount of material in each cell, i.e. 
preserving the area (volume) in two (three) 
dimensions. 

3.1  Level set equation discretization    

  The level set equation may be solved by first-order 
upwind method as 

1

0
n n

n n n n
x yu v

t
φ φ φ φ

+ −
+ + =

∆
,          (25)                                        

but it may lead to poor results when simulating 
geometrically complex phenomena. The first-order 
accurate upwind scheme can be improved upon by 
using more accurate approximations for xφ

+  and xφ
− . 

The velocity u  is used to decide whether  xφ
+  or xφ

−  
should be used, but the approximations for spatial 
derivatives xφ

+  or xφ
− can be improved significantly. 

The methods used in the present work are known as 
essentially non oscillatory (ENO) method and 
weighted essentially non oscillatory (WENO) method. 
In ENO method we use the smoothest possible 
polynomial interpolation to find φ  and then 

differentiate to obtain xφ , but in WENO method 
weighted convex approximation of three possible 
ENO approximations is used (see [6] for more 
information on ENO and WENO methods).  
  In Section 2.2 we explained the importance of 
maintaining level set function φ  as a signed distance 
function from the interface. When the level set 
function updates it will distort and may lose its 
property of being a signed distance function. Ideally 
the interface remains stationary during the re-
initialization process, but as we solve the re-
initialization equation numerically the interface may 
have a small movement. Sussman and Fatemi [7] 
proposed an improvement to the standard re-
initialization process. Since their application was 
multiphase incompressible flow, they focused on 
preserving the amount of material in each cell, i.e. 
preserving the area (volume) in two (three) 
dimensions. The interested reader is referred to [7] for 
more explanation on the details of the volume 
constrained re-initializing method. The developed 
constraint will significantly improve the accuracy of 
solving Eq. (14). 

4  Numerical results and discussion 
  In this part several 2D problems has been solved 
using the hybrid formulation of lattice Boltzman and 
level set methods. 

4.1  Binary droplet collision 

  In this part coalescence of two droplets has been 
solved; the dimensionless parameters for binary 
droplet collisions are the Weber number 

' 2 /LWe DVρ σ= , the Reynolds number 
'Re /L LDVρ µ=  and the impact parameter 

'/Bo X D= , where X is the distance from the 
center of one droplet to the relative velocity vector 
placed on the center of the other droplet and 'D  is the 
diameter of each droplet. The problem was 
experimentally studied for water droplets 356 µm in 
diameter with a Weber number of 70.8, an impact 
parameter of .25, and a Reynolds number of 327.7 by 
Qian and Law [18] and is shown in Fig. 2a. In our 
simulation we imposed periodic boundary conditions 
on all of the boundaries, there are large differences 
between the densities and viscosities of the 
components; / 1000l gρ ρ =  and / 100l gµ µ = . 

The two droplets collide with velocities of .08± . The 
mesh used in the simulation is 300 150×  and steps 
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are .001x y t∆ = ∆ = ∆ = . The dimensions used are 
not exactly those studied by Qian and Law [18], but 
they are chosen somehow to lead to similar , ReWe , 
and Bo  numbers. We use non-dimensional time as 

* '/t tV D=  where V  is the relative velocity of two 

droplets. In our simulation the maximum error in mass 
(or area) was less than .07, and the average error was 
less than half of this amount, and is due to the fact that 
we have solved the problem in the framework of 
lattice Boltzmann method which satisfies mass and 
momentum conservation laws simultaneously.

Fig. 2.a)  
 

Fig. 2.b)     

                 0.0* =t  .1* =t  2.3* =t
 

8.4* =t  4.6* =t  5.8* =t  1.10* =t  

Fig. 2) Time evolution of droplet deformation in non-dimensional time *t  and a comparison between a) 
experimental photographs [18] and b) the results of numerical simulation for 8.70,7.327Re == We  and 

25.=Bo . 
 

  In spite of the fact that our code is based on a 
2D/Cartesian grid and we have neglected pressure 
gradient, we see that there is good agreement with the 
experimental results. To get better results we may extend 
our code to 3D.  
  In coalescence collision, the momentum of colliding 
drops is high enough to push out. gas layer entrapped 
between them, but the entrapment of a small air bubble 
in high energy impacts is experimentally observed. 
Mehdi-Nejad et al. [19] reported that air bubble may 
form under impacting droplet on a solid surface (Fig. 3). 
Bubble entrapment may also happen in the case of 
droplet impact on a liquid [20]. This phenomenon is 
observed in our recent simulation as well (Fig. 4), but 
the entrapped bubble disappears gradually. When two 
drops approach each other, air is forced out in the gap 
between them. Increased air pressure between drops 
creates a depression in combined drop in which air is 
trapped [19] and the pressure of the entrapped bubble 
increases. As we have neglected this pressure gradient in 
our simulation, the bubble may not persist long and 
disappears due to diffusion slowly. 

 
Fig. 3) Impact of N-heptane on a solid surface; air 

bubble is visible inside the drop [12]. 

.1* =t  6.1* =t  
Fig. 4) Entrapment of a small bubble after coalescence 

using LBLSM. 

4.2  Triple droplet collision 

  We have simulated the behavior of three droplets 
after collision; the droplets are located on corners of a 
quadrilateral triangle and the velocities are directed at 
the angle of 45 degrees towards the horizon, so the 
problem is only symmetric relative to the horizontal 
axis. The velocities and geometry of droplets are 
shown in Fig. 5. 

 
Fig.5) Geometry and velocities of droplets before 

collision 
 In our simulation we imposed zero gradient boundary 
conditions on all of the boundaries, we assume large 
differences between the densities and viscosities of the 

.08m/s

45'

45'

208.

208. m
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components; / 1000l gρ ρ =  and / 100l gµ µ = . 

The mesh used in the simulation is 200200×  and 
steps are .001x y t∆ = ∆ = ∆ = . We use the velocity 
of the left hand side droplet (V=.08 m/s) for 

calculating We  and Re  numbers, that will lead to 
dimensionless parameters of 7.17=We  and 

164Re = . The maximum error in mass (or area) 
was about .04. The simulation is shown in Fig. 6. 

 

 
0.0* =t  27.* =t  53.* =t  8.* =t  07.1* =t  33.1* =t  13.2* =t  

 
2.3* =t  07.5* =t  13.6* =t  4.6* =t  93.6* =t  47.7* =t  07.9* =t  

Fig. 6) Time evolution of droplet deformation in non-dimensional time '* / DtVt =  according to the results of 
numerical simulation for 164Re =  and 7.17=We .

 
5  Concluding remarks 
  A hybrid lattice Boltzmann level set method 
(LBLSM) for incompressible two-phase immiscible 
fluids with large density differences has been 
developed. The method can simulate two-phase flows 
with density ratio up to 1000 and viscosity ratio up to 
100, especially in case of zero or known pressure 
gradient. The coalescence of two and three droplets 
after collision has been simulated by the current 
method. The simulations compare well with 
experimental or analytical results. The method is 
convenient for capturing complex geometries. 
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