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Abstract

Bond Graph has been used extensively in engineering applications for modeling and simulation
of many kind of dynamical systems. Interaction between different domains can be explicitly
expressed and cause-effect (causality) is well established by using this modeling tool. In this
work, Bond Graph is employed for fault diagnosis in order to precisely find the fault on the
system and at the same time, to well simulate the system dynamics. The methodology utilizes
three principal stages (topographic search): causal graph, fault tree, and temporal causal graph.
These stages are activated by qualitative values from the fault detection module when the fault
appears. In order to obtain an effective fault diagnosis strategy, behavioral information about the
parametric faults is employed for locating the specific fault. Sets of observations representing
the abnormal state of the system are used as search templates to find a matching set in a library
of known symptoms related to different abnormal system conditions (symptomatic search). In
this way, an integrated strategy for faults diagnosis is proposed. All this information can be
obtained from the same Bond Graph model, which allows an effective way for simulation of
the treated system. The application is on the three-phase induction motor, six faults related to
the winding phases are considered (short-circuit and open-circuit faults). Simulation results are
presented in order to show the satisfactory results obtained.

Keywords: Fault detection, fault diagnosis, Bond Graph, three-phase induction motor,
modeling and simulation.
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1 Introduction

The squirrel cage induction motor is one of the electric
rotary machines most used in low, medium and high in-
dustrial applications. This machine is susceptible to fail
and this represents lost of money and time for industry.
Some of the widely encountered machine failures in-
clude stator winding failures, broken bars, and bearing
race [1]. Therefore, the anticipated detection of pos-
sible faults allows to program its maintenance and to
reduce costs on line productions.

In the Fault Detection and Diagnosis (FDD) area, there
are many techniques that have been applied to the in-
duction motor [1], [2]. Most of these methods need
a high signal processing and high cost sensors. Other
methods need few hardware and software effort, thus
FDD is not the best but the effective and then there is a
trade-off between advantages and disadvantages.

For fault diagnosis, Bond Graph (BG) has been pro-
posed and explored since nineteen decade [3], [4]. Be-
cause BG was born as a modeling technique, few work
exists in using it for FDD. However, BG is a practi-
cal technique to construct models in an unified way
whatever the physical system. It shows a direct cor-
respondence between system components and physical
phenomena affecting the system. Therefore, it is rel-
atively easy to obtain not only the model of a system
but also a component fault representation. By using
BG modeling in FDD methodologies, papers as [5],
generates analytical redundancy relations (ARR) from
a BG model based on structural and causal properties,
also elimination of unknown variables from the corre-
sponding process model is proposed. Based on causal-
ity inversion provided by the BG model, i.e., introduc-
ing process measurements as sources such that they are
external nodes, a strategy is proposed in [6]. Most of
authors that have employed the BG for modeling in-
duction motors, consider theqd transformation [7], [8],
[9]. However, when diagnosis related to the real motor
is applied, only information from a different reference
frame is obtained. In [10], a squirrel cage induction
motor model in a direct physical correspondence is pre-
sented, but a deep diagnosis is not applied. Using this
result, this paper pretends to show how the BG might
be used to cope modeling, simulation and fault diag-
nosis aspects, in order to take advantage from the only
obtained model.

In this paper, an application of the BG modeling theory
in a fault diagnosis strategy is presented. This strategy
starts out with the usual qualitative FDD method de-
veloped in [3], where topological search from the BG
model is employed. The significance of our work is
that it provides a simple and effective integrated analy-
sis in order to simulate and to obtain an useful fault di-
agnosis. Our contribution is with respect to propose a
modification to the original method [3] in order to be
able to analyze the derivative causality involved in the
motor model, by modifying the fault tree construction,
and by using system’s behavioral analysis when para-
meters fail, i.e., symptomatic search. The application
is entirely in simulation (under softwareMATLAB c© v7

andSIMULINK c© v6.1) and supposes a machine work-
ing at the steady state. Although faults in a squirrel cage
inductor motor may be mechanical, electrical or both of
them, we consider only electrical faults, and from these,
we consider short-circuit and open-circuit faults in the
stator winding. It is pointed out that the strategy pre-
sented here, can diagnose other parametric faults, but
we consider the latter more interesting in order to show
the capability of the strategy. Related applications us-
ing the BG-based fault diagnosis proposed in [3] can
be found, as a liquid-solid cooled system [4], a direct
current motor [11], and a three-phase inverter [12], but
there is not application in alternating current machines.

The paper is organized as follows. Section 2 contains a
general overview of the BG modeling theory. The fault
diagnosis approach employed in this paper is described
in section 3. In section 4 the induction motor model
in qd reference frame, and its respective BG model are
presented. Then, application results are given in section
5. Finally, in section 6 conclusion is given.

2 Bond Graph Modeling
This theory has been extensively used to model multi-
energy domain systems. BG technique and formulation
of mathematical equations is well discussed in [13] and
[14]. In this formalism there is a small and well defined
set of generic physical mechanisms that are described
as BG elements, which show the system interactions.

2.1 Elements

In BG terms, two sources (Se and Sf ), three gener-
alized passive elements (I, C, andR) and four con-
straints (0, 1, TF , andGY ) are used to model any en-
ergetic process. The idea is to represent the power ex-
change between lumped elements and to use the refer-
ence power directions as an unified coordinate system
across different energy domains. Power variables are
the generalizedflow and the generalizedeffort, whose
product is the power. The BG elements are:

• Energy Source: effortSe and flowSf .

• Dissipation energy element:R.
• Storage energy elements: CapacityC relates po-

tential energy and inertiaI relates kinetic energy.
• Conversion energy elements: TransformerTF ,

which does proportional the effort and the flow of
the same physical domain. GyratorGY , which
does the effort of one physical domain propor-
tional to the flow of other physical domain.

• Effort junction or0-junction: Its symbol is a zero
and hold the same effort over all bonds connected
to it. The algebraic sum of all flows is zero.

• Flow junction or1-junction: Its symbol is a one
and hold the same flow over all bonds connected
to it. The algebraic sum of all efforts is zero.

2.2 Causality

Causalityrepresents the sense in which variables are re-
lated as cause-effect. Graphically, the causality is rep-
resented by a stroke (causal stroke) that indicates, by
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convention, in which way the effort is applied, and the
flow being applied in the other way. In the case of Fig.
1 a), A imposes the effort toB andB the flow toA. The
inverse case is presented in Fig. 1b). For storage ele-
ments, according to the position of the causal stroke, we
define the notion of integral and derivative causality. In

A B
e

f

e

f
A B

A B
e

f

e

f
A B

a) Causality from A to B. b) Causality from B to A.

Fig. 1 Causal stroke in Bond Graph

integral causality(preferred causality) the constitutive
relation between the effort and the flow is under an inte-
gral form, and inderivative causalityunder a derivative
form [14]. A procedure called Sequential Causal As-
signment Procedure (SCAP) [13] allows to assign the
causality to the whole BG model that then becomes a
causalBG. SCAP is briefly enumerated as follows:

1. Choose any source (Se, Sf ), and assign its re-
quired causality. Extend the causal implications
through the graph as far as possible, using the con-
straint elements (0, 1, GY , TF ). Repeat until all
sources have been used.

2. Choose any storage element (C or I), and assign
its preferred (integration) causality. Extend the
causal implications through the graph as far as
possible, using the constraint elements (0, 1, GY ,
TF ). Repeat until all storage elements have been
assigned a causality. In many practical cases all
bonds will be causally oriented after this stage. In
some cases, certain bonds will not yet have been
assigned. Then the causal assignment is completed
using the following two last steps.

3. Choose any unassignedR-element and assign a
causality to it (basically arbitrary). Extend the
causal implications through the graph as far as
possible, using the constraint elements (0, 1, GY ,
TF ). Repeat until allR-elements have been used.

4. Choose any remaining unassigned bond (joined to
two constraint elements), and assign a causality
to it arbitrarily. Extend the causal implications
through the graph as far as possible, using the con-
straint elements (0, 1, GY , TF ). Repeat until all
remaining bonds have been assigned.

There are many advantages of using causality, such as
systematic equation derivation and detection of equa-
tion incoherences. For 0-junction, all bonds connected
to it are constrained by the junction to have the same
effort value at all times, and only one of the bonds con-
nected to the junction will set the effort value of this
junction (causal stroke at the side of the junction), all
other bonds will use it. In Fig. 2, efforte4 and flowf4

Fig. 2 Causality for the two kinds of BG junctions

are called consequent variables and the rest are prece-
dent variables. The relationships are:

e1 = e2 = e3 = e4, (1)

f4 = f1 − f2 − f3. (2)

For 1-junction, the dual case of the 0-junction, all
bonds connected to it are constrained to have the same
flow values, this implies that only one of the bonds con-
nected to the junction will set the flow value of this
junction (causal stroke away from the junction), and all
other bonds will use it. In Fig. 2, efforte4 and flowf4

are called consequents variables and the rest are prece-
dent variables. The relationships are:

f1 = f2 = f3 = f4, (3)

e4 = e1 − e2 − e3. (4)

Readers interested on more aspects related to BG are
encouraged to consult basic literature on the subject
([13], [14], and references in [3], or [11], for example).

3 Fault Diagnosis
A system that includes the capacity of detecting, iso-
lating, identifying or classifying faults is called a fault
diagnosis system [15]. The idea is to generate signals
that reflect inconsistencies between the nominal and the
faulty system operation. Such signals, termedresiduals
(symptoms), are usually generated using analytical ap-
proaches resulting from comparisons. Then, a decision
procedure for diagnosis, which allows the determina-
tion of the type of fault with as many details as possible
(such as the size and location), is required. Here is con-
sidered that a model of the system exists.

Model-based FDD methods require a mathematical
model representing the system dynamics. According to
[15] and [16], FDD methodologies can be grouped in
quantitative and qualitative approaches. A FDD system
should combine both numerical (quantitative) and sym-
bolic (qualitative) information in order to be complete
[15]. Use of an energy-based modeling tool such as BG
to formulate equations is well established for physical
systems, being a modeling methodology well suited to
cover these two aspects for FDD.

3.1 Qualitative and Quantitative Approaches

Model-based methods are usually developed based on
some fundamental understanding of the physics of the
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process [15]. Inquantitativemodels this understanding
is expressed in terms of mathematical functional rela-
tionships between inputs and outputs of the system. In
contrast, inqualitative models these relationships are
expressed in terms of qualitative functions (structural
and functional analysis, signed directed graphs, etc.)
centered around different process units. Then a search
of the fault is required.

3.1.1 Qualitative Analysis

There are fundamentally two different approaches to
search in qualitative fault diagnosis [17]: topographic
search and symptomatic search.Topographicsearches
perform malfunction analysis using a template of nor-
mal operation, whereas,symptomaticsearches look for
symptoms to direct the search to the fault location. A
set of observations representing the abnormal state of
the system can be used as a search template to find a
matching set in a library of known symptoms.

3.2 Bond Graph for Qualitative FDD

In the methodology developed in [3] topographic search
is employed, where search is performed in the faulty
system with reference to a template representing normal
or planned operation [17]. The fault will be found as a
mismatch and identified by its location in the system.
Note that here assumption is made only about the nor-
mal operating mode. Applications using this method-
ology have been successfully developed in a cooling
system [4] and in acd motor [11]. This methodology
contains the following stages that will be applied to the
induction motor. Details of each stage can be found in
detail in [3], [4], or application of them in [11] and [12].

3.2.1 Causal Graph

The causal graph shows the path of a signal magnitude
when a change propagates through the system elements.
Signal magnitude changes are defined as qualitative val-
ues compared with nominal signal values: ”+” if the
signal magnitude increases, ”−” if the signal magnitude
decreases and ”0” if the signal magnitude is constant.
This graph is based on the BG model equations.

3.2.2 Fault Tree

The objective of this stage is to get a fault hypothesis set
with elements that might generate the abnormal behav-
ior, i.e., a first fault localization stage. It is propagated
(in reverse way) a non admitted signal magnitude (fault)
through each effort and flow variable, and through the
system parameters. Each variable has a fault tree, and
this begins in a measured or estimated variable which
changes qualitatively (+,−, 0) after a fault occurs. This
change propagates through the causal graph and the
possible faulty parameters are collected. This analysis
gives a set of possible parameters that can be the origin
of the supposed fault. Normally, when a fault occurs,
a propagation of a signal magnitude change finishes
when an effort or flow variable is found two times. A
changeto the original methodology in [3]is proposed.
In this variant,propagation finisheswhen an effort or
flow variable is found two timesbut with a different
sign for the measured or estimated variable. Using this

change to the methodology, in [12] an application to the
three-phase inverter is presented.

3.2.3 Temporal Causal Graph

This stage (known as TCG) performs fault hypothesis
sets reduction previously obtained from the fault tree.
In a similar way as that for fault trees, a forward propa-
gation is done but in this case is through the differentials
elements: information of qualitative changes of vari-
ables and their derivatives are obtained.Signatures, i.e.,
prediction of the zero, first, and higher order time deriv-
ative effects of a system variable as qualitative values,
are employed to construct the TCG’s. This information
is compared with the real variables and with their cor-
responding derivatives in order to determine the system
faulty parameters. Details can be consulted in [3].

4 Three-Phase Induction Motor
The squirrel cage induction motor considered here can
be found in more detail for analysis and operation pur-
poses in [18]. For this machine, voltages and currents
of both stator and rotor are changed to the arbitrary ref-
erence frameqd axis by means of the following trans-
formation equations:

Vqd = RIqd + ΩpΛqd, (5)

where Vqd = [vqs vds 0 0]T , p is the differen-

tial operator,Iqd = [iqs ids iqr idr]
T , Λqd =

[λqs λds λqr λdr]
T are the voltage source vector,

the current vector and the flux vector inqd axis, respec-
tively. Matrix R=diag(Rs, Rs, Rr, Rs), and:

Ω =




0 ω 0 0
−ω 0 0 0
0 0 0 (ω − ωr)
0 0 −(ω − ωr) 0


 , (6)

whereRs is the stator resistance,Rr is the rotor resis-
tance,ω is the reference speed, andωr is the shaft rotor
speed. The flux vectorΛqd is defined as:

Λqd =




Ls 0 M 0
0 Ls 0 M
M 0 Lr 0
0 M 0 Lr


 Iqd, (7)

whereM = 1.5Lm, Lm is the mutual inductance,Ls

is the stator inductance, andLr is the rotor inductance.
The instantaneous electromagnetic torque is:

Γe =
(n

2

) (
P

2

)
(λqridr − λdriqr) , (8)

wheren is the number of phases andP is the number
of poles. Dynamic characteristics of this machine relate
torque and shaft speed through (9):

Γe = J

(
2
P

)
dωr

dt
+ βωr + ΓL, (9)

whereJ is the machine inertia andΓL is the applied
load torque. Based on Eqs. (5)-(9), the two electric
circuits shown in Fig. 3 are obtained.
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Fig. 3 a) Theq and b)d equivalent circuits of symmet-
rical induction motor in arbitrary reference frame

4.1 Bond Graph Model

Based on the BG rules to construct a model (see§2),
the circuits of Fig. 3, and the Eqs. (8)-(9), the BG
model of the induction motor in the stationary reference
frame is obtained (see Fig. 4). Each electric circuit has

Fig. 4 Bond Graph model of three-phase induction mo-
tor in the stationary reference frame

the energy storage elementsLs, Lr andLm intercon-
nected. This type of connection, in the context of BG,
represents azero causal path[19]. This causal path is
because two energy storage elements (Ls andLr) are
coupled through another energy storage element (Lm),
and in order to apply the causality to the junction which
connects them, a differential causality in one of the el-
ements is presented.

Typical solutions to this problem are Lagrangian mul-
tipliers [19], singular perturbations [3] and theI-fields
[8], [10], [14]. Lagrangian multipliers and singular per-
turbations modify the model structure by including ad-
ditional elements without physical interpretations (R or
C, principally) to change causality at the adjacent junc-
tions, and therefore, causality in the storage elements.
I-field is a mathematical artifice which preserves all
physical elements and does not include additional el-
ements as the other methods [8], [14]. The idea is to
redraw bonds of the storage elements in such a way that
they can be connected to the rest of the bonds through
only two bonds. Consequently,I-fields are input-output
relations between flow and effort variables. The re-
sulting BG model of the three-phase induction motor

Fig. 5 Bond Graph model of the three-phase induction
motor in the stationary reference frame withI-fields

using theI-fields is shown in Fig. 5. However, this
model is not appropriate to develop a fault diagnosis in
a real physical correspondence because any change is
reflected in theqd frame not inabc frame. Thus, this
fact implies two things: firstly, it is necessary to include
the coordinate transformation in the model, and sec-
ondly, if this coordinate transformation has a BG rep-
resentation, it must preserve the amplitude and power.
Fortunately, both conditions can be carried out. The co-
ordinate transformation [9] is:

[
vq

vd

]
=

[ √
2
3 − 1√

6
− 1√

6

0 1√
2

− 1√
2

][
va

vb

vc

]
. (10)

Equation (10) has a BG representation and it is included
in the BG model in order to obtain the model depicted
in Fig. 6. The transformersTF1-TF5 achieve the coor-

Fig. 6 Bond Graph model of the three-phase induction
motor including Eq. (10) andI-fields

dinate transformations by means of:

m1 =
√

3/2, m2 = m3 = −
√

6,

m4 =
√

2, m5 = −
√

2.
(11)

For the gyrators it is taken:

r1 =Lmf28 + (Lr + Lm)f27, (12)

r2 =Lmf19 + (Lr + Lm)f20, (13)

and for the transformer of the mechanical part:

np = 2/p. (14)

This model has seven electrical output variables, three
are physically measured (three stator currents:ias (f3),
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Fig. 7 Shaft speedωr(f32) (top) and torqueΓr (bottom)
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Fig. 8 Stator currentsias, ibs andics

ibs (f7), ics (f14)), and one mechanical output variable:
the shaft speedωr (f32), also measured.

In order to validate this model for simulation (cf. [18]),
Fig. 7 shows the shaft speed and torque, whereas Fig. 8
shows the three stator currents. Simulations correspond
to a machine with the following physical parameters
values [18]:3 hp,4 poles, 220 V,60 Hz,Rs = 0.435 Ω,
Rr = 0.816 Ω, Xls = Xlr = 0.754 Ω, Xm = 26.13 Ω,
β=0.089N ·m · s, τl=10N ·m andJ = 0.089 kg ·m2,
and to simplify the application, without loss of general-
ity, it is considered thatRs = Ras = Rbs = Rcs, and
Rr = Rdr = Rqr.

5 Application Results

All results, obtained by simulation, consider open-loop
operation. The fault diagnosis strategy is only focused
on the electric part of the motor.

5.1 Fault Scenarios

Six faults on the stator winding are defined as follows:

F1- Open-circuit fault on the stator phase winding A.
F2- Open-circuit fault on the stator phase winding B.

F3- Open-circuit fault on the stator phase winding C.
F4- Short-circuit fault on the stator phase winding A.
F5- Short-circuit fault on the stator phase winding B.
F6- Short-circuit fault on the stator phase winding C.

Only unique, abrupt and permanent short-circuit and
open-circuit faults in the stator winding are treated in
this paper. The faults are generated by introducing
abrupt changes in the stator resistance value when the
machineoperates at steady state condition. For an
open-circuit fault the respective resistance increases in
1000% and for a short-circuit fault the respective resis-
tance decreases in90%.

5.2 Simulation results

As example, dynamic behavior of stator currents when
fault F1 occurs at time 1 second (when steady state has
been reached), is shown in Fig. 9. In the left subplots
of this figure, normal values are presented. For fault de-
tection, root mean square (rms) values of currents, and
shaft speed are employed as measured signals. These
values are presented in the right subplots of Fig. 9. Cal-
culation of signal derivatives is carried out by means of
state variable filters [15]. In order to detect the fault, a
change beyond 1% in the nominal stator currents, and a
change beyond 5% in the nominal shaft speed are used
as thresholds. For faultF1, magnitude ofias current de-
creases drastically to zero and both stator currents,ibs

andics, increase close to190% from their steady state
values. Fig. 10 shows rms and qualitative values when
fault F1 occurs (at time 1 second). The right side of this
figure presents only qualitative values (−, 0, +) for the
measured variables in the fault scenarios. These values
are collected and resumed in Tab. 1. For example, when
fault F1 occurs, currentias decreases andibs increases,
and so on for the other measured variables.

5.3 Fault Diagnosis Results

There are conditions that avoid to apply directly the
methodology proposed in [3]:
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Fig. 9 Stator currents when open-circuit fault in the
phase winding A occurs: a)ias, b) irms

as , c) ibs, d) irms
bs ,

e) ics, f) irms
cs
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Fig. 10 Rms and qualitative values when open-circuit
fault in the phase winding A occurs: a)ias, b) Qualita-
tive value forias, c) ibs, d) Qualitative value foribs, e)
ωr, f) Qualitative value forωr

Tab. 1 Fault signatures

Fault ias ibs ics ids idr iqs iqr ωr

F1 - + + - - + + -
F2 + - + + + + + -
F3 + + - + + + - -
F4 + - + + - - - 0
F5 + + - + + - - 0
F6 - + + - - + + 0

• Not all the storage elements in the BG model are
in integral causality even usingI -fields.

• Not all states of the system are observable because
the model includes a section of stator resistance
in theabc reference frame and the rest of electric
variables in theqd reference frame.

These conditions give empty fault hypothesis sets (see
second column of Tab. 2), thus the variant to the origi-
nal methodology [3] to construct fault trees, depicted in
section 3.2.2, is applied. Under this approach the resul-
tant fault hypothesis sets obtained from fault trees are
shown in the third column of Tab. 2. Since the number
of elements of these sets is greater than one, the tempo-
ral causal graph is used to reduce them. Nevertheless,
the temporal causal graph could not refine these sets.
Similar problems are presented in [4] and [20].

Based on the conditions and problems presented in the
two last stages of the methodology, and in order to re-
duce the fault hypothesis sets, it is employed the struc-
tured knowledge from the BG model and the one pro-
vided by thebehaviorof the faulty process. It takes
advantage from the underlying physical laws known in
analytical form of the BG model in order to reconstruct
the fault-symptom chains from the measured data, i.e.,
information from output variables in the fault scenar-
ios. This search of faults is also known assymptomatic

search (see 3.1.1). For the three open-circuit faults a
unique behavior pattern for each case is presented:

• Current magnitude through the short-circuited
winding decreases to zero, and the other current
values increase.

• Shaft speed magnitude decreases in the three
cases.

For this type of fault, a current increasing in each wind-
ing is because the winding resistance increases. There-
fore, in the fault hypothesis sets (third column of Tab.
2) each winding resistance has the qualitative value ”+”
and the adjacent winding resistance has the qualitative
value ”−”. Since the shaft speed decreases in the three
open-circuits faults and the rest of parameters belong to
the equivalentqd reference frame, we discard all para-
meters except parametersR+

as, R+
bs andR+

cs.

For the three short-circuit faults we have the behavior
described as follows:

• Shaft speed value is constant.

• Currentibs decreases and currentsias andics in-
crease for a fault in the phase winding A.

• Currentics decreases and currentsias andibs in-
crease for a fault in the phase winding B.

• Currentias decreases and currentsibs andics in-
crease for a fault in the phase winding C.

A short-circuit fault implies that a winding resistance
decreases. Viewing the third column of Tab. 2, for
each short-circuit fault, two resistances have decreas-
ing values: the winding resistance when the fault oc-
curs and the adjacent winding resistance. Taking into
account the behavioral information of the variables de-
scribed above, we discard parameters of the adjacent
winding and the rest of parameters in each set. Fourth
column of Tab. 2 shows the final results of fault diag-
nosis. Each fault hypothesis set is reduced to only one
element, which is the parameter causing the fault. Fur-
ther details of this application can be consulted in [21].

6 Conclusion
In this paper, a qualitative strategy for fault diagno-
sis based on Bond Graph modeling has been applied
to the three-phase induction motor. The strategy in-
volves causal graph, fault tree and temporal causal
graph as the principal stages for diagnosis (topographic
search), but due to the structure of the motor model
(derivative causality, nonlinear relationships), has been
employed behavioral information provided by analy-
sis of the faulty system (symptomatic search) in order
to obtain an effective fault diagnosis. Contribution of
this paper is to propose a fault diagnosis strategy that
combines fault searching approaches through the Bond
Graph model, in order to cope both simulation and di-
agnosis aspects.

Three short-circuit and three open-circuit faults have
been considered in the application, in order to show
the effectiveness of the Bond Graph model not only for
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Tab. 2 Fault hypothesis sets

Fault Conventional fault Modified fault tree Obtained parameters
tree methodology methodology

F1 ∅ {R+
as, R

−
bs, R

−
cs, R

+
dr, R

−
qr, β

+, J−} {R+
as}

F2 ∅ {R−as, R
+
bs, R

−
cs, R

−
dr, J

−} {R+
bs}

F3 ∅ {R−as, R
−
bs, R

+
cs, R

−
dr, R

+
qr, β

+, J−} {R+
cs}

F4 ∅ {R−as, R
+
bs, R

−
cs, R

+
dr} {R−as}

F5 ∅ {R−as, R
−
bs, R

+
cs, R

−
dr} {R−bs}

F6 ∅ {R+
as, R

−
bs, R

−
cs, R

+
dr, R

+
qr} {R−cs}

simulation but also for fault diagnosis. This strategy
gives insight about application to other systems with
similar characteristics, such as induction motors and
power converters related to these systems.
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