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Abstract

In this paper we propose a Nonlinear Output Error (NOE) identification algorithm based on
High Level Canonical Piecewise Linear (HL CPWL) functions. Starting from a linear Output
Error (OE) model, the proposed model structure allows the implementation of an identification
algorithm in which the degrees of freedom (flexibility) of the model can be easily increased dur-
ing the identification process, retaining the achieved approximation. This is done by increasing
the number of divisions of the HL CPWL simplicial domain until obtaining a given approxi-
mation error. The parameters of the HL CPWL functions are updated using a simple algorithm
based on a modified steepest descent method with an adaptive learning rate that also allows
controlling de BIBO stability of the model. Taking into account the simplicity of the HL CPWL
VLSI realization, we are interested in the hardware implementation of the identification algo-
rithm. We also derive sufficient conditions for BIBO stability of the identification algorithm.
Taking into account this condition, we derive minimum and maximum bounds that preserve
BIBO stability of the model during the optimization of the parameters of the HL CPWL func-
tions. This model structure is well suited for control applications that need a large simulation
horizon. This is the case of different optimal control applications like, for example, Model
Predictive Control (MPC).
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1 Introduction
In the present paper we are focused on developing a
nonlinear model structure together with the associated
parameter identification algorithm, oriented to appli-
cations that need a large simulation horizon. This is
the case in different optimal control applications, like
Model Predictive Control (MPC).

One of the main problems in system identification is to
find a suitable model structure to describe the process.
This problem becomes more complicated if this struc-
ture is allowed to go from a linear to a nonlinear, since
the set of nonlinear models is much richer than the set
of linear ones [1]. If a nonlinear finite impulse (NFIR)
structure is used, the model order evaluation problem
may be effectively addressed by using regularization
theory [2]. If a Wiener like model structure is used, an
aggregation approach can be easily implemented as in
the Korenberg algorithm [3]. With the advent of Neu-
ral Networks and Fuzzy models a much wider class of
systems can be handled [4]. In the Neural Networks lit-
erature, growing and pruning methods are used to deal
with the size of a Neural Network during the training
process [5]. Piecewise affine linear models have been
widely used for nonlinear system identification (for ex-
ample, [6, 7, 8]) as an interesting class of parametrized
NARMAX models [9, 10, 11, 12]. These models are
a special case of multiple model approaches (see, for
example, [13, 14] for a survey on this field).

When NOE model structures are used, the problem
becomes much more difficult due to the computa-
tional complexity involved in the recursive nature of
the model (see, for example, [4]). In addition, model
order variation (increase or decrease) in the NOE struc-
ture identification algorithms in the literature, is im-
plemented restarting the process. There is no straight-
forward procedure to reduce the computational cost of
evaluating the new set of parameters from the previous
one. In this paper we consider a NOE model structure
like the one proposed by Narendra and Parthasarathy
[15] in the context of Neural Networks based on High
Level Canonical Piecewise Linear (HL CPWL) func-
tions [16, 17]. We develop an identification algorithm
that offers a simple mechanism for increasing the model
approximation capabilities (increase the model order)
retaining the previously achieved approximation. This
algorithm can be also modified in order to reduce the
model order. In this way, it is possible to start the iden-
tification with a linear OE approximation and then pro-
gressively increase the model approximation capabili-
ties to reduce the model mismatch up to an acceptable
value. Finally, we derive simple sufficient conditions
that ensures the BIBO stability of the identification al-
gorithm. Taking into account this condition, one of the
contributions of this paper is to derive minimum and
maximum bounds that preserve BIBO stability of the
model during the parameter optimization. This work is
part of an ongoing project focused on the development
of an identification oriented hardware. The VLSI real-
ization properties of the HL CPWL functions [18] are
specially suited for this purpose. This is the reason why,
in a first approach, we are using simple steepest descent

optimization algorithms.

The paper is organized as follows. In Sections 2 and
3 we present the model and the identification algo-
rithm, analyze its advantages and drawbacks; in Sec-
tion 4 we define and give sufficient conditions for the
identification algorithm to be BIBO stable; in Section 5
we develop two different examples using the proposed
methodology and in Section 6, we draw some conclu-
sions and outline future works. Finally, in Appendix 7
we present the algorithm to find the set of parameters of
the HL CPWL approximation corresponding to a given
number of divisions of the simplicial partition of the do-
main from the set of parameters of the HL CPWL ap-
proximation corresponding to the previous number of
divisions of the simplicial partition of the domain.

2 Identification structure
Let (u,y) the input/output vectors corresponding to a
given Lipschitz continuous, SISO system. If ỹ is the
estimated value corresponding to the input u, and we
note

uk,M+1 = [uk, . . . , uk−M ]

ỹk−1,N = [ỹk−1, . . . , ỹk−N ] ,

then we propose the following black-box identification
structure

ỹk = fpwl (uk, . . . , uk−M , ỹk−1, . . . , ỹk−N )

= cΛ
(
uk,M+1, ỹk−1,N

)
, (1)

where fpwl (x) = cΛ (x) is the HL CPWL function as
defined in [16, 17]. From Eq. (1), the regression vec-
tor of the proposed black-box identification structure is
ϕk =

[
uk,M+1, ỹk−1,N

]
. It is worth to mention that a

linear OE model is a particular case of fpwl that will be
noted as flin. The model given by Eq. (1) is pictured in
Fig. 1.

Assumption 2.1 The model orders M and N are
given. Also, throughout the paper it is assumed that
the number of input/output available data is L.

Assumption 2.2 The domain of the function fpwl is a
compact set S ⊂ Rm,m = M + N + 1, defined as
follows

S = {x ∈ Rm : ai ≤ xi ≤ ai + δ.ndiv,

i = 1, 2, . . . , m} , (2)

δ being the fixed grid size.

As a consequence of Eq. (2), each dimension is di-
vided into a number of subintervals of equal length δ.
Then, when the grid size δ decreases, the number of
divisions ndiv on each direction increases. As a con-
sequence, using HL CPWL functions for the nonlinear
approximation, ndiv allows to go from a linear model
(ndiv = 1) to a nonlinear one with a coarse to a finer
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Fig. 1 HL CPWL NOE model.

partition of S. The advantages of using this kind of
models is pointed out in [1, Ch. 1].

The set defined by Eq. (2) is partitioned into polyhedri-
cal regions using a simplicial boundary configuration
[16, 17]. The fpwl constructed using the methodology
described in [16, 17] is linear on each simplex and con-
tinuous on the adjacent boundaries of the simplices. Be-
sides, the HL CPWL functions uniformly approximate
any Lipschitz continuous function in S [16, 17].

3 Identification algorithm
With the HL CPWL model structure presented in the
previous section, it is possible to develop a nonlin-
ear identification algorithm that starts the identification
process with a linear approximation model (a special
case of a HL CPWL fuction). Then it is possible to
increase the number of divisions ndiv of the simplicial
domain partition and straightforwardly evaluate the new
set of parameters (see Section 7) corresponding to the
achieved approximation function but with a finer divi-
sion of the input domain partition. Afterwards, update
the vector of parameters using a suitable optimization
algorithm until a minimum is reached. This three steps
process (grid subdivision, parameter update according
to the new grid subdivision and parameter optimization)
can be repeated until a desired model error is achieved.
Similarly, it is possible to go from a fine approximation
to a coarser one by decreasing the value of ndiv. We
will now formally present this idea.

Let M , N the orders of the model (see Assumption 2.1)
and S the compact domain that contains the complete
set of data (uk, yk)1≤k≤L. Next we set the notation
that will be used in the algorithm.

Notation

ndiv = 2d, d ≥ 0: number of divisions of the region
S. Equal number of divisions in each dimension is as-
sumed.

V d: the set of vertices of the simplicial partition H of
the set S with ndiv = 2d number of divisions.

Λd: The HL CPWL basis defined on S with vertices
belonging to V d.

cd,∗: the vector of parameters associated with best
HL CPWL approximations using the basis Λd. From
[16, 17] it can be easily concluded that the number of
parameters is (ndiv + 1)M+1+N .

(A)i: the i-th row of a matrix A.

Niter, Niter ∈ N: maximum number of iterations of
the optimization algorithm.

Maxerror: maximum allowable approximation error.

lrr: learning rate corresponding to iteration r; lrr
i >

0∀i (typically, lri = 0.0001).

mom: momentum, mom > 0 (typically, mom = 0.9).

lrinc: learning rate increment, lrinc > 1 (typically,
lrinc = 1.05).

lrdec: learning rate decrement, 0 < lrdec < 1 (typi-
cally, lrdec = 0.9).

Algorithm

Step 1. d = 0: Linear Approximation.

Evaluate a linear OE model approximation. Then com-
pute the parameters cd,∗ of the HL CPWL representa-
tion from the hyperplane defined by the OE parameters.
This is a straightforward process since an hyperplane
is a particularly simple case of a HL CPWL function
[16, 17].

Step 2. d ← d + 1: Evaluation of cd,∗ from cd−1,∗.

Evaluate cd,∗ from cd−1,∗ according to the algorithm
described in Section 7; set

r = 0, cd,r = cd,∗, ∆cd,r = [0, . . . , 0].

Step 3. r ← r + 1: Error and gradient evaluation.

Er =
1
2

L∑

i=1

[
yi − cd,r−1Λd

(
ui,M+1, ỹi−1,N

)]2
,

(3)

(∇Er)j =
∂Er

∂
(
cd,r−1
j

)

=−
L∑

i=1

[
yi − cd,r−1Λd

(
ui,M+1, ỹi−1,N

)]

(
Λd

(
ui,M+1, ỹi−1,N

))
j
. (4)
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Step 4. Parameter update.

If Er ≤ Maxerror then STOP, otherwise,

∆cd,r
j = η

(
−∇Er

j lrr
j + ∆cd,r−1

j mom
)

, (5)

cd,r = cd,r−1 + ∆cd,r, (6)

where the constant η lies in the interval defined by
Eq. (9) and (10) given in Section 4 and the components
of the learning rate vector lrr are modified as follows

lrr
j =

�
lrr−1

j × lrinc if sign
�∇Er

j

�
= sign

�∇Er−1
j

�
lrr−1

j × lrdec if sign
�∇Er

j

� 6= sign
�∇Er−1

j

�
.

If r < Niter, go to Step 3;

else cd,∗ = cd,r and go to Step 2.

Remark 3.1 In Step 4, any of the well known stop conditions
based on the error evolution may be applied.

From the formulation, locally convergence of the method to
a minimum immediately follows. Like in any optimization
process, the drawback is that the achieved minimum may not
be a global minimum but a local one. In spite of this, the
advantages of using HL CPWL functions enumerated below
make it worth to define this identification structure.

1. Computing the gradient is linear in the parameters and
straightforward.

2. The canonical HL CPWL approximation uses the least
number of parameters.

3. The number of divisions ndiv is progressively increased
retaining the achieved approximation and introducing,
in the identification process, extra degrees of freedom to
improve the model approximation.

4 BIBO stability conditions of the model
Let us suppose that u ∈ U ⊂ RM+1, y ∈ O ⊂ RN , U
and O given compact sets, Q ⊂ U × O, Q compact and
I =

�
y, y
� ⊂ R, with y = miny, y = maxy.

Definition 4.1 We say that the model defined by (1) is BIBO
stable if fpwl (Q) ⊂ I .

This definition means that the model output remains within
the output values when the input is any signal u ∈ U .

The expression in Eq. (1) defines a mapping fpwl : Q → I .
As Q is a compact set and fpwl is continuous on Q, then it
attains its maximum and minimum values on Q. Moreover,
since fpwl is linear on each simplex, the extreme values are
attained on VQ, the set of vertices of Q. Then the NOE iden-
tification structure given by Eq. (1) will be BIBO stable if for
every fixed d and any r, the following conditions are simulta-
neously fulfilled�

minv∈V d

�
cdΛ (v)

� ≥ y,

maxv∈V d

�
cdΛ (v)

� ≤ y,
(7)

where Er is given by Eq. (3) and V d is defined in Section 3.

Let cd, d fixed, a vector of parameters such that the model is
BIBO stable. Then we must guarantee that, for any r, ỹk =
cd,rΛ

�
zk
� ∈ I, 1 ≤ k ≤ L, where cd,r is obtained from

Step 4 of the identification algorithm described in Section 3.

Now we state the following sufficient condition for BIBO sta-
bility.

Proposition 4.1 Let us suppose that, for d and r − 1 fixed,
the model is BIBO stable. Then the model will be BIBO stable
for d and r if the following condition is satisfied

y − min
v∈Vd

�
cd,r−1Λ (v)

�
≤ ∆cd,rΛ (v)

≤ y −maxv∈Vd

�
cd,r−1Λ (v)

�
, (8)

where ∆cd,r is given by (6) and v ∈ V d.

Proof: See [19].

Corollary 4.1 With the hypothesis of Proposition 4.1, let
us note a = y − minv∈V d

�
cd,r−1Λ (v)

�
, b = y −

maxv∈V d

�
cd,r−1Λ (v)

�
. Then

η ≥ a

minv∈V d [(−∇Erlrr + ∆cd,r−1mom) Λ (v)]
, (9)

η ≤ b

maxv∈V d [(−∇Erlrr + ∆cd,r−1mom) Λ (v)]
, (10)

simultaneously.

Proof: The proof immediately follows from the proposition
and the fact that ∆cd,r−1Λ

�
zk
�
Λ (z) = η (−∇Er) Λ (z)

attains its extreme values on V d.

Remark 4.1 From both bounds for η given by (9) and (10),
the only one with practical interest is the least positive one
and is the bound used in Step 4 of the identification algorithm.

5 Examples
5.1 Example 1

In this example, we consider the well known logistic discrete
nonlinear dynamic system with a highly nonlinear exogenous
input given by

yk+1 = 0.4yk (1− yk) + u7
k. (11)

In order to stress the modeling capabilities of the proposed
algorithm, we have chosen this highly nonlinear input even
though it can not be associated to a real system.

The input u is defined as a 600 length random signal with
uniform distribution between -0.9 and 0.9. According to the
proposed methodology, we define the regression vector with
M = 0 and N = 1 as ϕk = [uk, ỹk−1]. We have used
the first 300 samples for the identification process and the re-
maining 300 samples for validation.

We first evaluate a linear OE model to generate the initial pa-
rameters. We start the algorithm described in Section 3 with
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(a)

(b)

(c)

Fig. 2 Resulting fpwl of Example 5.1 using (a) ndiv =
2, (b) ndiv = 4 and (c) ndiv = 8.

ndiv = 2 and then, following this algorithm, the number of
divisions of the set S is increased to 4 and 8. The number
of parameters (ndiv + 1)2 is 9, 25 and 81, respectively. The
resulting approximated fpwl of the solution corresponding to
the different validation surfaces on ỹk−1 and uk can be seen
in Fig. 2. These surfaces were evaluated using the set of pa-
rameter that showed the best performance in the validation set
during the approximation process.

As expected, the approximation to the nonlinear system im-
proves when the number of divisions of the set S increases
as is clearly shown in Fig. 3(a) and (b) In Fig. 3(a) the ap-
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Fig. 3 Error performance in Example 5.1: (a) RMS ap-
proximation and validation errors for the HL CPWL
approximation functions using ndiv = 2, 4, 8. (b) Ap-
proximation (samples 1 to 300) and validation (samples
301 to 600) errors.

proximation and validation RMS errors versus the number of
iterations for each number of divisions is depicted, showing
that the decreasing rate is high each time the number of divi-
sions is augmented. On the other hand, in Fig. 3(b) we have
plotted the approximation and validation errors for the NOE
HL CPWL models with ndiv = 2, 4 and 8. It is easy to appre-
ciate that there is a significant reduction of both, the approxi-
mation and validation errors, when the number of divisions is
increased. In order to compare the evolution, the algorithm is
stopped after 100, 300 and 600 iterations for each ndiv = 2,
ndiv = 4 and ndiv = 8, respectively. From Fig. 3(a) is
clear that with extra iterations a better approximation could
be obtained with ndiv = 8. Taking into account its simplic-
ity, this performance shows the potentials of the identification
algorithm.

5.2 Example 2

This example, due to Yazdizdeh and Khorasani [20], is given
by the following equations
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y (k + 1) =
y (k) + u (k)

1 + y (k)2
+ ε (k) ,

ε (k + 1) = 0.25 (ε (k) + ζ) ;

where the input u is a 2000 length random signal with uni-
form distribution between -1 and 1 and ζ is a uniform ran-
domly generated number between -1 and 1; then ε (k) can be
considered as a colored added measurement noise. This noise
was added to the first 1800 samples used for the identification
process. In order to clearly show the approximation to the real
system, 200 noisless samples were used for validation.

In this case, we define the regression vector with M = 0 and
N = 1 as ϕk = [uk, ỹk−1]. Following the identification pro-
cess explained in Section 3, we evaluate a OE model to gener-
ate the initial parameters. Then the number of divisions of the
set S is increased to ndiv = 2, 4 and 8, following the algo-
rithm described in that section, giving 9, 25 and 81 number of
parameters, respectively. The resulting approximated fpwl of
the solution corresponding to the different validation surfaces
on ỹk−1 and uk can be seen in Fig. 4. As before, these sur-
faces were evaluated using the set of parameter that, during
the approximation process, showed the best performance in
the validation set. Due to the colored noise, the surface shows
some artifacts for ndiv = 8. In Fig. 5(a) the RMS appprox-
imation and identification errors are displayed as a function
of the number of iterations being 50, 600 and 900 the num-
ber of iterations for ndiv = 2, ndiv = 4 and ndiv = 8,
respectively. Fig. 5(b) shows the approximation and identi-
fication errors between the system and the noisy models for
ndiv = 2, 4, 8 using the proposed methodology. Better so-
lutions might be obtained if both the number of data and the
number of iterations were increased. This figure illustrates
the very well known small noise sensibility of the NOE algo-
rithm.

6 Conclusions and future work
In this paper, a NOE identification algorithm based on HL
CPWL functions approximation method is presented. The
proposed methodology allows to approximate a NOE model
from a linear OE one. The main features of this process are
that it enables to go from a linear model to a nonlinear one
straightforwardly and that BIBO stability can be guaranteed
as long as the initial model is BIBO stable. The advantages
of the algorithm are the following. In the first place, the HL
CPWL functions have a simple hardware implementation in
microprocessors. Secondly, the simplicity of the mechanism
for increasing or decreasing the model’s degrees of freedom,
retaining the achieved model approximation. The model was
defined for SISO system but can be easily generalized for
MISO and MIMO ones. The potentials of our approach have
been illustrated with two different examples.

Although the use of HL CPWL functions is simple, the num-
ber of parameters exponentially increase with the number of
divisions. In order to avoid this, we are working on extending
the methodology to locally adaptive grids. This would allow
to refine the grid only in regions where the system is highly
nonlinear.

(a)

(b)

(c)

Fig. 4 Resulting fpwl of Example 5.2 using (a) ndiv =
2 , (b) ndiv = 4 and (c) ndiv = 8.

This work is part of an ongoing project focused on the de-
velopment of an identification oriented hardware. The VLSI
realization properties of the HL CPWL functions are specially
suited for this purpose. That’s why, in a first approach, we are
using simple steepest descent optimization algorithms for the
parameter optimization process.

7 Update algorithm
In this section we give the algorithm the vector of parameters
cd,∗ from the vector cd−1,∗. This algorithm can be modified
to compute cd−1,∗ from cd,∗.
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Fig. 5 Error performance in Example 5.2: (a) RMS ap-
proximation and validation errors for the HL CPWL ap-
proximation functions using ndiv = 2, 4, 8. (b) Ap-
proximation (samples 1 to 1800) and validation (sam-
ples 1801 to 2000) errors.

To deduce cd,∗ from cd−1,∗ is equivalent to say that it is pos-
sible to get the HL CPWL representation of a function defined
on a simplicial partition H of a compact set S with ndiv = 2d

number of divisions from its representation on the simplicial
partition H of the compact set S with ndiv = 2d−1 num-
ber of divisions, i.e. to solve the following system of linear
equations

cd,∗Λd
�
V d
�

= cd−1,∗Λd−1
�
V d
�

. (12)

In order to obtain the solution of the new representation given
by Eq. (12), it is necessary to obtain it for different nesting
levels (see [16, 17]).

Notation

d: nesting level, corresponding to the basis Λd.

cd,∗: final vector of parameters associated with HL CPWL
approximations using the basis Λd.

nsec = 22d: number of sectors corresponding to ndiv = 2d

number of divisions of the region S (equal number of divi-
sions in every dimension has been assumed).

nv: number of variables involved.

Algorithm

d = 0 : Nesting level 0.
cd,∗ is the solution of the linear approximation as
described in Section 3.

d = 1 : Nesting level 1.

ncom =

�
nv

1

�
= nv ,

iv = in = 0,
n(1) = 2nsec.

{for i = 1 to ncom

{for k1 = 1 to nsec

cd,∗
in+2(k1−1)+1 = cd−1,∗

iv+k1
,

end}
iv = iv + nsec,
in = in + n(1).

end}

d ≥ 2 : Nesting level d.

ncom =

�
nv

d

�
,

iv = in = 0,
n(2) = 22nsec,
n(d) = 2nd−1

sec for d ≥ 3.

{for i = 1 to ncom

{for kd = d to nsec

{for kd−1 = d− 1 to nsec

...
{for k1 = 1 to nsec

cd,∗
in+2(k1−1)+1 = cd−1,∗

iv+k1
,

end}
iv = iv + nsec,
in = in + n(2),

end}
...

in = in + n(d−1).
end}

end}
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Sweden, 2003.

[15] K. S. Narendra and K. Parthasarathy. Identification and
control of dynamical systems using neural networks.
IEEE Trans. on Neural Networks, 1:4–27, 1990.

[16] P. Julián, A. Desages, and O. Agamennoni. High level
canonical piecewise linear representation using a simpli-
cial partition. IEEE Trans. on Circ. and Syst., 44:463–
480, April 1999.

[17] Pedro M. Julián. A High Level Canonical Piecewise
Linear Representation: Theory and Applications. PhD
thesis, Universidad Nacional del Sur, Bahı́a Blanca, Ar-
gentina, UMI Dissertation Services, Michigan, USA,
1999.

[18] M. Parodi, M. Storace, and P. Julián. Synthesis of mul-
tiport resistors with piecewise-linear characteristics: A
mixed-signal architecture. Int. Journal on Circuit The-
ory and Applications, 33(4):307–319, July 2005.

[19] L.R. Castro, J.L. Figueroa, and O.E. Agamennoni.
BIBO stability for NOE model structure using HL
CPWL functions. In Proc. of the 24th IASTED Int.
Conf., MIC 2005, pages 91–96, Univ. California, Berke-
ley, 2005.

[20] A. Yazdizadeh and K. Khorasani. Adaptive time delay
neural network structures for nonlinear system identifi-
cation. Neurocomputing, 47:207–240, 2002.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM


