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Abstract

In control systems a representation of the physical process which is to be controlled is needed
in order to calculate control signals and keep the system stable. Networked Control Systems
(NCS) are a special case of control systems where network-induced delays make the system
stochastic and hard to predict. Pattern recognition techniques have been extensively used in
learning the behavior of processes that present a certain degree of stochastic behavior. The
Quality of Control (QoC) of each closed-loop system in a Networked Control System is strongly
affected by the network-induced delay produced by sensors and control signals. Controller Area
Network (CAN) is a popular real-time field-bus used for small-scale distributed environments
such as automobiles. In CAN the delay exhibits a stochastic behavior and varies according to
the network load. Since QoC is affected by delays, designing and evaluating a controller must
take into account the effect of network-induced delays. A continuous Hidden Markov Model
(HMM) for CAN network-induced delays is illustrated. The model plays the role of a classifier
and an estimator; based on delay observations, the model can estimate the network load and
predict future time delay values. The model was trained/tested using experimental data taken
from a real CAN system with excellent results.

Keywords: Networked Control Systems, Controller Area Network, Hidden Markov
Model.
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1 Introduction
Recently, the use of common-bus architectures in con-
trol systems, instead of the traditional point-to-point ar-
chitectures, has gained much more attention because
of its benefits, which include modularization, decen-
tralization of control, integrated diagnostics, quick and
easy maintenance and low cost [1]. Common-bus con-
trol systems, called Networked Control Systems (NCS),
exchange information and control signals using a se-
rial communication network. Even though NCS offer
a series of advantages over traditional control systems,
there are certain characteristics related to communica-
tion channels (such as bandwidth) that are not consid-
ered in control systems design.

The network-induced delay is a dynamic phenomenon
introduced by the communication channel used in con-
trol systems, Fig. 1. These are communication de-
lays that arise because of sensors, actuators and con-
trollers sharing a common network medium and can
vary widely according to the message scheduling and
the network overhead. Network-induced delays are in-
evitable and may cause system performance degrada-
tion and reduce the stability of the system.

Fig. 1 NCS with network-induced delays. τsc is the sen-
sor to controller delay, τca is the controller to actuator
delay, and τc is the controller computational delay.

Controller Area Network (CAN) is a popular real-time
and fault-tolerant field-bus used for small-scale dis-
tributed environments such as automobiles, aircraft and
aerospace electronics, medical equipment, and factory
and building automation. In CAN, the bus access time
is generally non-deterministic, meaning that network-
induced delays are random and time-varying [3]. Be-
cause of the uncertainty delays introduce in systems,
traditional controller design techniques cannot be ap-
plied directly when designing a CAN-based NCS. A
model of this phenomenon is needed in order to con-
sider it during the design of the NCS.

The CAN time delay was modeled with a continuous
Hidden Markov Model (HMM). The model is built from
a series of delay observations taken from a real automo-
bile CAN system implementation.

The paper is organized as follows. In section 2 a review
of the state of the art of delay modeling is presented.
Section 3 describes the experimental setup. Design of

experiments is presented in section 4. In section 5 re-
views the modelling approach. In section 6 results are
discussed. Finally, conclusions and future work are pre-
sented in section 7.

2 State of the Art
Most NCS modeling research has focused on state space
representations that include the time delay features. Lit-
tle attention has been paid to the characterization and
modeling of the network-induced delays in order to ob-
tain an evaluation framework based on a reliable model.

A comparison between three popular control networks,
including DeviceNet which is based on the standard
CAN specification, is shown by [1, 2]. The study iden-
tifies the key components of the time delay in NCS
through an analysis of network protocols and network
dynamics. A timing analysis is presented where time
delays are characterized by the networks parameters.
The research shows the tradeoff between sampling time
and network load and the acceptable working range of
sampling periods in a NCS.

Different processing time models were built based on
statistic approaches. DeviceNet models were obtained
based on histogram parametrization. The developed
models can adopt four different configurations: zero,
mean, normal and uniform. The zero processing model
lets the processing time equals zero; the mean model
uses the mean value as the processing time; the normal
model assumes a normal distribution of the processing
time; and the uniform model uniformly assigns the pro-
cessing time for each message.

Three models for network-induced delays are presented
by [3]. The first is the simplest model, the delay is con-
stant for all transfers in the network; even if the system
has varying delays. The second model treats delays as
random, taking the values from a probabilistic distri-
bution and making them independent of previous ones.
The third model is based on a Markov chain, which
takes into account varying network loads. With the
third model, different probability distributions can be
used for τsc and τca, and each probability distribution
would belong to a certain network load. The models
were experimentally tested.

A methodology of modeling NCS using HMM is pre-
sented by [6]. Delays are governed by a Markov chain
for which the state transition probabilities were com-
puted. Three network loads were considered (low,
medium and high). The network loads represent the
observations of the stochastic process modeled by the
HMM.

[7] presented a model for network protocols and ap-
plication performance evaluation. The model is a
continuous-time HMM and it was built based on a series
of end-to-end delays and packet loss observations from
an internet application. In order to obtain a good model,
data were collected for a wide variety of network set-
tings. Then a HMM for each network setting was cre-
ated. The HMMs where then integrated to perform net-
work protocol and application simulations under differ-
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ent network settings, representing real network scenar-
ios. The models were experimentally validated using
the Transmission Control Protocol (TCP) and a stream-
ing video application.

Also, [7] proposed a discrete HMM. The HMM repre-
sented packet losses as large delays. This is because a
loss is usually treated as a very large delay.

3 Experimental Setup
The experiments were performed in a multiplexed CAN
X3 pedagogic scale model from EXXOTest R© Fig. 2.
The scale model is a training unit with real components
of the Peugeot 807 that integrates three different net-
work types: CAN, LIN (Local Interconnect Network)
and VAN (Vehicle Area Network).

Fig. 2 A multiplexed CAN X3 scale model.

The CAN system is composed of twelve modules: Built
- In System Interface (BSI), Built - In Supply Mod-
ule (BSM), air conditioning, passenger door, driver
door, front lights, back lights, dashboard, radio, AFIL
(Lane Departure Warning System for the abbreviation
in French), tow module and alarm. These modules are
interconnected in three CAN networks: an inter-system
network whose baud rate is 500 kbit/s (i.e. high speed
CAN); a chassis network and a comfort network, both
with a baud rate of 125 kbit/s (i.e. low speed CAN).

The inter-system network connects the diagnosis mod-
ule, the motor status module and the steering wheel sen-
sor. On the other hand, the comfort network is com-
posed of the dashboard, the radio system, air condi-
tioning, AFIL, driver and passenger door. Finally, the
airbag, the alarm and the lights switchboard system in-
tegrate the chassis network.

In order to perform monitoring and load functions,
communication with the network is done using the
EXXOTest R© USB-MUX-4C2L module (which allows

interfacing a PC to the CAN bus) and the MUXDLL dy-
namic link library, also provided by EXXOTest R©. The
MUXDLL was used to interface an application created
in NI LabWindows/CVI with the high speed CAN bus.
The application was used to load the network with pe-
riodic messages and monitor the network load status.

To gather experimental delay data two network nodes
were implemented using the FreescaleTM Semicon-
ductor MC9S12C32 microcontroller which integrates
a CAN controller (Motorola Scalable Controller Area
Network module - MSCAN). Each MC9S12C32 was
interfaced with the network using a Microchip R© High-
Speed CAN transceiver.

One of the network nodes was configured to send peri-
odic messages and the other to receive them. Transmis-
sion and reception times were stored in each microcon-
troller memory.

4 Design of Experiments
A series of experiments were designed to determine
network induced delays in the transmission between
two nodes connected to the CAN system. The exper-
iments were divided in sets in order to measure delays
as a function of network load, periodicity and priority.
All experiments used embedded timestamps in the mes-
sages, which were used to calculate the delay. The de-
lay is obtained by subtracting the reception timestamp
to the transmission timestamp.

Several factors can affect message time delays. Net-
work load, message’s priority, data packet length, mes-
sage scheduling and transmission periodicity are the
most influential factors.

For all messages the data packet size was held constant
at 8 bytes, which is the maximum size for the stan-
dard CAN message format. The scheduling was also
held constant because the EXXOTest R© scale model al-
ready has a predefined schedule based on a real auto-
mobile implementation. Message priority was changed
using one low priority and one high priority message
id. Transmission periodicity was also changed, using
1 ms, 5 ms and 10 ms transmission periods. Finally,
the network load was modified using different periodic
messages.

Because of the network nodes that already exchange
information when the automobile (EXXOTest R© scale
model) is turned on the lowest network load was 14%.
This condition simulates a car under normal operation.
Then periodic messages with low and high priorities
were setup in order to load the network. Three network
loads were implemented: low (14%), medium (38%)
and high (73%).

Experiments were constructed for 18 different network
settings. Each setting constituted a total of 1,000 sam-
ples divided in 10 sets (runs) of 100 samples. Net-
work settings were adjusted by making combinations
of message’s priority, transmission periodicity and net-
work load, Fig. 3. For each message, transmission and
reception timestamps were recorded in the microcon-
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trollers’ memory.

Fig. 3 Design of Experiments.

5 Modeling Approach
Characterizing real-world signals in terms of signal-
models is a problem of fundamental interest. When
these signals come from a stochastic process, statisti-
cal models are useful because they try to characterize
only the statistical properties of the signal [8].

For completeness a review of some basic definitions is
included. A HMM is characterized by [8]:

• N, number of states in the model. We denote the
states as {S1, · · · , SN}, and the state at time t a
qt.

• M, number of distinct observation symbols per
state. We denote the individual symbols as
{v1, · · · , vM}.

• The state transition probability distribution A =
{aij}
aij = P [qt = Sj |qt−1 = Si], 1 ≤ i, j ≤ N (1)

• The observation symbol probability distribution in
state j, B = {bj(k)}, where

bj(k) = P [vk|qt = Sj ], 1 ≤ j ≤ N

1 ≤ k ≤ M (2)

• The initial state distribution

π = P [q1 = Si], 1 ≤ i ≤ N (3)

Given appropriate values of N, M, A, B, and π, the
HMM can be used as a generator to give an observation
sequence O = O1, · · · , OT , Fig. 4. Then, a complete
specification of an HMM requires specification of two
model parameters (N, M), specification of observation
symbols, and the specification of the three probability
measures λ = (A,B, π). The parameters N, M and λ

S1 S4S2
S3

b1

Hidden

States

Observations

b2 b3
b4

a11
a22

a33 a44

a12
a23

a34

a43

a42a13

a
21

Fig. 4 Continuous HMM with four states {Si}4i=1, and
output probability density functions {bj}4j=1

are learned from data. Given this model and the obser-
vation we can compute P (O|λ).

In continuous HMMs observations follow a probability
distribution. Each state can have one or more probabil-
ity distributions following a mixture of Gaussians. A
continuous HMM is specified by the same parameters
λ = (A,B, π), but with the difference that the B vec-
tor contains M observation probability distributions.

5.1 Baum-Welch algorithm

The Baum-Welch algorithm [8] is used to compute the
model parameters (means, variance, and transitions)
given the training data. It is an iterative process for
parameter estimation based on a training data set for
a given model λ. The goal is to obtain a new model λ̄
where the auxiliary function Q(λ, λ̄):

Q(λ, λ̄) =
∑

Q

P (Q | O, λ) log[P (O, Q | λ̄)] (4)

is maximized. For this algorithm it is needed to define
two more auxiliary functions:

αt(i) = P (Ot
1, qt = Si | λ) (5)

βt(i) = P (OT
t+1 | qt = Si, λ) (6)

Based on these two functions, forward and backward
variables are defined. One of the variables is the prob-
ability for changing from state i at time t = t to state j
at time t = t + 1 can be defined as

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)∑N

i=1

∑M
j=1 αt(i)aijbj(Ot+1)βt+1(j)

(7)
where bj(O) is a continuous output probability den-
sity function (pdf ) for state j and can be described as
a weighted mixture of Gaussian functions, as follows

bj(O) =
M∑

k=1

cjkN(O, µjk, Ujk)

=
M∑

k=1

cjkbjk(O,µjk, Ujk) (8)
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where cjk is the weight of the Gaussian k and
N (O, µjk, Ujk) is a single Gaussian of mean value µjk

and a covariance matrix Ujk.

The second variable is the a posteriori variable, that is
the probability of being in state i at time t = t given the
observation sequence and the model.

γt(i) =
αt(i)βt(i)∑N
i=1 αt(i)βt(i)

(9)

The relationship between γt(i) and ξt(i, j) is given by

γt(i) =
N∑

j=1

ξt(i, j), 1 ≤ i ≤ N, 1 ≤ t ≤ M (10)

Assuming a starting model λ = (A,B, π), α’s and β’s
are evaluated using recursions (5) and (6), and then ξ’s
and γ’s using equations (7) and (9). Next step is to
update HMM parameters according to equations (11) to
(13), known as re-estimation formulas.

π̄i = γt, 1 ≤ i ≤ N (11)

āij =
∑T−1

t=1 ξt(i, j)∑T−1
t=1 γt(i)

, 1 ≤ i ≤ N, 1 ≤ j ≤ N (12)

b̄j(k) =
∑T

t=1 γt(j)∑T
t=1 γt(j)

, 1 ≤ j ≤ N, 1 ≤ k ≤ M (13)

5.2 Viterbi Algorithm

The Viterbi algorithm [8] is a formal technique used to
find the best state sequence, Q = q1, q2, · · · , qt, for the
given observation sequence O = O1, O2, · · · , Ot. To
achieve this the quantity δi(i) has to be defined:

δt(i) = max
q1,··· ,qt−1

P [q1, · · · , qt = i, O1, · · · , Ot | λ] (14)

δt(i) is the best score (highest probability) along a sin-
gle path, at time t, which accounts for the first t obser-
vations and ends in state Si. By induction δt+1(i) can
be obtained:

δt+1(j) = [max
i

δt(i)aij ]· bj(Ot+1) (15)

To actually retrieve the state sequence the argument
which maximized (15) must be tracked, for each t and
j. This is accomplished by using the array ψt(j), which
is initialized with 0 and then recursively updated. The
procedure for finding the best state sequence is as fol-
lows:

1. Initialization:

δ1(i) = πibi(O1), 1 ≤ i ≤ N (16a)

ψ1(i) = 0 (16b)

2. Recursion:
δt(j) = max

1≤i≤N
[δt−1(i)aij ]bj(Ot), 2 ≤ t ≤ T

1 ≤ j ≤ N (17a)
ψt(j) = arg max

1≤i≤N
[δt−1(i)aij ], 2 ≤ t ≤ T

1 ≤ j ≤ N (17b)

3. Termination:

P ∗ = max
1≤i≤N

[δT (i)] (18a)

q∗T = arg max
1≤i≤N

[δT (i)] (18b)

4. Path (state sequence) backtracking:

q∗t = ψt+1(q∗t+1), t = T − 1, T − 2, . . . , 1 (19)

6 Results
Fig. 5 shows delay measurements for a network setting
of 5 ms of periodicity, low message’s priority and the
three different network loads. Similar results were ob-
tained for 1 and 10 ms. However, only 5 ms periodicity
results will be included because of limitations of space.
As observed, delays tend to be near 0 and near 3 ms,
such behavior was also noticeable in [3]. In addition, as
the network load increase delays tend to disperse more,
reaching peaks near 10 ms.

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

Messages for Low Network Load

 

 

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

Messages for Medium Network Load

D
el

ay
 (

m
s)

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

Messages for High Network Load

Fig. 5 Delay measurements for 5 ms periodicity.

Fig. 6 shows the procedure used to train and test the
HMMs. The 70% of the experimental data was chosen
randomly for the training stage; the remaining 30% was
used for testing the results. This process was repeated
20 times and the results correspond to the average.

In order to evaluate the model performance, the five
fundamental time-delay statistics [1] were computed
for the experimental and the estimated model observa-
tions: minimum, maximum, mean, median and stan-
dard deviation. Statistic results for 5 ms periodicity are
shown in Table 1.

A continuous HMM model was created for each dif-
ferent network load in order to obtain fine results and
avoid being too general. The number of hidden states
were 4 for low network load and 6 for medium and high
network loads. The number of Gaussian mixtures was
chosen according to delay data distribution shown in
histograms, Figures 7-9.

Figures 7-9 show a comparison between real measure-
ments and data estimated by the continuous HMM for

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM



Tab. 1 Time-delay statistics for 5 ms periodicity

Low Load Medium Load High Load
Statistic Real Estimated Real Estimated Real Estimated
Minimum 0.2245 0.0041 0.2245 0.0143 0.0250 0.0054
Maximum 5.5780 5.0550 7.2480 5.9520 8.2100 8.6480
Mean 1.407 1.5140 1.5950 1.7190 2.0700 2.1640
Median 0.3870 1.1690 0.9613 2.3850 1.8440 2.5010
Std. Dev. 1.2960 1.3000 1.4120 1.1420 1.9800 2.0820

Input

Signal
Baum-Welch

Algorithm
λ  = (Α,Β,π)1

λ  = (Α,Β,π)

λ  = (Α,Β,π)
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P(O/λ  )
2

P(O/λ  )n

.

.

.

Select Maximum

P(O/λ)

Database

Compute

Learn the 
parameters

λ

Fig. 6 Modeling procedure.

5 ms periodicity. The comparison was made by plotting
side by side the time series for the experimental and the
estimated observations. Histograms in Fig. Figures 7-9
also show the behavior and tendency of delays.

The previous results were obtained from the following
initial state distribution matrix and state transition ma-
trix for the low network load.

πlow = [ 1 0 0 0 ]

Alow =




0.5473 0.4354 0.0173 0.0000
0.4982 0.4884 0.0134 0.0000
0.0000 0.0000 0.4871 0.5129
0.0000 0.0532 0.5583 0.3885




A graphical representation of these matrices is shown
in Fig. 4.

As it can be observed from the obtained results, low
sampling rates generally does not impose a real prob-
lem because delays are always less than one sample
period. On the other hand, using high sampling rates
improves performance, as noted by [1], but it also in-
creases the message time delays and it can degrade
QoC. This is because high sampling rates induce high
traffic loads.

For deterministic protocols where message sizes and
transmissions rates are fixed, the waiting time value
at each source node can be calculated. However, for
stochastic protocols such as CAN only statistical solu-
tions of the network-induced delay can be derived [2].
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Fig. 7 HMM performance - 5 ms periodicity. Low Net-
work Load

Due to this fact, models based on probability distribu-
tions constitute a practical solution.

7 Conclusions
A network-induced delay model for CAN based NCS
using continuous HMM was shown. The model was
computed using measurements taken from a real auto-
mobile implementation of the CAN protocol. Early re-
sults are promising.

Special attention was paid in reproducing the dynamic
behavior of delays under different network settings.
Performance of a NCS at design stage can be tested with
the models in order to predict different operational con-
ditions.

A statistic analysis validated the results. It is shown
that model behavior for different network loads and pe-
riodicities are very similar to the real behavior. Models
were built for low priority messages since high prior-
ity messages will always have a near-deterministic be-
havior no matter the network load. Future work in-
cludes the adaptation of continuous HMM to NCS de-
sign methodologies and evaluation.
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