TESTING OF OPTIMAL FISHING EFFORT FOR SARDINE IN THE EASTERN ADRIATIC USING SYSTEM DYNAMICS

Merica Slišković, Ante Munitić, Gorana Jelić-Mrčelić

University of Split, Faculty of Maritime Studies Split Zrinsko-Frankopanska 38, 21000 Split, Croatia

merica@pfst.hr (Merica Slišković)

Abstract

In this paper Schaefer production model of sardine in the Adriatic Sea is presented using System dynamics methodology. Production models are very simple but they can be good approximation for complex behavior dynamics of biological systems. Sardine population is chosen due to its great economic importance to Croatian fishing. In this paper, Schaefer (1954) production model was used due to lack of appropriate biological data for any other model. The qualitative and quantitative models of observed sardine population have been developed. Different scenarios are made; using available biological data for sardine in the Adriatic Sea. Total fishing effort in relation to stock under exploitation is an essential parameter in the policy of sustainable marine resources management. Using Schaefer and Fox production models (Alegria-Hernandez, 1983), gave some optimal value for the fishing effort for sardine in the eastern Adriatic. Those values are tested using System Dynamics and obtained results are compared. Modeling and simulation enables testing of different exploitation scenarios without endangering sardine real population. The results of testing lower and upper limit for fishing effort (Scenario 1a and 1b) are shown in this paper. Although, available biological data give range of optimal fishing effort it is evident that upper limit reduce sardine biomass below initial state, while lover limit enables increase of sardine biomass.

Keywords: Schaefer production model, sardine population, The Adriatic Sea, System dynamics

Presenting Author's biography

Gorana Jelić-Mrčelić was born on January 24th 1973, Croatia. In January 1996 she acquired the degree of Bachelor of Science in Fishery Sciences at Marine Faculty Split. In June 1996 she acquired the degree of Engineer of Maritime Traffic – Nautical Studies. In July 2000 she acquired the degree Of Master of Sciences at Faculty of Agriculture, University of Zagreb. In November 2004 she acquired PhD in fishery science at Faculty of Agriculture, University of Zagreb. She works at Faculty of Maritime Studies Split, University of Split from June 1996. Now she is senior assistant.

e-mail: gorana.jelic@inet.hr

1 Introduction

There are different models for investigation of the behavior dynamics of fish population. The Schaefer production model is often applied for fishery purpose, particularly for efficient management, of marine biological resources including their protection. Alegria-Hernandez (1983) used Schaefer and Fox production models for sardine population in the eastern Adriatic. In this paper, Schaefer (1954) production model was used due to lack of appropriate biological data for any other model. According to the System dynamics methodology Schaefer production model for sardine population was presented. This short paper comprises only structural, flow diagram and mathematical models of observed population, although comprehensive qualitative and quantitative models were made.

Production models are very simple but they can be good approximation for complex behavior dynamics of biological systems. Change of population biomass (Dudley, 2003), which mathematically matches first derivation, is:

$$\frac{dB}{dt} = \left[(r \cdot B) - (r \cdot \frac{B^2}{CC}) \right] - C \tag{1}$$

where: dB/dt - rate of biomass change r – intrinsic growth rate CC – carrying capacity C – catch rate B – sardine biomass

Catch rate is defined as product of sardine biomass, catchabilty coefficient and fishing effort (Ussif, 2003).

$$C = q \cdot f \cdot B \tag{2}$$

Initial value for sardine biomass, carrying capacity, catchabilty coefficient and fishing effort are given according to Alegria-Hrenandez (1983).

Several simulation scenarios were made, all in Powersim and DYNAMO program package. Authors decided to give mathematical models in DYNAMO because it was easier to follow the equations, and the results of simulations in Powersim because of better graphical solution.

2 System dynamics models of sardine population in the Eastern Adriatic Sea

The structural model of sardine population was determined based on mental model. It presented all variables included in the model, together with existing causes-consequences links and feedback loops in sardine population system.

Fig. 1 System dynamics structural model of sardine population in the Eastern Adriatic Sea (Sliskovic, 2007)

System dynamics structural flow diagram of sardine population was presented in Powersim language.

Fig. 2 System dynamics flow diagram of sardine population in Powersim language (Sliskovic, 2007)

Where symbols in Powersim were: NG – natural growth SB – sardine biomass IGR – intrinsic growth rate CC – carrying capacity ND – natural death CR – catch rate Q – catchability coefficient F – fishing effort RBD – rate of biomass decrease.

System dynamics computer model of sardine population was developed in DYNAMO programming package, because authors thought that it would be easier to follow the equation than in any other language.

SD computer model of sardine population in the Eastern Adriatic ****** R DBDT.KL=NG.KL-ND.KL-CR.KL rate of biomass change L SB.K=SB.J+DT*(DBDT.JK) sardine biomass N SB=95335 initial sardine biomass R NG.KL = RR*SB.Knatural growth R ND.KL=RR*SB.K*(SB.K/CC) natural death R CR.KL=SB.K*Q*F catch rate A RBD.K=ND.KL+CR.KL rate of biomass decrease C O=0.0000399 catchability coefficient C F=4115 fishing effort C CC=190711 carrying capacity C IGR=0.367 intrinsic growth rate SAVE DBDT,SB,NG,ND,CC,CR,RBD, SPEC DT=.01,LENGTH=50,SAVPER=1 ******

3 Optimal fishing effort for sardine in the eastern Adriatic

Total fishing effort in relation to stock under exploitation is an essential parameter in the policy of sustainable marine resources management (Alegria-Hernandez, 1983).

Many management systems are based directly or indirectly on fishing effort size which will be applied on some fish stock in order to obtained desired catch level (Rothschild, 1977).

Fishing effort can be defined in terms of the activity of the fisherman to catch the fish or in terms of energy applied or money spent. Simplified this means that fraction of population is removed per each fishing effort unit and at the same time fishing effort is the function of population fishing mortality and catchability coefficient (Alegria-Hernandez, 1983).

Fishing effort is measured in units appropriate for the observed fishery (Clark, 1990). Populations that are harvested when they are near their maximum population size have more resilience to perturbations (such as fishing pressure) than population harvested when at lower population sizes (Haddon, 2001).

In the case of encircling gears purse-seine and tuna fishing, by which pelagic fish are caught predominantly by night (sardine and anchovy) and big pelagic fish (tuna) by daylight, fishing effort per day depends on several factors:

- subjective nature (fisherman and crew experience)
- biological characteristic of population
- technical and technological characteristics of fishing unit (Alegria-Hernandez, 1983).

In sardine catch the unit of fishing effort should be calculate as the effective fishing effort of a purseshiner day or night. For fishing effort calculation in purse-seine herring fishing in Norway suggests the use of the data on effective boat days (Alegria-Hernandez, 1983).

Based on available biological data (Alegria-Hernandez, 1983) optimal fishing effort for sardine in eastern Adriatic should be in range of 4115 and 5292 effective fishing day during one year.

4 Testing of optimal fishing effort

In the model catch is defined as product of fishing effort (f), catchability coefficient (q) and sardine biomass (B). It is common practice to assume catch is proportional to fishing effort and stock size, although this is only the case if the catcahability coefficient doses not vary through time or with stock size (Haddon, 2001). Initial value for catachability coefficient of 0,0000399 is taken from Alegria-Hernandez (1983). According to the same author value of the optimal fishing effort are between 4115 and 5292 effective fishing days in one year. Scenario 1a tested dynamic behavior of sardine biomass with lower fishing effort and Scenario 1b with higher fishing effort, when all other variable where constant.

4.1 Results of Scenario 1a

In Scenario 1a, behavior dynamics of sardine system was investigated when catch is product of catchability coefficient q=3,99E-5 and fishing effort f=4115 effective fishing days in one year.

Fig. 3 Results of Scenario 1a for sardine biomass (SB) and carrying capacity (CC)

Fig. 5 Results of Scenario 1a for catch rate (CR) and natural death (ND)

In the begging of simulation small increase of biomass is observed (Fig. 3). Increase of biomass results from the fact that natural growth is larger than rate of biomass decrease (Fig. 4). Figure 3 also shows that biomass reach some steady state which is far below value of carrying capacity.

Although, in the beginning of simulation natural growth is larger than rate of biomass decrease, these two values equals (Fig. 4) as steady state is approaches.

Comparative analysis of natural death and catch (Fig. 5) shows that natural death is larger that catch defined in this manner.

Numerical value of all variable included in model for Scenario 1a are given in Table 1.

Fig. 4 Results of Scenario 1a for natural growth (NG) and rate of biomass decrease (RBD)

Tab. 1 Numerical Results of Scenario 1a

Time	SB	NG	ND	CR	RBD	
0	95.335,0	34.987,95	17.043,37	15.652,91	32.696,28	
1	97.626.7	35.828.98	17.872.60	16.029.17	33.901.77	
2	99.553.9	36.536.27	18.585.20	16.345.60	34,930,80	
3	101.159	37.125.48	19,189,46	16.609.20	35,798,67	
4	102.486	37.612.42	19.696.15	16.827.05	36.523.20	
5	103.575	38.012.17	20.117.03	17.005.89	37.122.92	
6	104.465	38,338,52	20,463,95	17,151,89	37.615.84	
7	105,187	38.603.74	20.748.06	17.270.55	38.018.61	
8	105.772	38.818.49	20.979.54	17.366.62	38.346.16	
9	106.245	38,991,83	21.167.33	17.444.17	38.611.50	
10	106.625	39.131.42	21.319.15	17.506.62	38.825.77	
11	106 931	39 243 59	21 441 55	17 556 80	38 998 35	
12	107 176	39 333 59	21 540 01	17 597 07	39 137 08	
13	107 373	39 405 71	21 619 07	17 629 33	39 248 41	
14	107 530	39 463 45	21 682 47	17 655 16	39 337 63	
15	107 656	39 509 62	21 733 24	17 675 82	39 409 06	
16	107 756	39 546 53	21 773 86	17 692 33	39 466 19	
17	107 837	39,576,01	21.806.34	17,705.52	39.511.86	
18	107.001	39 599 56	21,832,29	17 716 05	39 548 35	
10	107 952	39 618 35	21 853 02	17 724 46	39 577 48	
20	107 993	39 633 35	21,869,57	17 731 17	39 600 74	
21	108.025	39 645 32	21 882 78	17 736 53	39 619 30	
22	108.051	39 654 86	21 893 32	17 740 80	39 634 11	
23	108.072	39 662 48	21 901 73	17 744 20	39 645 93	
24	108.089	39 668 55	21 908 43	17 746 92	39 655 35	
25	108 102	39 673 39	21 913 78	17 749 09	39 662 87	
26	108 112	39 677 25	21 918 05	17 750 81	39 668 86	
20	108 121	39 680 33	21 921 45	17 752 19	39 673 64	
28	108 127	39 682 79	21.924.16	17 753 29	39 677 45	
20	108 133	39 684 75	21.024,10	17 754 17	39 680 49	
30	108 137	39 686 31	21,928,05	17 754 86	39 682 92	
31	108 140	39 687 55	21 929 43	17 755 42	39 684 85	
32	108 143	39 688 54	21,930,52	17 755 86	39 686 39	
33	108 145	39 689 33	21 931 40	17 756 22	39 687 61	
34	108 147	39 689 96	21,932,09	17 756 50	39 688 59	
35	108 148	39 690 47	21 932 65	17 756 72	39 689 37	
36	108 149	39 690 87	21 933 09	17 756 90	39 690 00	
37	108 150	39 691 19	21,933,44	17 757 05	39 690 49	
38	108,151	39.691.44	21.933.73	17.757.16	39.690.89	
39	108,152	39.691.64	21,933,95	17.757.25	39,691,20	
40	108,152	39.691.81	21.934.13	17.757.32	39.691.45	
41	108,152	39.691.93	21.934.27	17.757.38	39.691.65	
42	108,153	39,692,04	21.934.39	17,757,43	39.691.81	
43	108,153	39.692.12	21.934.48	17.757.46	39.691.94	
44	108.153	39,692,18	21,934,55	17,757,49	39,692.04	
45	108,153	39.692.24	21.934.61	17.757.52	39.692.12	
46	108,153	39.692.28	21.934.65	17.757.54	39.692.19	
47	108.153	39.692.31	21.934.69	17.757.55	39.692.24	
48	108.154	39.692,34	21.934,72	17.757,56	39.692,28	
49	108.154	39.692,36	21.934,74	17.757,57	39.692,31	
50	108.154	39.692,38	21.934,76	17.757,58	39.692,34	
	4					

4.2 Results of Scenario 1b

In Scenario 1b, behavior dynamics of sardine system was investigated when catch is product of catchability coefficient q=3,99E-5 and fishing effort f=4115 effective fishing days in one year.

Fig. 6 Results of Scenario 1b for sardine biomass (SB) and carrying capacity (CC)

Fig. 7 Results of Scenario 1b for natural growth (NG) and rate of biomass decrease (RBD)

Fig. 8 Results of Scenario 1b for catch rate (CR) and natural death (ND)

Tab. 2 Numerical Results of Scenario 1b

Time	SB	NG	ND	CR	RBD	
0	95.335.0	34,987,95	17.043.37	20.130.06	37.173.44	
1	93 149 5	34 185 87	16 270 91	19 668 59	35 939 51	_
2	91 395 9	33 542 28	15 664 05	19 298 31	34 962 36	
3	89 975 8	33 021 12	15 181 06	18 998 46	34 179 53	
4	88 817 4	32 595 98	14 792 68	18 753 86	33 546 54	
5	87 866 8	32 247 13	14 477 74	18 553 15	33 030 89	
6	87 083 1	31 050 /8	14.220.61	18 387 66	32 608 27	
7	86 / 3/ 3	31 721 38	14.009.51	18 250 67	32,000,27	
8	85 805 5	31 523 64	13 835 30	18 136 00	31 072 20	
0	95 116 9	31.323,04	13.601.24	10.130,90	21 722 41	
9 10	95 072 4	21 221 59	13.091,24	17 062 11	31.733,41	
10	00.072,4	21 106 60	13.371,32	17.903,11	21 269 92	
10	04.709,4	21 010 49	12 200 62	17.097,01	21 220 29	
12	04.497,2	31.010,46	13.300,02	17.041,00	31.230,20	
13	84.277,4	30.929,82	13.319,06	17.795,25	31.114,30	
14	84.093,0	30.862,11	13.260,81	17.756,29	31.017,10	
15	83.938,0	30.805,23	13.211,97	17.723,57	30.935,54	
16	83.807,7	30.757,41	13.170,98	17.696,05	30.867,04	
17	83.698,0	30.717,18	13.136,55	17.672,91	30.809,45	
18	83.605,7	30.683,31	13.107,60	17.653,42	30.761,02	
19	83.528,0	30.654,79	13.083,24	17.637,01	30.720,26	
20	83.462,6	30.630,76	13.062,74	17.623,19	30.685,93	ļ
21	83.407,4	30.610,52	13.045,48	17.611,54	30.657,02	
22	83.360,9	30.593,45	13.030,94	17.601,72	30.632,66	
23	83.321,7	30.579,06	13.018,68	17.593,44	30.612,13	
24	83.288,6	30.566,93	13.008,35	17.586,46	30.594,81	
25	83.260,7	30.556,69	12.999,64	17.580,57	30.580,22	
26	83.237,2	30.548,06	12.992,30	17.575,61	30.567,91	
27	83.217,4	30.540,78	12.986,11	17.571,42	30.557,52	
28	83.200,6	30.534,63	12.980,88	17.567,88	30.548,76	
29	83.186,5	30.529,45	12.976,47	17.564,90	30.541,37	
30	83.174,6	30.525,07	12.972,75	17.562,38	30.535,13	
31	83.164,5	30.521,38	12.969,62	17.560,26	30.529,87	
32	83.156,0	30.518,27	12.966,97	17.558,46	30.525,43	
33	83.148,9	30.515,64	12.964,73	17.556,95	30.521,68	
34	83.142,8	30.513,42	12.962,85	17.555,67	30.518,52	1
35	83.137,7	30.511,54	12.961,26	17.554,60	30.515,85	1
36	83.133,4	30.509,96	12.959,91	17.553,69	30.513,60	1
37	83.129,8	30.508,63	12.958,78	17.552,92	30.511,70	
38	83.126,7	30.507,50	12.957,82	17.552,27	30.510,09	
39	83.124,1	30.506,55	12.957,01	17.551,72	30.508,74	
40	83.121,9	30.505,75	12.956,33	17.551,26	30.507,59	
41	83.120.1	30.505,07	12.955,76	17.550,87	30.506,63	1
42	83.118,5	30.504,50	12.955,27	17.550,54	30.505,81	
43	83.117.2	30.504.02	12.954.86	17.550.27	30.505.13	
44	83.116.1	30.503.61	12.954.52	17.550.03	30,504,55	
45	83.115.2	30.503.27	12.954.22	17.549.83	30,504,06	
46	83,114,4	30,502,98	12.953.98	17.549.67	30,503.64	
47	83,113 7	30.502 73	12,953 77	17.549.53	30.503.29	
48	83,113 1	30,502,52	12,953 59	17.549.41	30.503.00	
49	83,112 7	30,502,35	12,953 44	17.549.31	30.502.75	
50	83.112.3	30.502.20	12.953.32	17.549.22	30.502.54	
		1 3.002,20	. 1.000,02			
					•	

In this Scenario behavior dynamics of sardine biomass is different form Scenario 1a. In the beginning of the simulation sardine biomass decreases, and after some time reach steady state as in Scenario 1a (Fig. 6). Although, steady state is reached in Scenario 1b the value of steady state is lower than in Scenario 1a.

As a results of larger fishing effort the greater catch is obtained (Fig. 8) and consequently larger rate of biomass decrease (Fig. 7).

As biomass is approaching steady state, rate of biomass decreases equals natural growth (Fig. 7).

In this case, comparing catch value and natural death, it is noted that catch portion in total death is larger

than natural death (Fig. 8). However, in this scenario, biomass reaches steady state, after initial decrease which is far below crying capacity (Fig. 6).

5 Conclusion

Although very simple, Schaefer production model enables investigation of complex behavior dynamics of fish population. Schaefer production model is applied on sardine population in Eastern Adriatic by System dynamics methodology.

Modeling and simulation enables testing of different exploitation scenarios without endangering sardine real population.

Qualitative and quantitative models are developed using available biological data for initial values of the variables.

Although, available biological data give range of optimal fishing effort it is evident that upper limit reduce sardine biomass below initial state, while lover limit enables increase of sardine biomass. Based on the results of these two scenarios it can be concluded that for every desired level of sardine biomass optimal fishing effort exists.

6 References

- V. Alegria-Hernandez. Assessment of pelagic fish abundance along the eastern Adriatic Sea cost with special regard to sardine (*Sardina pilchardus*, Walb.) population. *Acta Adriatica*. 24: 55-95. 1983.
- [2] M. B. Schaefer. Some Aspects of the Dynamics of Populations important to the Management of Commercial Marine Fisheries. *Bulletin of the Inter-American tropical tuna commission*. 1: 25-56. 1954.
- [3] R. G. Dudley. A Basis for Understanding Fishery Management Complexities. [http://pws.prserv.net/RGDudley/PDF/FMTcompl .pdf] (27.10.2005)
- [4] M. Sliskovic. Simulation model of sardine population dynamics in Adriatic Sea. Doctoral thesis. 171. 2007.
- [5] Al-Amin Ussif, Sandal, L. K.; Steinshamn S. I. A new approach of fitting biomass dynamics models to data. *Mathematical Biosciences*. 182 (1): 1-25. 2003.
- [6] B. J. Rothschild. Fishing effort. In J. A. Gulland Fish Population Dynamics. John Wiley & Sons. London. 96-115. 1977.

- [7] C. W. Clark. Mathematical Bioeconomics. Optimal Management of Renewable Resources. Wiley & Sons. New York. 1990.
- [8] M. Haddon. Modeling and Quantitative Methods in Fisheries. Chapman & Hall. London. 2001.