
SPEEDING UP VERILOG GATE-LEVEL
SIMULATION WITH BI-PARTITIONING

Lilian Janin, Doug Edwards

Advanced Processor Technologies Group
School of Computer Science, The University of Manchester, UK

lilian.janin@manchester.ac.uk (Lilian Janin)

Abstract

Iterative design methodologies based on a simulation-debugging-update cycle form the basis
of Verilog design development. An automated flow to speed up iterative design cycles is pre-
sented here. Compilation speedup is obtained by partitioning the circuit in order to exploit the
locality of code updates during a typical iteration, in order to recompile only the modified parts
of the design. Simulation speedup is obtained by interfacing multiple instances of the same
simulator together through a cosimulation interface, either on single-core or dual-core comput-
ers. Particular care is taken in the design of the cosimulation interface to ensure the same accu-
racy as during a single-kernel simulation.
A smartcard circuit embedding an asynchronous ARM processor is used as a demonstrator.
The speedup is analysed on both single and dual core machines with gate-level simulation. An
unexpected result is that even on a single-core computer, in some circumstances, partitioning a
simulation and simulating both parts simultaneously leads to some speedup in spite of the
losses due to the cosimulation interface. During the iterative design cycle experiments, the
main result is a 30% speedup achieved with all the simulators on a single core and 50% spee-
dup on dual-cores.

Keywords: Verilog, Cosimulation, Speedup.

Presenting author’s biography

Lilian Janin is a Research Associate in the School of Computer Science at
the University of Manchester, where he received his Ph.D. degree in 2004.
His research interests are in simulation and visualisation of large asyn-
chronous systems. He has been working since 2000 ond the Balsa asyn-
chronous simulator and visualisation system. His work is now mainly
focused on a co-simulation debugging environment for heterogeneous
synchronous-asynchronous circuits.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1. Introduction

Most Verilog design flows are based on an iterative
cycle including gate-level simulation, usually in the
form simulation-debugging-update. This iterative cycle
is an important part of the development process. Our
approach aims at shortening the design cycle of large
systems described in Verilog by speeding up this itera-
tive simulation stage. This stage is characterised by
short simulation lengths (bugs usually appear early on)
and almost identical behaviour from one cycle to the
next. This second property is due to iterative code
changes that are usually localised to a small region of
the source code.

Parallel simulation has been extensively researched to
accelerate simulations [1, 2, 3]. However, the two
enounced properties of iterative simulation lead to a
new optimisation opportunity: short simulations of
large designs imply that the time spent by the simulator
to compile the Verilog code (sometimes to bytecode,
sometimes to C and then machine code) is a large pro-
portion of the total simulation time. Small localised
changes imply that most of the design does not need
recompiling from one iteration to the next. Some Ver-
ilog simulators already exploit this by offering incre-
mental compilation [4] with file or module granularity,
but others do not, and this paper shows that all simula-
tors benefit from the following idea: partitioning the
Verilog design to take advantage of localised code
changes and recompiling only parts of the design at
each iteration.

The difficulty raised by this approach is that the multi-
ple parts need to be reconnected appropriately during
the actual simulation. One way to do that is by using a
cosimulation interface. Here we present a discrete event
cosimulation interface specifically designed for han-
dling communications between two processes running
on a single processor and minimising the cosimulation
interface overhead. We show that, in this particular sit-
uation, it is possible to design a cycle-accurate cosimu-
lation interface with very low overhead, a non-obvious
achievement [5] giving us the same accuracy as the
original single-threaded simulators.

The cosimulation interface originally described for sin-
gle-core experiments is then used as-is to measure the
speedup obtained on dual-core processors, as those are
becoming increasingly common in desktop computers.

Related work includes various researches intending to
make simulation faster. Distributed discrete event sim-
ulation has gained extensive research focuses with
diverse approaches depending on their different empha-
sis on conflicting goals such as simulation speed, accu-
racy and flexibility [1, 2, 5, 6].

Our automated design flow is presented in Section 2.
Section 3 describes the time-accurate cosimulation
interface. Results and speedups are analysed in Section

4, concluding on the 50% design cycle speedup
obtained on today’s dual-core desktop computers.

2. Automated design flow

Although we emphasise in this paper the compilation
and simulation speedup benefits of our research,
another aspect of our framework is to provide a trans-
parent generation of cosimulation interfaces with links
to a visualisation system for enhanced debugging. A
graphical integrated environment facilitates the
designer’s task of learning this new set of tools. Even in
the scope of this paper, it is worth mentioning these fea-
tures, as they facilitate the integration of these new tools
in designers’ traditional flows and makes their adoption
relatively easy.

Our proposed design flow is shown in Fig. 1. The tradi-
tional compile-simulate-debug-update design cycle is
augmented by a setup stage intended to prepare the
cosimulation environment (partitions and interfaces).
This cosimulation setup stage takes a Verilog descrip-
tion of the design as input and generates two Verilog
partitions via a GUI, with an interface linking each par-
tition to the other. The two partitions are then compiled
and simulated concurrently, the optional simulation
traces are merged, and the subsequent debugging and
code update stages are executed identically to those
from a traditional design cycle. Typical design cycles do
not change the structure of the circuit, and this flow
therefore requires the same amount of manipulations
from the designer as traditional flows, while exploiting
concurrency. The setup stage needs to be repeated only
when the design undergoes structural changes that mod-
ify the cosimulation interfaces. In this case, it is fully
automated and should appear transparent to the
designer.

The cosimulation setup stage can be decomposed into
five phases (Fig. 2): analysis of the circuit’s structure,
generation of the hierarchy of components in an internal
format (called GALSA - Globally Asynchronous Locally
Synchronous or Asynchronous), partitioning of this set
of components, generation of the cosimulation inter-
faces, and an optional pruning of the Verilog source
code for the two partitions.

Most of these stages are fully automated, but some of
them usually benefit from a minimal set of user deci-
sions (such as choosing the partition), while other
stages could expose useful information to the designer
through a few manipulations.

2.1. Circuit structure analysis and generation of the
GALSA structure

The circuit structure analysis consists of a Verilog
parser, which is used to discover the design’s modules
and their connections. From this, a graph is generated
where each node contains some information about one
Verilog module, and where the edges represent the

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

interconnect. The graph is stored in our internal GALSA

format, able to handle modules in various languages.
The Galsa format was designed to describe asynchro-
nous interconnect, and has therefore specific support for
asynchronous channels and protocols. During the anal-
ysis of the Verilog source code, separate wires can be
gathered as channels if they appear to describe an asyn-
chronous channel with a request, acknowledge and
data. The first supported language was the asynchro-
nous HDL Balsa [7].

2.2. Partitioning

Partitioning correctly a circuit is difficult. The problem
of minimising the partition cut while balancing the sim-
ulation load is known to be NP-complete [8], and parti-
tioning algorithms have been extensively studied
without really emerging in the HDL world. Here how-
ever, the problem is considerably simplified due to the
coarse granularity at the Verilog module level.

One important decision in this project was to bypass the
traditional research on partitioning algorithms, for two
reasons: firstly, the circuit we had in mind as a demon-
strator (see Section 4) is made of one processor roughly
using half of the resources (in terms of compilation
time, simulation time and number of transistors) and the
rest of the circuit using the other half. This rough parti-
tioning, which didn’t require any advanced analysis, is
very much what engineers happen to do in practice, and
still produced exploitable results. Secondly, and most
importantly, we discovered that no partitioning was ever
ideal for all stages and all compilers/simulators: one
partition can be perfectly balanced for one Verilog sim-
ulator, and very unbalanced for another Verilog simula-
tor, or one partition can produce two balanced
compilation stages, but very unbalanced simulations,
etc.

2.3. Optional pruning of partition code

Most Verilog simulators do not allow the designer to
specify a top-level module. In this situation, they will
consider as top-level all the modules that are not instan-
tiated in any other modules, thus wasting a lot of
resources. With our bi-partitioned system, each parti-
tion gets almost half of its modules unused. In order to
save resources, the tool can prune every unused Verilog
module and bundle the result in one file or directory. As
detailed in the Results section, this brings up to 144%
compilation speedup.

When activated, this stage is considered as part of the
compilation process and is included in the short design
cycle shown in Fig. 1 because it needs to be re-proc-
essed after each code update.

3. Time-accurate cosimulation interface

It is very simple to design an efficient cosimulation
interface where simulation delays at the interface are
not strictly respected, therefore leading to distributed
simulation results being different from those obtained
from a single-kernel simulation. An accurate schedul-
ing of events across a cosimulation interface is more
complex to achieve and requires advanced access to the
simulator’s event queue, which is not always available
or obvious, as internal data can be hidden from the user.

A simple cosimulation technique and its accuracy short-
comings are illustrated in Fig. 4 and 5. In this example,
a Verilog description is partitioned into two communi-
cating parts synchronised at every simulation time step
by using a pseudo clock. Each partition has one input
and one output, but the interface scales obviously to m
inputs and n outputs.

The output events are properly sent as soon as they hap-
pen. However, the reception of these sent messages is
problematic as they should interrupt the target’s verilog

Fig. 1 Design flow iteration

if circuit structure
changes, cosimulation
interfaces needs
to be (automatically)
regenerated

Verilog description

Debugging Code updates

Initial design

Cosimulation setup

generation of interfaces
Design analysis &

Compilation
+

Simulation

Parallel
Compilation

+
Simulation

Parallel

P&R etc.

design
cycle

Fig. 2 Cosimulation setup stage

cosimulation interfaces
Generation of

Circuit Structure Analysis

Galsa structure

Partitioning

Optional pruning
of Verilog code for

each partition

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

simulation at the proper simulation time or before (in
which case they can then be rescheduled to the proper
timestep), but not after. In this simple technique, the
interruption of the simulation for receiving the mes-
sages is triggered by a pseudo clock calling
receive_event at each time step. Receive_event sequen-
tially receives each message sent by the other partition
until a “clock tick” message indicates that subsequent
events belong to future timesteps. This solution has two
problems: first, it is not possible to know or specify
when during the time step the function receive_event
will be called. It could happen at the beginning of the
time step, before other events are processed, or at the
end of the timestep. In the first case, the messages gen-
erated by the other partition during this timestep will
only be received at the next cycle; In the latter case, the
input messages received might generate outputs to the
other partition during the same timestep, which will
only be processed in the next timestep by the target.

Basically, this technique cannot be used to transfer
events with zero delay without introducing skew.

Obviously, what is needed is a way to receive events,
process them, and repeat as many times as necessary
within the same timestep; and to advance to the next
simulation timestep only when we are certain that all
partitions have processed all their events for the current
timestep (we are in the conservative cosimulation mind-
set). For that, we need to be able to call our
receive_event routine at the very end of each simulation
timestep, and have it being triggered again at the end of
the same timestep if we rescheduled some new interme-
diate events. Fortunately, similar requirements were
expressed for hardware-software codesign years ago
and have been integrated and refined in the Program-
ming Language Interface (PLI) of Verilog simulators.
PLI, now in its version 2, also called Verilog Procedural
Interface (VPI), offers the possibility to schedule call-
backs associated to various events: value change, simu-
lation time change, last event in a time step queue, etc.

The cosimulation interface designed here is based on
the VPI callbacks cbReadWriteSynch and cbAtEndOf-
SimTime, which are VPI events called at the beginning
and end of simulation time steps. In our implementa-
tion, these events replace Fig. 5’s pseudo clock; and the
inter-partition communication mechanism is based on a
standard FIFO unix pipe for transporting the messages,
as an implementation of Fig. 5’s send_event and
read_events routines. The end-of-timestep callback is

Fig. 3 GALSA graphical interface showing the architecture of the SPA-smartcard project

Fig. 4 Simple cosimulation i/f problem

module top1
wire in, out;

always @out
/* non-blocking event submission */
send_event (“out=”, out);

always begin
#1 /* pseudo-clock */
/* non-blocking event submission */
send_event (“clock tick”);

/* read input events and block
until “clock tick” message */

read_events (in);
end

Partition1 P1 (in, out);
end module

Fig. 5 Simple interface code

channel

out in
Partition2

Partition1
in out

Partition1
in out

out in
Partition2

top1

top2

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

rescheduled at the end of the current timestep when
read_events happens to schedule new intermediate
events.

4. Results / Performance increase

The speedup due to partitioning is evaluated with five
Verilog simulators, some commercial ones and some
freely available. The results are reported anonymously
due to the license agreements of commercial simula-
tors. The Verilog test case is a smartcard chip embed-
ding an asynchronous ARM v5 core [9] (architecture
shown in Fig. 3). This is a reasonably large design
reaching a million transistors. The results presented in
this paper are based on a partitioning of this design into
two parts: part1 is the entire circuit except the processor
(i.e. on-chip network, memory, uart, I/O pads and
behavioural test harness) and part2 is the processor.
This coarse partitioning does not achieve a balanced
load in most cases but has been chosen for its similari-
ties with a typical real life partitioning. Furthermore, it
is impossible to determine a partition that is balanced
for every simulator. Even when considering a single
simulator, as the results will show, part1 is dominant in
most compilations while part2 takes over during simu-
lations. All the tests are run on an Athlon 64 dual-core
processor 4200+ 2.2GHz. During single-core experi-
ments, the processes were forced into a specific proces-
sor core using the ‘taskset’ command.

Each simulator comes with different standard capabili-
ties, reported in Tab. 1. Incremental compilation is
probably the most important feature for a simulator
when considering iterative design cycles: instead of
requiring a full design recompilation, typical localised
code changes can be simulated and debugged after the
recompilation of only a single file or a single Verilog
module.

A second important feature of simulators is the ability
to specify a top-level module. When available, this fea-
ture allows the Verilog compiler to extract the relevant
Verilog modules, leading to faster compilation and sim-
ulation. When this feature is not available, all the
unused modules get instantiated as top-level modules,
thus wasting a lot of resources.

Broadly speaking, our partitioning and pruning flow
brings the benefits of incremental compilation and top-
level specification to the simulators devoid of these fea-
tures.

4.1. Compilation speedup

The analysis of the compilation speedup is made of two
parts: compilation of the whole design and incremental
compilation of localised code changes. Although we are
interested in measuring the effects of our system during
an iterative process, the full compilation gives an upper
bound to the iterative compilation time.

4.1.1. First iteration: Full design compilation

The time taken for the compilation of the entire design
by each simulator is reported in Tab. 2. The first row
corresponds to the non-partitioned design. The second
row details the time taken to compile each part of the
partitioned circuit and the cumulated time. The single-
core speedup is the ratio between the time taken to com-
pile the whole non-partitioned design (row1’s non-par-
titioned compilation time) and the cumulated time for
parts 1 and 2. The dual-core speedup is the ratio
between the non-partitioned compilation time and the
largest compilation time between part 1 and part 2.

We could imagine a “dual-core possible speedup”,
which would assume a load-balanced compilation of
parts 1 and 2 based on the reported cumulated time (i.e.
the compilation of part 1 and part 2 would take the same
amount of time, equal to half the cumulated time). Ths
would give a “dual-core possible speedup” equal to
twice the reported single-core speedup. Although this
speedup might be reached by a balanced partition, it
would be quite an artificial figure.

The reported single-core speedup is a surprising out-
come of this research, with the unexpected 53% spee-
dup reached with one of the simulators on a single core.
The setup is as expected: compiling the full design takes
90s. The design is then partitioned into two parts. Some
modules such as the low-level cells are duplicated, as
they are required in both parts, and a cosimulation inter-
face is added to each part. In spite of these additions, the
compilation of part1 and part2 takes 43s and 16s respec-
tively, totalling less than the full compilation. Other
simulators’ compilers are behaving more logically.

The dual-core speedup, averaging 50%, is too irregular
to draw definite conclusions. As we will see later, the
results combining compilation and simulation are more
consistent.

The timings reported in Tab. 2 for the compilation of
parts 1 and 2 are including the optional pruning of Ver-
ilog code for each partition described previously. Tab. 3
shows the effects of this option on compilation time.

On the simulators where the top-level module cannot be
specified, the speedup due to pruning ranges from 30%
to 144%.

4.1.2. Iterative compilation: Localised updates

During a typical design cycle, the debugging process

Tab. 1 Simulators characteristics

Simulator: 1 2 3 4 5

Incremental
compilation

file-
based

file-
based

module-
based No No

Can specify top
level No Yes No Yes No

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

leads to small localised changes to the source code,
which is then recompiled, simulated and debugged
again. Here, we look at the variations in compilation
time after such small localised changes are applied to
our smartcard design. The experience is based on two
code changes: change 1 is in a one line change in a small
leaf module used at six others places in a small file;
change 2 is a one line change in a large module located
in a large Verilog file (300 kB). The corresponding rec-
ompilation timings are reported in Tab. 4.

The reported results show an average 70% speedup with
the partitioned design with the simulators already
implementing incremental compilation, and 2x to 3x
speedup with the two other simulators. This experiment
does not exploit any parallelism, as only one part needs
recompiling at any time, and this speedup is therefore
reached on a single core. Dual-cores might get extra
benefits when code changes are distributed over both
parts, but should be rare in practice.

4.2. Simulation speedup

It was expected that the compilation of parts of the cir-
cuit would be faster than the compilation of the whole
circuit, leading to some speedup at compilation. How-
ever, cosimulation communications often add so much
overhead at runtime that they render the whole process
useless. Here a surprise awaits us again with the single-
core experiment(Tab. 5). Again, simulator 5 unexpect-

edly performs 16% faster with two parts simulated
simultaneously on the same processor core than one sin-
gle simulation process. But another important achieve-
ment is the single-core speedup around 1.00 for all the
other simulators, meaning that the cosimulation inter-
face does not add any noticeable communication over-
head.

An analysis reveals that, although they are synchronis-
ing at every time step, the two simulation processes
behave very well, switching quickly without wait states,
and never waiting for each other in sleep mode. 100%
CPU is constantly used. This is shown in Tab. 6, were
“sim part1 alone” and “sim part2 alone” are showing the
results when no synchronisation is needed, in order to
show the load distribution. These figures are obtained
by first recording the communications during a normal
cosimulation and then replaying one side of the cosim-
ulation at a time, taking its inputs directly from the
recorded file.

The dual-core results are less impressive, with 20-30%
speedup. This is mainly due to the unbalanced load. The
communication overhead in dual-core is around 20%,
and a dual-core speedup of 1.80 could therefore be
achieved.

4.3. Total speedup

This section sums up the compilation and simulation
speedups reported previously and groups them together
to produce a useful speedup estimate during a typical
design cycle (Tab. 7).

It has been reported previously that a partitioned design
was getting compiled and simulated faster than the non-
partitioned design with one specific simulator. How-
ever, this is an isolated case. The core result of this
research is the 30% speedup obtained with every simu-
lator when considering an iterative design cycle. This is
explained by the fact that only one part of the parti-
tioned design needs to be recompiled after localised
changes, and is made possible by the extremely low

Tab. 2 Full compilation speedup

1 2 3 4 5

non-partitioned
compilation 62s 31s 86s 86s 90s

compilation
part1 + part2

42s
+29s
=71s

20s
+16s
=36s

81s
+41s

=122s

25s
+58s
=83s

43s
+16s
=59s

single-core
speedup 0.87 0.86 0.70 1.041 1.531

dual-core
speedup 1.48 1.55 1.06 1.48 2.091

1. super-linear speedup

Tab. 3 Pruning speedup

1 2 3 4 5

part1 + part 2
compilation

without pruning

65s
+49s

=114s

22s
+22s
=44s

83s
+76s

=159s

25s
+58s
=83s

90s
+54s

=144s

part1 + part 2
compilation
with pruning

42s
+29s
=71s

20s
+16s
=36s

81s
+41s

=122s

25s
+58s
=83s

43s
+16s
=59s

speedup due to
pruning 1.61 1.221 1.30 1.001 2.44

1. Pruning integrated in simulator (top-level can be speci-
fied)

Tab. 4 Iterative compilation speedup

1 2 3 41 51

non-partitioned
compilation:

change1/
change2

50s/
50s

20.5s/
20.5s

25s/
25s

86s/
86s

90s/
90s

change 1 in
compilation

part1
34s 10s 22s 25s 43s

change 2 in
compilation

part2
24s 11s 14s 58s 16s

average itera-
tive compilation

speedup
1.72 1.95 1.39 2.07 3.05

1. No incremental option (same results as full compilation)

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

overhead of the cosimulation interface on a single core.

With a dual-core configuration, 50% speedup is com-
monly obtained during iterative design cycles, and 40%
speedup is reached for a full recompilation of the entire
(but partitioned) design. Although not astounding, it
might come for free on today’s multi-core computers.

Sometimes extra speedup on dual-core is actually
reachable due to the overlapping of the beginning of
sim2 with the end of comp1 (or vice versa) but is not
included here due to the small gain (max. 2s).

5. Conclusion

It has been shown that, independently of the Verilog
simulator, 30% simulation speedup can be achieved
simply by partitioning a design into two parts. The spee-
dup comes from the fact that a typical iterative design
cycle is based on localised code changes, which then
require the recompilation of only one part of the parti-
tioned design. During the simulation, the communica-
tions between the two parts need to be handled
appropriately. This is done here using a classical cosim-
ulation interface carefully designed to ensure the same
cycle-accuracy as during a single-kernel simulation.

The partitioning and the generation of the cosimulation
interface are made as transparent as possible by our
automated GALSA system. The cosimulation can also be
used on dual-core configurations to reach 50% speedup.
In today’s dual-core desktop computers, this speedup is
obtained almost for free, an important fact given the
constant advances in hardware developments.

6. References

[1] P. Gerin, S. Yoo, G. Nicolescu, and A. A. Jerraya.
Scalable and flexible cosimulation of SoC designs
with heterogeneous multi-processor target archi-
tectures.ASP-DAC, pp. 63-68, 2001.

[2] T. Li, Y. Guo, S. Li, F. Ao, and G. Lio. Parallel ver-
ilog simulation: architecture and circuit partition.
ASP-DAC, pp. 644-646, 2004.

[3] T. Watanabe, Y. Tanji, H. Kubota, and H. Asai. Par-
allel-distributed time-domain circuit simulation of
power distribution networks with frequency-
dependent parameters.ASP-DAC, pp. 832-837,
2006.

[4] V. K. Sundar, A. V. Ashish, and D. R. Chowdhury.
Incremental compilation in the VCS environment.
International Verilog HDL Conference, pp. 14-19,
1998.

[5] K.-H. Chang, W.-T. Tu, Y.-J. Yeh, and S.-Y. Kuo.
Techniques to Reduce Synchronization in Distrib-
uted Parallel Logic Simulation.Parallel and Dis-
tributed Computing and Systems, 2004.

[6] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangio-
vanni-Vincentelly. Design of Embedded Systems:
Formal Methods, Validation, and Synthesis.Pro-
ceeding of the IEEE, vol. 85 (3), March 1997.

[7] A. Bardsley, and D. A. Edwards. Balsa - An Asyn-
chronous Hardware Synthesis Language.The
Computer Journal, 45(1):12–18, January 2002.

[8] M. R. Garey, and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Com-
pleteness. W. H. Freeman and Company, 1979.

[9] L. A. Plana, P. A. Riocreux, W.J. Bainbridge, A.
Bardsley, J.D. Garside, and S. Temple. SPA - A
Synthesisable Amulet Core for Smartcard Appli-
cations.Async’2002, pp. 201-210, 2002.

Tab. 5 Simulation speedup

1 2 3 4 5

full simulation 36s 110s 82s 112s 151s

cosim single-core 37s 112s 81s 111s 130s

cosim dual-core 30s 86s 63s 86s 122s

single-core
speedup 0.97 0.98 1.01 1.01 1.16

dual-core
speedup 1.20 1.28 1.30 1.30 1.24

Tab. 6 Communications overhead

1 2 3 4 5

sim part1 alone 11.5s 37s 27s 39s 24s

sim part2 alone 24.5s 74s 53s 72s 105s

single-core
overhead 1s 1s 1s 0s 1s

dual-core
overhead

5.5s
(22%)

12s
(16%)

10s
(19%)

14s
(19%)

17s
(16%)

Tab. 7 Total iterative speedup

1 2 3 4 5

non-parti-
tioned

comp+sim
(full / iterative)

98s/
86s

141s/
130.5s

168s/
107s

198s/
198s

241s/
241s

single-core
comp+sim

(full / iterative)

108s/
66s

148s/
122.5s

203s/
99s

194s/
152.5s

189s/
159.5s

dual-core
comp+sim

(full / iterative)

72s/
59s

106s/
96.5s

144s/
81s

144s/
127.5s

165s/
151.5

single-core
speedup

(full / iterative)

0.91/
1.30

0.95/
1.27

0.83/
1.28

1.02/
1.30 1.28

dual-core
speedup

(full / iterative)

1.36/
1.46

1.33/
1.53

1.17/
1.51

1.38/
1.55 1.46

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

