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Abstract  

The paper presents a new and efficient concept of local secondary voltage control (LSC) of 
a power system that is based on artificial neural networks (ANN). For its operation it requires 
only local information on power system operation that it collects by measuring the controlled 
variables in the controlled node and reactive power flows on the connecting lines with the 
neighboring nodes. All generators in the system participate in the secondary voltage control, 
each of them equipped with its own secondary controller. The correct response of the 
controller to the input data is calculated using ANN. Each ANN is trained separately using the 
same set of power system operating states. The set has to be large enough to encompass many 
different operating scenarios, with the optimal power flow (OPF) results used as the training 
reference. The local ANN controllers operate independently without coordination and free of 
the unwanted controller interaction. Although their adaptive local control action results in 
system-wide effect on voltage profile, they require no supervisory reference signal from the 
power system control center for their operation. 

The performance of the control concept was tested on a Slovenian power system model 
with 22 generators and eight tap changing transformers. Test results show that the new local 
secondary voltage control successfully supplies reference voltages for generators and tap 
changing transformers based only on local measurements. Using the local ANN secondary 
voltage control we achieved local control of power system voltage profile and a notable 
reduction of power system losses. 

Keywords: Power System, Local Secondary Voltage Control, Artificial Neural Network, 
Optimal Voltage Profile. 
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1 Introduction 
As learning non-linear approximators, the artificial 
neural networks (ANNs) are established as a 
promising tool in power system control and analysis. 
They excel especially in non-linear control and 
estimation problems where large-scale optimization 
requires unfeasible solution times, in tasks of 
statistical character or in identification and modeling 
of parts of the system [1],[2]. Most common 
applications of the ANN-s in power systems include 
load forecasting, alarm processing and power system 
fault detection, component fault diagnosis, static and 
dynamic security analysis and power system planning. 

As a part of the ancillary services, voltage and reactive 
power control is gaining importance in a deregulated 
power system. It is dealing with complex, highly non-
linear relations between voltage and reactive power, 
comprising reactive power production limits and 
unfavorable voltage behavior of the power system 
elements. 

In a hierarchical voltage control concept of the power 
system, the primary voltage controller (PVC) controls 
the voltage of the power system node through 
automatic adjustment of the excitation level of the 
generator. Through the control of the reactive power 
generation level, the PVC controls the voltage of the 
generation node. Reacting to fast voltage variations, 
the PVC requires a supervisory reference voltage 
setting for its operation. That is supplied by secondary 
voltage control, which responds to large and slow 
voltage changes [3]. The overall power system voltage 
profile is then ensured by tertiary voltage control layer 
that provides for optimal power management and 
security, alleviating the problem of long distance 
reactive power transmission with system-wide actions. 
Tertiary level may be guided by optimal power flow 
(OPF) voltage results. 

The traditional secondary voltage control has been 
implemented as static manual setting of the reference 
voltages for the PVCs [3]. It may also be centralized, 
effectively merged with the tertiary control layer, with 
references supplied from the control center. In some 
power systems, automatic secondary voltage control 
has been implemented using control "zones" to 
manage reactive power production. The "pilot node" 
concept has been introduced to control the zone 
voltage [4]. 

In the paper, we present an implementation of a local 
concept of the secondary voltage control, taking 
advantage of the local character of the voltage control. 
The reference voltage for each PVC would be 
supplied independently by a local secondary voltage 
controller (LSC). It would contain knowledge on the 
power system behavior and react to locally measured 
quantities, thus reducing the need for centralized 
decision and the information exchange. An early 
implementation of the idea used fuzzy reasoning, 

based on the concept of the equivalent load bus 
voltage [5]. A drawback of this implementation was 
its continuous dependence on a tertiary control 
reference voltage and its usage of non-optimal voltage 
profiles, [6]. 

The improved local approach uses ANNs to overcome 
the mentioned shortages. Due to their ability to 
identify and model an unknown non-linear process 
based on known inputs and desired outputs, they were 
ideal for use in the presented approach.  

Although the computational intelligence tools, such as 
expert systems and ANNs have been used in voltage 
and reactive power control in power systems before, 
the approaches always treated the power system as a 
whole, with one large ANN controlling the generators 
in the entire power system in a centralized fashion 
[7],[8]. This approach faces conceptual as well as 
practical problems regarding training data, as the 
number of training samples becomes too large. In 
addition, it should lead to slow and inefficient 
operation in large power systems and has only been 
demonstrated on small-scale systems.  

In the proposed control concept, we present the local 
secondary voltage and reactive power control, an 
autonomous closed-loop control that sets the voltage 
reference for the PVCs. Each controlled reactive 
power source is then equipped with its own LSC, 
based on the ANN. The LSCs are autonomous, 
independent from each other and do not require 
mutual coordination for their satisfactory operation. 
The LSC-ANNs operate simultaneously to attain a 
desired voltage profile in the power system, [9]. In the 
paper, the steps for forming such a nonlinear 
controller are described and its features are discussed. 
The control concept could be used for any reactive 
power source, but for the sake of clarity, we present 
results for generator control only. 

2 Problem description 
During the course of a day, the loading in a power 
system rises and falls within a relative wide margin. 
The secondary voltage control has to adapt the voltage 
profile – the voltages of all nodes in the power system 
– to the changing conditions, covering local reactive 
power demand with local sources. 

Interdependency of reactive power sources, loads and 
voltages defines the matrix power flow equation, (1). 

 0uxf =),( , (1) 

The vector x consists of dependent variables and fixed 
parameters, while the vector u consists of control 
variables, Eq. (2).  

 T T T T T T
g g, , , g .⎡ ⎤ ⎡= = ⎤

⎣ ⎦ ⎣x U δ u P Q ⎦  (2) 
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Assuming the standard active/reactive power 
decoupling, the dependency of voltage Ugi for the i-th 
generator in a power system with n generator buses 
and m load buses bus may be expressed as in Eq. (3). 

 , (3) gi gi b b g b g( , , , ), i 1,...,nU U= U Q ,Q P P =

Here Ug and Ub represent matrices of generator and 
load bus voltages, and δ is a vector of phase angles. 
The Qg, Qb, Pg and Pb are the respective vectors of 
active and reactive power generation and load. The 
reactive power production of the i-th generator and 
thus its voltage profile is determined by the PVC 
reference voltage setting Ugiref, supplied by the 
secondary voltage controller. The PVC automatically 
brings the generator voltage Ugi to this reference 
setting by controlling the generator’s excitation 
system. 

A secondary voltage control law that is uniformly 
successful for any combination of generator voltages 
and reactive loads is difficult to derive due to high 
nonlinearity in (3). In an entirely local approach, each 
this law should be custom-tailored and embedded in 
the LSC. The ANN as a nonlinear tool was ideal for 
this task, determining the correct Ugiref while taking 
into account the influence of all the variables in (3).  

To make the local control efficient, we had to select 
the minimum number of inputs that would supply 
adequate information for ANN voltage control. We 
relied on the inherently local character of reactive 
power, which can’t be transported over a long distance 
without significantly increasing active power losses, 
while distant generators have a relatively weak voltage 
influence compared to those located near-by. Local 
reactive power flows could therefore carry sufficient 
information for local voltage control. They reflect 
local, generator-specific information on the operating 
state of the entire power system. According to this 
premise, the LSC-ANN at the i-th generator bus 
would require only the locally measured information 
for operation. After testing, we have selected the 
amplitude of the controlled node voltage Ugi and the 
vector of reactive power flows Qfi = [Qfij], j=1…M, on 
the lines that connect the controlled node with the 
neighboring nodes, [12]. Regardless of the overall 
power system topology, the structure of a particular 
ANN would depend only on the number of lines 
connected to the controlled generator node. 

The ANN would need to be trained to incorporate the 
information on the power system properties. For this 
purpose, a set of power system operating states is 
needed, which would encompass all possible loading 
conditions within the load diagram, combined with 
various voltage profiles encountered during normal 
operation. By training the ANN to these data and to 
the desired optimal power system states, each trained 
LSC-ANN would independently assume its task, thus 

eliminating the need for the coordination of the 
controllers. 

The required set of operating states can be obtained by 
simulation, using the calculation of the standard power 
flow (PF), [10]. For the ANN training, two sets of 
values of the variables in (3) are required:  

• the values resulting from the security 
constrained power flow (CPF), used as input 
samples, and  

• the optimal values from the OPF solution, 
used as target values in training.  

In CPF, the power flow calculation is performed as to 
respect all the operational generation and voltage 
limits of the power system.  

The power flow calculations should be carried out for 
power system loadings, ranging from the minimum- to 
the peak load as encountered in the load diagram. 
Every power system loading has to be combined with 
a set of possible generator voltages for all generators 
to create a large set of power system states. Since 
unreasonable combinations of voltages and loads may 
result in instability of the CPF or OPF calculation, the 
load flow results stemming from these combinations 
must not be used in the ANN training. 

It is uncertain which initial combinations of loads and 
voltages for power flow calculation are valid for 
various normal operation states, so a statistical search 
method has been designed to investigate the problem 
space, [11]. For all load buses, a uniform probability 
density function of loading has been used. Similarly, 
the generator voltages could take any value within the 
standard voltage interval defined by the physical 
limitations, for instance (0.9, 1.1) p.u. The statistical 
search method takes into account the entire set of 
power system states. For each loading, a random 
initial generator voltage setting of Ugi, i=1,..,n, with 
uniform probability density functions is selected for 
all generators. The power flow calculation is carried 
out for CPF and OPF.  

In the paper, only the operating states describing the 
normal operation and complete topology of the power 
system were considered, during the course of a typical 
daily load diagram. The performance of the ANN 
controllers under contingencies was investigated in 
[12]. 

3 The design of the LSC-ANN 
3.1 The ANN control scheme 

The control scheme of the proposed LSC-ANN is 
shown in Fig. 1. During its operation, the LSC-ANN 
receives the information on the power system 
operating state by measuring the relevant quantities in 
the controlled node, Ugi and Qfi. The primary voltage 
controller is assumed to set the system voltage 
according to the secondary reference UANNi 
instantaneously. Since the control actions of the LSC-
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ANN are much slower, typically in the range of 5 
minutes, they can be treated as a time-discrete control 
with a time interval TU between the control intervals. 
The measured quantities in the k-th control step are 
denoted by a superscript (k). Due to the primary 
controller action, the measured node voltage in the 
(k+1)-th step is equal to the LSC-ANN-supplied 
reference in the k-the step, Ugi

(k+1) = UANNi
(k). The 

measured quantities between the control actions are 
delayed for a time interval TU, and this delay is 
denoted with a symbol z-1. 

Fig. 1 LSC-ANN control scheme for generator i 
 

Using the Decision module, the secondary voltage-
control reference could periodically be superseded by 
the voltage control signal UTi, either to optimize the 
system-wide voltage profile via tertiary voltage 
control or to set the required voltage profile manually. 
If the input measurements failed, the LSC-ANN 
would switch off and set the reference voltage to a 
predetermined value, [6]. 

 

3.2 The ANN architecture 

The most suitable ANN architecture proved to be the 
feed-forward perceptron ANN, using the Levenberg-
Marquardt (LM) training rule based on error back 
propagation with a very fast convergence, [13]. The 
difference between the actual and the desired ANN 
output is minimized through the mean square error. 
The selected perceptron is relatively simple and 
suitable for the non-linear identification task.  

Among the investigated multilayered ANN-s, a two-
layered perceptron has been selected. The number of 
input neurons, S(0), ranged between 3 and 10, 
comprising one neuron for the generator voltage Ugi 
and one neuron for each local line on which reactive 
power flow was measured. The number of neurons in 
the hidden layer, S(1), was determined according to the 
empirical rule, [14], Eq. (4). 

  (4) ( ) ( ) 2S4S 01 +⋅=

In these two layers, all neurons had sigmoidal transfer 
functions. Adding more hidden neurons only slowed 
down the training without significant performance 

gain. The output layer had a single neuron with a 
linear transfer function. Each LSC-ANN supplied one 
PVC with reference voltage, so one output neuron was 
sufficient. The output of the ANN UgANN could 
assume any value within the interval (0.9, 1.15).  

In the LM training rule, setting of its learning rate α 
can control the speed of training and its sensitivity to 
local minima [13]. In some adaptive approaches, the 
learning parameters can be set dynamically, however 
no systematic methods exist to find initial settings that 
would guarantee a global optimal solution [2]. The 
learning rate has been empirically set to α=0.7. The 
inputs have been normalized to the interval (0,1), and 
the initial synaptic weights have been randomized 
using Nguyen-Widrow method to avoid entrapment in 
the local minima, [15]. To prevent overtraining, we 
have implemented the early stopping procedure during 
the training by comparing the out-of-sample 
performance of the ANN; once the out-of-sample 
mean square error started to rise, the training was 
terminated. 

 

( )1k
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( )k
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( )1k
giU +( )k
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TiU +  
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( )1k
fijQ +

( )1k
finQ +

( )1
1
k

fiQ +
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z-1 

z-1 

Power 
System 

To train the ANNs, a large set of training samples P 
had to be prepared. In addition to the Ugi and Qfi, each 
training sample also contained the optimal generator 
voltage, UOPFi, as supplied by the OPF, which served 
as a reference during ANN training. The training 
vector of training samples p, K = 7440, can be written 
as in Eq. (5). 

  (5) 
( ) ( ) ( ) ( )k k kk

OPMi f, ,

k 1, , K

⎛ ⎞⎡ ⎤= = ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
=

p p U Q U

…

,

To obtain this set of power system operating states, 
the standard voltage interval for power system buses 
has been set to (0.9, 1.15) p.u. Using the procedure 
described in [11], a set of 240 initial generator voltage 
profiles has been combined with 31 load profiles of 
the power system, resulting in K = 7440 power system 
states.  

The training samples were divided into three sets: 

• The training set with 5952 samples (80 %), 
• The training-test set with 597 samples (8 %) 

for detection of ANN ovetraining, and 
• The test set with 891 (12 % of all samples) 

for subsequent testing of the trained ANN. 
A single ANN training was limited to 200 epochs, 
although due to fast convergence it typically took 
around 50-70 epochs. The time required for the 
training of a single ANN grew with the square of the 
number of the input neurons. It took between several 
minutes to several hours on a Pentium III, 870 MHz 
using a Matlab 6, Neural Network Toolbox. Since the 
operation of a trained ANN is in the range of a second, 
the performance of the LSC-ANN should be quick 
enough for the secondary voltage control with five- to 
ten-minute response time. 
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After training, the LSC-ANN performance has been 
evaluated using the test set. The ANN-s have been 
individually trained and tested, and the test results can 
be found in [12]. In the paper, more relevant results of 
the voltage control simulation are shown, with all the 
ANN-s performing simultaneously in a discrete 
simulation loop. 

4 Discrete simulation loop 
To evaluate the performance of the trained LSC-
ANNs during their simultaneous operation, a discrete 
simulation loop has been set up, Fig. 2. The power 
system operation with the embedded ANN-LSCs was 
simulated with unconstrained power flow (PF). 
Contrary to the OPF, the PF did not take into account 
any operational limits of the power system, so the 
resulting generator voltages were indeed only result of 
the LSC-ANN control action. In the k-th simulation 
step, the LSC of the i-th generator receives the inputs 
[Ugi

(k), Qfi
(k)]. The resulting ANN voltages UANNi

(k) 
were used in the next cycle of the loop as a reference 
for the PVC. The power system state is changing 
under the influence of the changing reactive load, Qb.  

Fig. 2. Discrete simulation loop 

The dynamic response of the power system was 
simulated using the discrete simulation loop for a 
standard 24-hour load diagram, Fig. 3. The discrete 
simulation loop was run continuously for 24 steps, 
mimicking a period of 24 hours in hourly cycles. 
During a single step, the Qb of the system remained 
constant. In the results, the bus voltage vector Ug is 
shown as the system voltage profile.  

5 The results 
The LSC-ANN control was tested on a model of 
Slovenian high voltage power system with 192 nodes, 
273 lines, 23 generators and 55 transformers. The 
system included also 15 nodes of the neighboring 
power systems, including the slack bus that was not 
equipped with a LSC-ANN. Each of the 22 generators 
had its own LSC-ANN, which has been separately 
trained on the results of the same CPF- and OPF 
calculations. The details on the test system and the 
load simulation conditions are described in [12]. 

operating states in the test set. A voltage profile for 
one of them, a day in November at 13.00 hours is 
shown in Fig. 5. The first 22 nodes are generator 
nodes, and the rest are load nodes. We can observe 
that except in some load buses in reactive power 
deficient areas, the ANN voltage profile coincides 
well with the OPF-supplied one. In the nodes where 
OPF-based centralized control increases the voltage, 
the ANN control performs similarly. When we 
compare the generator voltage profiles for the same 
operating state, Fig. 4, we can again see that the ANN 
control mimics the OPF reference successfully.  
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Fig. 3 Standard load diagram 

Following the system operation through th
, the LSC-ANN-controlled

voltages remain within the prescribed limits, guiding 
the reactive power generation throughout the day 
despite of the changing reactive power load, Fig. 6.  

Fig. 4 Generator voltage profile comparison 

At the same time, we can observe that at the end of the
our period that some of the voltages exhibit a

change from the morning levels, although ideally they 
should end up at the same voltage levels. One of the 
reasons for that may also be the fact that the ANNs 
were trained to simulated operating states, not the 
actual ones. If we trained the ANNs to the actual 
power system states, we could possibly improve their 
operation. We should also bear in mind that the ANN 
control in this case does not comprise any measures 
for LSC-ANN coordination or enhancement of their 
operation, e.g. conditional controller output limiters, 
gradual reference setting or inclusion of additional 
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measurements into input samples. All these measures 
could significantly improve the results of the proposed 
LSC-ANN control. 

6 Conclusion 
A new completely 
control framework 

decentralized secondary voltage 
based on ANNs is presented. It 

he proposed controller is 

Fig. 6 Generator voltage profile for 24-hour period, ANN control 

includes all the generators in the system and only 
requires local information for its operation. The 
proposed local ANN local secondary voltage control 
can successfully handle a wide range of power system 
states. The new ANN secondary voltage control 
scheme also yields suboptimal control and robust 
operation even in a dynamic control of a realistic 

power system model. The simulation results of the 
voltage control using a discrete simulation loop are 
presented for Slovenian power system model with 22 
controlled generator nodes.  

The hardware required for t
easily attachable to the existing primary voltage 
regulator, making its cost/benefit ratio favorable. The 
ANNs could easily be retrained in case of topology 
changes in the power system. Since it can be 
implemented gradually in stages, the concept is 
suitable for the independent power producers as well 
as the system generators to market their potential and 
offer adequate voltage control service to the 
transmission grid companies. 

Fig. 5 Power system voltage profile comparison  
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