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Abstract  

The Expandable Polystyrene (EPS), material of the insulation productions and packages, is 
commonly produced in a batch process. The control of the batch process is based on 
predefined process recipes and the process parameters such as mixing properties. The EPS 
production has to be able to satisfy the aims and quality requirements of the markets, which 
causes additional demands on process control. In this paper we demonstrate the optimization 
and modeling application for the EPS-batch process. The application consists of a production 
optimization tool and a simulation tool for the process parameters based on the Multi-Layer 
Perceptron network (MLP) with retrain properties. The software can be used at the 
operational level as well as at the process management level. The features are programmed 
into standalone software built up in the Matlab environment and it is tailored for the needs of 
the EPS production company StyroChem Ltd. The results show that the application can offer 
an efficient tool to economize production and storage costs.  

Keywords: batch process, modeling, simulation, process optimization, Multi-Layer 
Perceptron (MLP). 
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1 Introduction 
Many studies have shown the importance of data-
based modeling methods such as neural networks in 
the field of an industrial process [1-7]. However, 
getting these intelligent mathematical methods for 
the industrial daily-use has been challenging. 
Processing the raw data as well as modeling and 
simulation is problematic if the conditions of the 
process change. Furthermore, artificial neural 
networks, such as the Multi-Layer Perceptron 
(MLP) model, are considered difficult to use at the 
operational level. 
 
A batch process is commonly used for producing 
Expandable PolyStyrene (EPS). Batch processes 
are typically based on predefined process recipes. If 
the process conditions, chemicals and recipes are 
constant, the product should always be the same in 
theory. In practice, the EPS polymerisation reaction 
in the batch reactor is a very sensitive process and 
is affected by numerous variables, which makes the 
process difficult to control. Moreover, EPS 
production has to be able to satisfy the aims and 
quality requirements of the markets, which causes 
additional demands on process control. Thus, there 
is clearly room for intelligent mathematical 
methods and computational modeling systems such 
as artificial neural networks (ANN) in the control 
of the EPS process and optimization of the 
production. 
 
The selling EPS production is divided into fractions 
of the bead size. For example, the bead size for the 
insulation product is different from the bead size 
for the cup. Each of the batches produces the load 
of beads, where the mean bead size is controlled, 
but the shape of the bead size distribution is 
typically Gaussian. Therefore, the production of the 
campaign is a sum of the Gaussian bead size 
distributions. Thus, the biggest challenge is to 
produce the optimal bead size fractions for the 
markets. 
 
Archived process data is an important resource for 
knowledge management of the process, and it can 
be used for the optimization and improvement of 
productivity. Several studies have demonstrated 
that ANN can provide an efficient method for 
modeling industrial data [1-7]. In particular, 
studies, which use standardized protocols, are most 
likely to benefit from automated artificial neural 
networks analysis [1-9]. One of the most popular 
ANN methods, the Multi-Layer Perceptron network 
(MLP) [1-3, 6] has been successfully applied in 
many areas of research and for process 
optimization. Previous study [6] demonstrated the 
efficiency of the MLP for EPS batch process. 
However, there are not many real applications 
based on ANN methods in industrial use. 

 
In this paper we demonstrate the optimization and 
modeling application for the EPS-batch process. 
The application consists of a production 
optimization tool and a simulation tool for the 
process parameters based on the Multi-Layer 
Perceptron network. The optimization and the 
modeling features are programmed into standalone 
software built up in the Matlab environment. The 
software is tailored for the needs of the EPS 
production company StyroChem Ltd.  
 

2 Methods 
2.1 The EPS batch process 

The studied process was a typical suspension 
polymerisation batch process, which is commonly 
used for producing EPS (Expandable PolyStyrene). 
The reactor has a powerful mixer and the cooling 
system in the inner wall. The main raw materials 
are styrene, water, pentane, stabilisation agents and 
additives. The general structure of the EPS reactor 
is illustrated in Figure 1.  
 
The duration of each batch takes about 12 hours. At 
first, the main chemicals are added into the reactor 
and the process is heated up to the polymerisation 
temperature. The polymerisation stage is executed 
in a pressure-temperature range below the boiling 
point of the styrene-water suspension system. After 
the polymerisation stage the process continues into 
the impregnation stage, where the blowing agent 
(pentane) is impregnated into the beads. The 
impregnation stage assumed to be negligible in the 
means of bead size distribution. The final stages are 
cooling and sieving. The end product is a load of 
solid EPS beads.  
 

 
 
 
 
 

 
 

Figure 1. The polymerisation batch process. 
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It is common knowledge that the basic variables in 
the term of the bead size are the mixing properties 
and the amount and quality of the suspension 
stabilizers. However, suspension polymerisation of 
styrene is a very sensitive process and numerous 
variables affect it. Some of these variables cannot 
be measured or followed by in a reasonable way. 
For example, analyzing all impurities from all raw 
materials is too heavy a task for any industrial 
laboratory. Some variables are quite easily 
measurable, but have not been traced due to the 
assumption that they would not have a significant 
contribution to the process. To be able to model the 
process the studied system required elimination of 
the variables, which were assumed to be inessential. 
 
The shape of the bead size distribution of each 
batch is almost Gaussian. As shown in Figure 2, the 
mean bead size can be controlled by a dosage of 
chemicals and mixing conditions, but the bead size 
distributions are normally Gaussian.  

 
Figure 2. The shapes of the bead size distribution 
are nearly Gaussian. The mean bead size (AD50 and 
BD50) can be controlled by chemical dosages and 
mixing conditions. 
 

2.2 The process data 

The process data can be divided into three groups: 
recipes, results and process parameters. The 
recipes, such as the amount of stabilisation agents, 
are specified individually for each batch. The most 
important information, concerning the end product, 
is the bead size distribution. The bead size 
distribution is specified in a laboratory by 
laboratory sieves. The recipes and the 
measurements made in a laboratory are archived 
into Microsoft Excel™.  
 

2.3 The Multi-Layer Perceptron 

Multi-Layer Perceptron (MLP) is widely used 
network model. The MLP model is very general 
and can, in theory, represent almost anything. It 

consists of one input layer, hidden layers (typically 
one or two), and an output layer. The input signals 
are processed through successive layers of neurons 
in a forward direction on a layer-by-layer basis. The 
input layer simply feed directly the corresponding 
values from the input pattern into the first hidden 
layer. Each neuron of a hidden layer and an output 
layer computes a linear combination of the outputs 
of the neurons of the previous layer. The 
coefficients of the linear combinations (plus biases) 
are called the weights. A simplified example of a 
MLP model is illustrated in Figure 3. 
 
Supervised networks, such as MLP networks, must 
be trained to a given problem. The most popular 
training techniques are a backpropagation 
algorithm. It compares the output values with the 
correct answer to compute the value of some 
predefined error-function. The training, an iterative 
process, determines a set of weights, which 
minimizes the error between the actual and 
expected outputs for all input patterns.  

Figure 3. A simplified example of a MLP model 
with an input layer, one hidden layer and an output 
layer. The input variables 1…n are applied to the 
input layer, which has a number of nodes equal to 
the number of data variables. 
 

3 The application 
The application is coded in Matlab software 
platform (Mathworks, Natick, MA, USA), and 
compiled for the stand-alone software by the 
Matlab compiler. The purposes of the application 
are optimization of the production, and simulation 
of the process parameters. In addition, the software 
has versatile visualization properties for viewing 
data. The main structure of the software is 
illustrated in Figure 6. 
 
The software consists of 3 graphical interfaces: the 
production optimization interface, the training 
interface for the MLP model, and the simulation 
interface. These interfaces are shown in Figures 4, 
5 and 7. 
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Figure 4. The graphical interface of the production optimizing tool. The mean square errors (curves) are fitted 
into the historical data (small dots). The dashed lines show two optimal distributions of the bead size to satisfy 
the production tons (T) based on information of the markets. 
 

 
 
Figure 5. The graphical interface for training of the MLP-model. The inputs and outputs variables can be 
selected from the menu bars. In addition, the user can set some of the basic training parameters such as the 
training algorithm and the number of hidden neurons. 
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Figure 6. The main structure of the application 

 

3.1 Optimization of the production 

The main idea of the optimization is to define the 
optimal feasible production for the marketing 
demands. The marketing demands are compared to the 
historical data of bead size distributions of the 
batches. Before the comparing, the data are fitted in a 
function of a mean bead size (D50) by Least Mean 
Square (LMS) method.  
 
The distribution of the bead size in the production 
campaign is a sum of Gaussian distributions. The aim 
of the optimization of production is to predefine the 
optimal mean bead size for one or two Gaussian 
distribution, which satisfy the marketing demands and 
minimize the amount of production. The marketing 
demands are predefined in tons or in percentage for 
different fractions. The optimization chain can be 
described as follow: 
 

1. Set the fractions (the products to sell) of the 
bead size 

2. Set amount of production (in tons or in 
percentage) of the fractions to be produced 

3. Set the campaign recipe (type of EPS) 
4. LMS for the fractions 
5. Define the optimal feasible production by use 

of one or two distributions 
 
The distribution of bead size is divided for fractions to 
be sold. This prospective information is utilized for 
planning the production and marketing of EPS. In 
addition, the fraction parameters defined in the 
optimization window can be used in the modeling 
phase for simulate the process parameters. The 
simulation supports the optimization purpose. 

3.2 Training the MLP model 

The data rows for the training phase are selected in an 
optimization interface (shown in Figure 4). For 
example, it is useful to cut the outliers, because they 
could disturb the accuracy of the model. In a training 
interface (shown in Figure 5), the user can set the 
inputs and outputs variables for the model from the 
menu bar. In addition, there is a possibility to add new 
input variables by calculating averages of the previous 
rows of variables. Some basic parameters for the 
training of the MLP model such as a number of the 
hidden neurons, a training algorithm, the training 
rows, and the validation rows can be set in the 
interface. A complete setup of the parameters, 
concerning the MLP model, is assembled in a separate 
text file.  
 
Validation of the MLP model can be done by scatter 
plots, the root mean square errors, the index of 
agreement, and the correlation coefficient. Finally, the 
model is saved for the simulation purpose. 
 

3.3 Simulation  

In the simulation interface (shown in Figure 7) the 
user can simulate the MLP model. The output, such as 
the dosage of the chemical X, will appear until all the 
inputs are set. The inputs are filled in automatically, if 
values of the inputs are defined in the process 
optimization interface. Thus, the calculations made in 
the optimization interface can be used for inputs in the 
MLP modeling phase. 
 
 

 
 
Figure 7. An example MLP simulation in the 
simulation interface. The inputs are in the middle of 
the simulation interface and the output is on the lower 
right corner of the window.  
 

4 Discussion 
Data-based modeling methods, such as neural 
networks, have shown the efficiency in many fields. 
However, in process industries, getting these 
intelligent mathematical methods for the industrial 
daily-use has been challenging. Data preprocessing, 
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which is an essential stage in the modeling, must be 
done manually in general. In additional, the use of 
neural networks methods, such as the MLP model, can 
be difficult in practical use, because the complexity of 
parameters and modeling functions. 
 
The main purpose of the study was to integrate 
process management with process control into 
functional software. The results of the study show that 
the application is an efficient tool for optimization of a 
batch process and modeling process parameters. A 
prerequisite for the efficient use of the application are 
user-friendly graphical interfaces with versatile 
visualization properties. The software can be used at 
the operational level as well as at the process 
management level. In addition, the software is generic 
because the data is updated automatically from the 
databases, and the MLP model can be retrained 
quickly. 
 
EPS production of a batch process based on 
predefined recipes achieves the required bead size 
distribution, which is nearly Gaussian. The production 
can follow the requirements of the market easily by 
using more than one recipe at the same time. The 
application can calculate the optimal production by 
combining the distributions. These calculations can be 
used as inputs in the MLP-modeling phase where 
process parameters such as chemical dosages are 
estimated. The marketing can set amount of the 
production (tons) for each fraction, and the software 
defines the optimal process parameters. Thus, 
production will economize on process and storage 
costs. That was proved in a test use of the software in 
company StyroChem. 
 
Archived process data is an outstanding resource for 
the knowledge management of the process, but in 
practice measurement errors and other mistakes in the 
data can disturb the analyses. Consequently, the result 
of the MLP model depends on the accuracy of the 
data. Besides, in the training phase of the MLP model, 
there are some parameters to be set, which are very 
critical for the performance of the model. Therefore, 
basic knowledge of the modeling principles is needed 
in the training phase of the MLP model. This is an 
important issue for future research.  
 

5 Conclusion 
The present application integrates production 
optimization and process modeling. The results 
indicate the MLP analysis with functional data 
preprocessing tool provides an efficient method for 
data analysis in the process industry. Therefore, this 
kind of intelligent data-driven approach is a fruitful 
way of developing tools for the batch process 
optimization. 
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