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Abstract  

Numerous techniques are developed to bring into spatial coincidence two sets of 
monomodal/multimodal 3-D images acquired by the same/different imaging modalities. Some 
techniques are based on estimating the transformation parameters using iterative optimization 
techniques. Since the positioning of the patient is different during each acquisition procedure, 
the selection of initial values becomes of greater importance so that the minimization 
algorithms converge to the desired transformation parameters. In other words, if the initial 
values are not selected appropriately, the registration algorithms could converge to a 
secondary minimum. In this work, the registration is parameterized in terms of nine 
parameters, 3 magnifications, three rotation angles (Euler) and three translations. They are 
estimated by minimizing a chi-square function defined in terms of distances weighted by 
localization measurement errors of the extracted fiducial external markers using a sequence of 
non-linear optimization techniques namely, simplex algorithm followed by a gradient 
approach. The registration approach is initialized using the values estimated by minimizing a 
cost function in the least square sense.  The approach is validated using Monte-Carlo 
simulation techniques. That is, the residuals (errors) along x, y and z directions and the 
residuals of distance of regions of interest in the simulated images are evaluated quantitatively 
and analyzed to study the precision of the registration. The results show that the approach is 
successful and yields the desired optimum parameters to align the two sets of 3-D data.    
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1 Introduction 
 Medical imaging modalities are acquisition systems 
that provide an ability to see inside the human body in 
a non-invasive manner. They offer complementary 
information to radiologists and doctors. While 
Magnetic Resonance Imaging (MRI) and X-ray 
Computed Tomography (x-ray CT) are best suited for 
displaying anatomical and structural information of 
the organ or Region of Interest (ROI), the functional 
imaging modalities such as Positron Emission 
Tomography (PET) and Single Photon Emission 
Computed Tomography (SPECT) provide information 
about the function of the corresponding ROI. Since 
the acquired information is complementary, the 
integration of anatomical and functional images 
becomes of great importance in the understanding and 
interpretation of the latter. Consequently, this 
illustrates the need to image registration techniques 
which bring into spatial coincidence the information 
acquired by mono/multi-modal imaging modalities in 
the same coordinate system.    Various techniques 
have been developed to tackle this problem and can be 
found in the literature [1-5].   Broadly, they can be 
classified into three categories: (1) landmark based on 
external markers (such as point, reference, frame and 
head holder) [6, 7, 8] (2) internal landmarks (such as 
point, curves and surfaces) [9, 10, 11] and (3) intensity 
based techniques [2, 12, 13, 14].  

 Several registration techniques are based on iterative 
optimization techniques to estimate the transformation 
parameters required to align the collected volume data 
acquired by the different imaging modalities.  The 
precision of the registration can be affected by several 
factors such as the identification (manually or 
automatically) of the corresponding features in the 
collected images to be registered and the spatial 
measurement errors associated with the modalities 
involved. Another factor involves the initialization of 
such algorithms. Therefore, the latter factor could 
affect the convergence to the true values of the 
transformation parameters. Consequently, the initial 
parameters should be carefully selected.  In this 
context, the convergence of iterative registration 
algorithms to global or to local optima has been a 
concern of great importance to researchers in their 
respective fields.  In other words, a good set of values 
could bring a successful registration with a good 
precision. Otherwise, the algorithms could converge to 
a secondary minimum and consequently an error is 
introduced by overlaying structure (structures) of 
interest of one modality on location (locations) where 
it (they) should not be in the coordinate system of the 
second modality.    Therefore, this outlines the need to 
have a good initial set of parameters that will help an 
iterative optimization algorithm to estimate the true 
parameters.  

 Another reason that emphasizes the need for good 
initial values is related to the collection of the images. 

That is, the images of a particular medical imaging 
modality are acquired in its respective coordinate 
system. Such coordinate system is different from one 
modality to another.  In other words, the images 
collected by different imaging modalities have 
different coordinate systems. Furthermore, the patient 
could lie down on the couch of the imaging modality 
in various positions. Thus, the selection of the initial 
values (especially if the number of variables to be 
estimated is high) that could affect the convergence of 
the registration algorithm becomes a difficult task.  In 
this context, a two-step approach is presented. The 
first step is performed to acquire some knowledge and 
information about the initial parameters (starting 
values) to initialize the iterative minimization 
technique (second step).  This approach is based on 
external (or internal) point markers that are extracted 
from the images to be spatially aligned. The 
initialization step is addressed by performing a linear 
optimization procedure in the least square sense.   

2 Method of Registration  
Given two sets of N matched data points 

),,( iiii zyxx = and ),,( iiii zyxx ′′′=′ representing 
the positions vectors in the coordinate systems of 
modalities 1 and 2, respectively, the registration 
problem is to estimate the parameters of the 
transformation that aligns two sets of volume data. 
The approach assumes that the positions of the 
external markers in the two modalities are extracted 
and the correspondence of markers (between the two 
modalities) is well established. The registration is 
achieved using two steps: I) the initialization step and 
ii) the iterative optimization step.  

2.1 Initialization step 

The initialization step outlines the procedure to 
estimate the initial values to be fed as initial 
parameters to the iterative optimization procedure.  
The transformation from the coordinate system of the 
first modality to the coordinate system of the second 
modality is given by 
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where    A is a 3 by 3 matrix given by  
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and )a,a,a(a zyx=  is the translation vector 
along x, y and z directions.  

Thus, the problem is to estimate the twelve 
parameters of the overall transformation (nine 
parameters for the matrix A and three translation 
parameters) from the 3--D coordinates of two sets of 
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homologous points in two modalities. The parameters 
are obtained by minimizing the following cost 
function   

                 2)axA(xmin
rrr

+−′                               (3) 

in the Least Square sense i.e. computing the 
derivatives of the cost function with respect to the 
unknown parameters whose values vanish at the 
minimum [15].  Thus, a χ2 function is formulated for 
fitting data from different coordinate systems to 
estimate the unknown parameters and is defined in 
terms of distances i.e.                                

    2
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where ix∆ )x~x( ii −′= , )y~y( iiiy −′=∆  and 

iz∆ )z~z( ii −′= are defined as the residuals of the 
i’th marker along x, y and z directions after they are 
transformed to the same coordinate system (modality 
1), respectively. The residual is defined as the 
difference between the coordinates of the position 
vector of the i’th marker ),,( iiii zyxx ′′′′r in modality 1 
and the position vector of the i’th marker 

)z~,y~,x~(x~ iiii

r
after transforming the position vector 

ixr  (modality 2) to the coordinate system of the 

position vector ixr′  (modality1).   

Subsequently, the computation of the derivative of the 
2χ  function with respect to the unknown parameter 
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Similar expressions can be derived for the other 
unknown parameters. Consequently, a system of linear 
equations is obtained.  The propagation of error is not 
included because the derivation of the corresponding 
χ2 function with respect to the unknown parameters 
will yield a set of nonlinear equations that can not be 
solved using linear techniques such as the method of 
successive elimination.   

In this way, the problem is reduced to a system of 
linear equations. Several methods exist to solve these 
systems such as Gauss elimination (method of 
successive elimination), matrix inversion and Lower-
Upper triangular decomposition [15]. In this work, the 
LU technique is implemented to obtain a solution. 

2.2 Iterative optimization 

  The overall affine image transformation from one 

coordinate system to the coordinate system of the 
second modality is defined by: 
                 

                          axMRx
rrr

+=′                        (6) 

where 
  

i) M is a 3 by 3 magnification matrix that 
is assumed to be diagonal allowing 
different magnifications along x, y and z 
directions. It allows for non-diagonal 
magnifications by filling the appropriate 
elements. Therefore, nine parameters in 
all can be defined for the magnification 
between two 3-D volume images.  

 
ii)  R is a 3 by 3 orthogonal rotation matrix 

defined in terms of three rotation angles 
(Euler angles (α,β,δ)) [16, 17]. The 
rotation from one coordinate system to 
another is accomplished via three 
counterclockwise rotations: α is a 
rotation angle about the z-axis (R(α)), β    
is  a rotation about  the new y-axis 
(R(β)) and γ is a  rotation about  the 
newest z-axis (R(γ)). 

 
iii)  a

r
(ax, ay, az) is a translation vector 

along x, y and z directions.  

2.3 2χ  Function Formation  

         After all marker positions have been transformed 
to the coordinate system of the same modality, a χ2 
function of the transformation parameters defined in 
terms of the squares of distances of corresponding 
markers in two modalities, weighted by the 
appropriate measurement errors [17], is defined to 
estimate the unknown parameters.  It includes the 
propagation of errors of a set of markers in one 
modality to the coordinate system of the second 
modality. The χ2 function can be written as: 
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where ix∆ ( ii x̂x −′= ), iy∆ ( ii ŷy −′= ), 

iz∆ ( ii ẑz −′= ) are the residuals of the 
corresponding i’th markers along x, y and z directions 
after registration, respectively, and ixδ , iyδ , izδ    
are the combined localization measurement errors of 
the i’th corresponding point markers along the x, y 
and z directions, respectively.  The expression of the 
error ixδ is given by:                                                             
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ix′σ  is estimated from the measurement errors of the 

i’th marker in modality 1 along x direction and  xiσ  
is computed from the measurement errors of the i’th 
marker in modality 2 by error propagation methods to 
modality 1 along the same direction. Thus, the 
combined localization measurement errors are related 
to the spatial resolution of the two modalities and 
depend on the unknown parameters. Similarly, the 
expressions of iyδ  and izδ  can be derived. 

2.4 2χ  Minimization  

Since the vector ix̂
r

 is the result of the transformation 
from modality 2 to modality 1, the coordinates 

)ẑ,ŷ,x̂( iii  and consequently the residuals ( ix∆ , 

iy∆ , iz∆ ) will be a function of the nine 
transformation parameters.  Similarly, the combined 
measurement errors exhibit the same dependency on 
these registration parameters.   Therefore, the above 
χ2 function contains the unknown parameters in such 
a fashion that cannot lead to a system of linear 
equations. That is, the registration parameters can not 
be estimated using matrix inversion techniques.  Thus, 
non-linear iterative minimization techniques are used 
to determine the parameters of the transformation that 
are required to align 3-D images acquired by the 
same/different imaging modalities i.e. the Simplex 
minimization algorithm [18], followed by a variable 
Metric Method [19]. The Simplex method provides a 
very fast convergence to the minimum, whereas the 
variable metric method is very good when the χ2 
function is near its minimum.  The iterative 
optimization procedure must be initialized by a set of 
initial values of the parameters to be estimated.  The 
results of the initialization step provide the 
initialization values to improve the convergence to the 
global optimum.   

3 Method of Evaluation 
The evaluation of multimodal 3-D image registration 
is accomplished by generating simulated images in 
two modalities as well as images of external markers 
using Monte-Carlo simulation techniques. Hence, N 
external markers (in 3-D space) on the face of the 
simulated head in one modality are generated.  Using 
a predefined transformation (T0) defined in terms of 
three Euler angles (α,β,δ), three translations (ax,ay,az) 
and  three magnifications (Mx,My,Mz), each marker 
position is transformed to a corresponding marker in 
the second modality. Then, each marker position is 
randomly perturbed from its 3-D original position 
using Gaussian measurement errors simulating marker 
localization errors.  The markers are independently 

perturbed in each modality and along each direction x, 
y and z. At this stage, the proposed approach is 
performed (two stages) to recover the original 
parameters of the transformation (Tinit (first stage) and 
Topt (second stage)).  At this point, Monte-Carlo 
simulated images are formed by generating a large 
number of 3--D space coordinates of points P(x,y,z) 
distributed inside the region of interest such that the 
density of points will be proportional to, and therefore 
are representative of, the activity distribution f(x,y,z) 
within the image. These 3-D points (each defined by 
its spherical coordinates (r,θ,φ)) are treated in the 
same way as the fiducial point markers, but are not 
used in the registration process (i.e. estimation of the 
parameters). Thus, assuming the same known 
transformation parameters (T0), the “image” is 
transformed to modality 2. By introducing the point 
localization errors (Gaussian distribution), the 
"images" are smeared in the two modalities. This is 
done by altering the coordinates of each point 
randomly and in accordance to the spatial resolution 
of the corresponding modality. At this stage, the 
images of an object in two modalities are simulated.  
By using the estimated values of the transformation 
parameters (Tinit and Topt), the "image" of modality 2 is 
transformed to the coordinate system of modality 1. 
Since the correspondence between test points in the 
two "images" is known, the residuals ∆X, ∆Y, ∆Z and 
∆D can be formed.  At this point, the dependence of 
the residuals on the position inside the image of the 
simulated head as well as other aspects of 3-D image 
registration (such as the effect of the combined 
localization errors in the two modalities, the number 
of external markers and their positions) can be 
quantitatively studied and evaluated.   

4 Simulation and Results 
In this experiment, the head is assumed to be 

spherical of radius R=10 cm. The coordinate system 
(Figure 1) is right handed with the +x axis (θ=90°, 
φ=0°) coming out of the ear, the +y axis (θ=90°, 
φ=90°) going through the nose and the +z axis (θ=0°) 
going through the top of the head.  Each point in the 
image is represented by its spherical coordinates 
(r,θ,φ). 
   

 
 

Figure 1: coordinate system of Modality 1 
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The markers are assumed to be on the face of the 
patient (0°< φ < 180°). The spatial localization 
measurement errors in the two modalities (σ1, σ2) are 
assumed to have values equal to 2 and 5 mm. These 
values are used to introduce noise randomly and 
independently in each modality and along each axis in 
the respective coordinate system. The Monte-Carlo 
experiments are performed for various numbers of 
external point markers.  In these simulations, the 
assumed head is divided into regions defined by 
ranges of the spherical coordinates (r, θ,φ). The angle 
θ that varies from 0° to 180°, is divided into 6 
segments, each corresponds to 30°. The azimuthal 
angle φ that varies from 0° to 360° , is divided into 12 
segments, each corresponds to 30°.  The radius is 
divided into 3 segments; each corresponds to 10/3 cm. 
However, the radius is divided into 10 segments (each 
segment has a range of 1 cm), to study the effect of the 
radius on the mean residual ∆D of various regions of 
the Monte-Carlo simulated head.  
  Figures 2 and 3 show the mean ∆D for various 
numbers of external markers (N) for two different   
regions of the simulated head: (1) a region in front of 
the head (60°<θ<90°, 60°<φ<90° and 6.67<r<10cm) 
and 2) a region in the back of the head (60°<θ<90°, 
240°<φ<270° and 6.67<r<10cm), respectively. Two 
plots are presented in each figure. They correspond to 
the results obtained after the initialization procedure 
(Blue) and after the iterative optimization procedure 
(Violet).   The results show that the initialization 
procedure always yields a set of parameters that is 
close to the desired parameters if the system has 
enough degree of freedom (N ≥  4).  On the other 
hand, a comparison with the iterative optimization 
procedure shows that the mean residuals ∆D of the 
same ROI are larger after the implementation of the 
initial procedure, especially in the regions located in 
the back of the head (furthest away from the location 
of the markers used in the estimation process of the 
registration parameters). Thus, the precision of the 
registration is much better after the iterative 
optimization procedure is performed.  This difference 
is attributed to the fact that the correlation between the 
rotation parameters is not taken into consideration in 
the system of linear equations (initialization step). 
However, this effect will be reduced as the number of 
external point markers is increased. Consequently, the 
precision of the two stages will be similar.  

Furthermore, by analyzing a particular step 
(initialization or iterative optimization) for a given set 
of corresponding point markers, it can be observed 
that the precision of the registration is much better in 
the regions that are located in front of the head. This is 
reflected in smaller residuals ∆D after the 
corresponding external point markers are transformed 
to the same coordinate system (Figures 2 and 3).  This 
is due to the fact that the point markers used to 
estimate the respective transformation are located in 

front of the simulated head.  Consequently, they are 
close to the regions of interest. In other words, the 
closer the region of interest to the location of markers 
used in the initialization and optimization procedures, 
the better is the corresponding precision. On the other 
hand, the regions in the back of the assumed head 
exhibit the worst precision.  
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  Fig 2: Mean ∆D for various N: a) after initialization 
procedure b) after registration for a region located in 
front of the simulated head (60°<θ<90° , 60°<φ<90° 
and 6.67< r <10.0 cm). 
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Fig 3:  Mean ∆D for various N: a) after initialization 
procedure b) after registration for a region located in 
the back of the simulated head (60°<θ<90°, 
270°<φ<300° and 6.67< r <10.0 cm).  

 

The corresponding σrms for the same ranges of radius, 
polar and azimuth angles are illustrated in Figures 4 
and 5, respectively.   The results are almost similar i.e. 
the results of the pre-optimization and iterative 
optimization steps for various numbers of markers. 
However, a certain difference is observed in the 
regions located closer to the surface of the simulated 
head for N less than 10.  On the other hand, a larger 
difference is observed for the regions located in the 
back of the head (especially N<10). However, a 
smaller difference persists until the number of external 
point markers reaches a value of 20.  Similar 
conclusions can be deduced by studying the precision 
of the registration in other regions of the Monte-Carlo 
simulated head.  
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Fig 4:  Standard deviation Dσ  for various N: a) after 
initialization procedure and b) after registration for a 
region in the front of the simulated head (60°<θ<90°, 
60°<φ<90° and 6.67< r <10.0 cm).  
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Fig 5: Standard deviation Dσ  for various N: a) after 
initialization procedure and b) after registration for a 
region in the front of the head (60°<θ<90°, 
270°<φ<300° and 6.67< r <10.0 cm).  

 

 Figures 6 and 8 show the dependence of the mean ∆D 
on the radius r (cm) for two different regions within 
the simulated head: (1) a region bounded by the 
following ranges of spherical coordinates 60°<θ<90°, 
60°<φ<90° and 2) a region defined by 60°<θ<90°, 
240°<φ<270°.  Two graphs are illustrated in each 
Figure. While one graph corresponds to the precision 
of the registration after the pre-optimization procedure 
is performed (Blue), the second graph shows the 
precision of the registration of the overall procedure 
(Violet). The number of external point markers used 
to achieve the 3-D image registration is assumed to be 
15.  The corresponding standard deviation σrms, 
defined for the same ranges of the azimuth and theta 
angles are illustrated in Figures 7 and 9, respectively. 

Since the origin of the coordinate system is assumed 
to be at the center of the simulated head, a smaller 
value of r implies that the corresponding region is 
closer to the center of the head. Subsequently, the 
higher the value of r is, the closer the corresponding 
region is to the surface. Thus, due to the selected 

values of θ and φ, Figure 6 reflects the effect of r on 
the precision of the registration as the region of 
interest is moving from the center of the head toward 
the surface where the point markers are located i.e. the 
front of the simulated head. On the other hand, Figure 
8 reflects the dependence of the mean residual ∆D on 
the radius as the region of interest is moving from the 
center of the head toward the surface where the point 
markers are not located i.e. the back of the simulated 
head.  
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  Fig 6: The dependence of mean ∆D on the radius r 
(cm): a) after initialization procedure b) after 
registration for a region defined by 60°<θ<90° and 
60°<φ<90°. 
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Fig 7: Dependence of the standard deviation Dσ  on 
the radius r (cm): a) after initialization procedure and 
b) after registration for a region defined by 60°<θ<90° 
and 60°<φ<90°. 

 

The results show that the precision of the registration 
is better for the regions of the simulated head that are 
closer to the location of the point markers. That is 
clearly evident in the two figures illustrating the 
dependence of the mean residual ∆D on the radius. In 
other words, Figure 6 shows that the mean residual 
decreases as the radius increases.  Figure 8 illustrates 
that the worst precision is observed in the region that 
is closer to the surface in the back of the simulated 
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head i.e. mean ∆D increases as the radius increases. 
This trend is observed after each individual 
registration step is performed (i.e. pre-optimization 
and the iterative optimization).  On the other hand, the 
pre-optimization procedure presents the worst 
precision when it is compared with the precision of 
the overall approach for all various regions. This 
observation is more evident in the region of the back 
of the head (i.e. 180°< φ <360° - Figure 8). On the 
other hand, the location of the point markers in front 
of the simulated head (0°< φ <180°) tends to minimize 
the difference between the residuals ∆D of the 
corresponding regions as illustrated in Figure 6.  
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Fig 8: The dependence of mean ∆D on the radius r 
(cm): a) after initialization procedure b) after 
registration for a region defined by 60°<θ<90° and 
270°<φ<300°. 
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Fig 9: Dependence of the standard deviation Dσ  on 
the radius r (cm): a) after initialization procedure and 
b) after registration for a region defined by 60°<θ<90° 
and 270°<φ<300°. 

 

 Furthermore, the small difference between the 
residuals ∆D in front of the head (Figure 6) can also 
be attributed to the fact that the effect of the 
correlation between the rotation parameters (N=15) is 
not as large as the case of a lower number of external 
point markers. Thus, the precision of the two 

registration methods will be almost comparable. 
However, the coupling effect of the rotation 
parameters embedded in the pre-optimization 
procedure does not have the same effect on the regions 
where the point markers are not located. Therefore, a 
bigger different is observed (Figure 8). This effect is 
minimized for a higher number of markers as already 
presented earlier (Figures 2 and 4).   

With respect to the corresponding standard deviations, 
the results are comparable in the regions 
corresponding to the front of head (Figure 7). That is, 
the corresponding values, obtained by both stages of 
registration, are almost the same. This could be due to 
the location of point markers and the smaller effect of 
the coupling of rotation variables as outlined earlier. 
On the other hand, this effect becomes more apparent 
in the regions corresponding to the back of the 
simulated head (Figure 9). That is, a bigger difference 
is observed between the results of the two steps. 
Furthermore, the D∆σ  is increased as the radius is 
increased (Figure 9). However, a smaller decrease is 
observed as the region of interest is moving toward 
the surface located in front of the simulated head 
(Figure 7).     

5 Conclusion 
 Iterative registration algorithms require a set of initial 
values of the parameters as an input. These values can 
affect the convergence of such algorithms to the 
desired registration parameters.  Furthermore, the 
different positioning of the patient during each 
acquisition procedure underlines the importance of the 
selection of these values.  Consequently, this may lead 
to improve the performance and the accuracy of the 
registration techniques to align two sets of 3-D images 
acquired by the same/different medical imaging 
modalities 

In this work, a two-phase registration approach, an 
initialization procedure followed by an iterative 
optimization procedure, is presented. The first step is 
based on the minimization of an error function in the 
least square sense.  Then, the results of the latter step 
are fed as input to the second stage i.e. the iterative 
optimization step (the simplex algorithm followed by 
a variable metric Method). The presented approach is 
validated using Monte-Carlo simulation techniques 
i.e. simulated images of the head are generated as well 
as images of the external point markers in two 
modalities to study quantitatively the precision of the 
registration.  

The results show that the approach is successful and 
yields the desired optimum parameters to align the 
two sets of 3-D data.  Even though the first estimation 
is asymptotically biased, it is generally close to the 
global optimum when a high degree of freedom exists 
(N )4≥ . Furthermore, the precision of the registration 
is much better for a region in front of the head where 

σ 
(m

m
) 

∆D
 (m

m
) 
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the external point markers are located. On the other 
hand, the worst precision is achieved in the regions 
located in the back of the simulated head. This 
observation is made for the initialization step as well 
as for the overall registration procedure. However, the 
second step always leads to a better precision for the 
same corresponding region i.e. minimum residual ∆D.   
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