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Abstract

Mainly in fluid power system simulation the orifice flow is clearly in turbulent area. Only
when a valve is closed or an actuator driven against end stopper the flow becomes laminar as
pressure drop over an orifice is approaching zero. So, in terms of accuracy, the description of
laminar flow is hardly necessary. Unfortunately, when purely turbulent description of the
orifice is used, numerical problems occur when pressure drop becomes close to zero. They do
because the first derivative of flow with respect of pressure drop approaches infinity when
pressure drop approaches zero. Also the second derivative is discontinuous. This causes
numerical noise and also infinite small integration step when variable step integrator is used.
In this study a numerically efficient model for the orifice flow is proposed by using a cubic
spline function for describing the flow in the laminar and transition areas. Parameters for the
cubic spline are selected such that its first derivative is equal to first derivative of pure
turbulent orifice flow model in the boundary condition. The superiority of this model comes
from the fact that no geometrical data is needed in calculation of flow from the pressure drop.
In real-time simulation of fluid power circuits there exists a trade-off between accuracy and
calculation speed. This investigation is made for the two-regime flow orifice model. The
effect of selection of transition pressure drop and integration time step on the accuracy and
speed of solution is investigated.
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Nomenclature

Ao = geometrical orifice area
Be = effective bulk modulus
Cd = discharge coefficient of the orifice
dh = hydraulic diameter of the orifice
d = diameter of the orifice
K = variable depending on the type of orifice
p0 = initial pressure
p1 = pressure before the orifice
p2 = pressure after the orifice
Q = volume flow
δ = empirical coefficient depending on

    the orifice geometry
Re = Reynolds number
Recr = critical Reynolds number
Retr  = transition Reynolds number
T = integration time step
t = time
V = volume
w = flow rate

p = pressure drop
p0 = transition pressure drop
p0_theor = theoretical transition pressure drop

p& = first derivative of  pressure
= density of hydraulic fluid
= kinematic viscosity of hydraulic fluid

√ = square root

1. Introduction

In majority of cases in fluid power system simulation
the orifice flow is clearly in the turbulent area. Only
when a valve is closed or an actuator driven against
end stopper the flow becomes laminar as pressure
drop over an orifice is approaching zero. Usually, this
situation happens only in a relatively short time
period. So, in terms of accuracy the description of
laminar flow is hardly necessary. Unfortunately, when
using pure turbulent description of the orifice
numerical problems occur when pressure drop
becomes close to zero. They do because the first
derivative of flow with respect to pressure drop
approaches infinity when pressure drop approaches
zero. Also the second derivative is discontinuous. This
causes numerical noise and also infinite small
integration step when variable step integrator is used.

Various orifice models describing both laminar and
turbulent orifice flows are proposed [1,2,3]. The
discharge  coefficient  is  taken  as  a  function  of
Reynolds  number  in  [2,3].  Merritt  uses  a  linear
function describing the laminar area [3] and Wu
empirical functions that give smooth transition of the
discharge coefficient value between laminar and
turbulent area [2]. In Merritt’s approximation the first

derivative of the function is discontinuous. Wu’s and
Ellman’s models may provide some numerical
efficiency but their major drawback is that they
require geometrical parameter information which is
not wanted when using semi-empirical approach.

The semi-empirical modeling method was developed
early 1990’s by Handroos and Vilenius [4,5]. It has
lately been applied in many fluid power circuit
simulation programs. The superiority of the method is
that the components like pressure, direction and flow
control valves have not to be dismantled to identify
the parameter values of their models. Instead of this,
measured characteristic curves mostly provided in
manufacturers catalogues can be used. A drawback in
using this method has been the lack of semi-empirical
orifice model describing the laminar and turbulent
flow area.

The present paper proposes a numerically efficient
semi-empirical orifice flow model based on cubic
spline approximation of the orifice flow in laminar
and transition area (area between clearly laminar and
turbulent flow) and thus solves the problem discussed
above. Ellman proposes similar transition description,
but by using geometric orifice dimensions [1]. The
pressure drop boundaries of the model are calculated
using critical Reynolds number and the turbulent area
value of discharge coefficient that are typical for the
orifice type to be modeled.

2. Theory

2.1 Conventional models for orifice

Fig.1 shows a sharp-edged orifice. The dependency of
flow on the pressure drop can be approximated by the
well-known equation

ρ
)(2 21 ppACQ d

−
=

           (1)

,  in  which  Cd is the discharge coefficient and A the
geometrical orifice area (A=A0 in Fig.1). In this
approximation Cd is approximated to be equal to the
contraction coefficient, Cc that describes the ratio
between smallest area of jet in vena contracta point
and the geometrical area of the orifice.

To use Eq.(1) in describing flow in both directions an
absolute value of pressure drop and a sign function
from the pressure drop must be used as follows [1]
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2
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           (2)

In  the  models  proposed by Merritt  and Wu et  al.  the
discharge  coefficient  is  taken  as  a  function  of
Reynolds number or its square root [2,3]. Reynolds
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number for a circular sharp-edged orifice can be
described as

ν
hwd

=Re            (3)

, where ν is  the  kinematic  viscosity  and  dh the
hydraulic diameter [3]. In circular orifices dh=d. By
combining Eq.(1 and 3) and

A
Qw =            (4)

, we obtain [1]

ρνν
)(2Re 21 ppdC

A
Qd d −

==            (5)

Fig. 1 Sharp-edged orifice [3]

The measured dependency of Cd on square root of Re
is shown in Fig.2. It can be concluded from the result
that in the turbulent area Cd is constant and its value is
close to 0.6.

Fig. 2 Measured dependency of Cd on √Re [3]

Merritt proposed a simple linear description for Cd in
laminar area

Reδ=dC            (6)

 , where δ is an empirical coefficient depending on the
orifice geometry [3]. Now a model may be built by

using this expression when √Re  is  smaller  than  the
transition value √Retr. Ellman used cubic spline
function for describing the flow as a function of
pressure drop [1]. Wu et al. used a smooth empirical
function giving a good fit with the data in Fig. 2 [2].

Drawback in Wu’s expression is that iteration is
required to calculate the volume flow, Q in each
integration step. To solve this problem Wu et al.
proposed a pre-calculated look-up table [2]. These two
latter models may provide a reasonable numerical
effectiveness because the first derivative of orifice
model becomes finite and the second derivative
becomes continuous.

2.2 Semi-empirical orifice flow model

It is shown in [4] and [5] that by assuming the density
as a constant the volume flow in the fully turbulent
area can be described in the semi-empirical form as
follows

21 ppKQ −=            (7)

, where

ρ
2ACK d=            (8)

, where term K can be constant or variable depending
on the type of orifice [4]. Its value or values can easily
be determined from measured characteristic curves
[4,5].

The first derivative of flow, Eq.(7), with respect to
pressure drop (p1-p2) is
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K
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, and the second derivative
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By assuming similar behavior of the flow in positive
and negative directions Eq. (7, 9 and 10) become
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Fig.(3, 4 and 5) show results calculated by Eq.(11,12
and 13) in small pressure drops with constant value of
K (K=1.0*10-7  m3/s√Pa).
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Indeed it can be concluded from the Fig. 4 that the
first derivative of Q, Eq.(12), is approaching infinity
at zero pressure drop. Also the second derivative of Q,
Eq.(13), is discontinuous, as shown in Fig.5. This
makes purely turbulent orifice model numerically very
inefficient.

Fig.3 Q( p) calculated by turbulent orifice model

Fig. 4 dQ/d( p) calculated by turbulent orifice model

Fig. 5 d2Q/d2 p) calculated by turbulent orifice
model

2.3 Two-regime flow orifice model

In the following a numerically efficient model for the
orifice flow is proposed by using a cubic spline
function for describing the flow in the laminar and

transition areas. Parameters for the cubic spline are
selected such that its first derivative is equal to first
derivative of pure turbulent orifice model, Eg.(12), in
the boundary conditions. These boundary conditions
are described by ±∆p0. They are calculated by using
current value for the variable K, critical Reynolds
number Recr and value of discharge coefficient in
turbulent area Cd∞ to obtain physically justified values.
It must be noted that the superiority of this model
comes from the fact that geometrical data is not
needed in calculation of flow from the pressure drop.

Let us approximate the laminar and transition areas of
the flow by the following cubic spline function

3
3

2
210 )( papsignpapaaQ ∆+∆∆+∆+=           (14)

, where a0… a3 are constants.

The first derivative of Q, Eq.(14) with respect to ∆p is

)(32 2
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Now by using boundary conditions ±∆p0 and assuming
same value of Q in Eq.(11 and 14) and derivative of Q
in Eq.(12 and 15) the constants a0… a3 can be solved
from the following equilibrium
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Eq.(16) can be expressed in matrix form as
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By using matrix algebra the parameter vector A can be
solved as

DCA 1−=          (18)

In practice, because the matrix solution is time-
consuming, analytical equations for a0… a4 that can
be obtained from Eq.(18) should be used in the final
orifice model.

Now, by combining the laminar, transition and
turbulent regions the final semi-empirical orifice
model can be expressed as follows

3
3

2
210 )( papsignpapaaQ ∆+∆∆+∆+=

, when 0pp ∆<∆          (19)

)( 2121 ppsignppKQ −−=

, when 0pp ∆≥∆

Now the only task that is left is to find physically
adequate values for ±∆p0.  This  can  be  solved  from
analytical formula of Reynolds number if it is possible
to use variables K and ∆p in the formula instead of Q,
w and d. This problem is solved in the following:

Analytical formula for Reynolds number for orifice
type shown in Fig.1 is [1]

νν A
Qdwd

==Re                    (20)

By substituting Eq.(1) for Q in Eq.(20) we get

ν
ρ

pdCd
∆

=

2

Re          (21)

By solving Eq.(21) for ∆p we obtain

22

22

2
Re

dC
p

d

νρ
=∆          (22)

By using Eq.(8) and relation A=πd2/4,  term d  can  be
written as a function of K as follows

ρ
π 2
4

dC

Kd =
         (23)

The substitution of Eq.(23) into Eq.(22) yields

KCKC
p

dd 657.5
Re

8

2Re 22
22

ρπνρ
πνρ

==∆          (24)

Now by  using Eq.(24) the boundary conditions for the
orifice model Eq.(19) can be found for any value of K
if transition Reynolds number Retr and the turbulent

region  value  of  Cd (Cd=Cd∞) are known. By using
these values the boundary conditions ±∆p0 can be
calculated as follows [1]

KC
p

d

tr

∞

=∆
657.5

Re 22

0
ρπν          (25)

KC
p

d

tr

∞

−=∆−
657.5

Re 22

0

ρπν          (26)

3. Example

In this study Matlab software with its extension
Simulink is used to model a simple fluid circuit.
Circuit studied is represented in Fig. 6.

Studying of the orifice was started by forming the
Simulink model based on the differential equation of
pressure drop, Eq. (27) and alternative equations of
the volume flow, Eq.(19). Usage of these alternative
equations depends on current pressure and the defined
boundary condition. Boundary condition separates the
turbulent area from laminar and transition areas.

3.1 Fluid circuit modeled

In Fig. 6 there is a fluid source with initial parameters,
a sharp-edged orifice as shown in Fig.1 and a separate
container for fluid recovery. These components are
connected with pipes to form a compact fluid circuit.

Fig. 6 A simple fluid circuit that is difficult to solve
numerically near p = 0

In the initial state of the fluid circuit represented in
Fig.6 in the fluid source there reigns defined volume,
V, and initial pressure, p0. For the differential equation
of pressure drop, Eq.(27) the effective bulk modulus,
Be, is defined.

Value  for  the  pressure  p1 is  solved by integrating  the
differential equation of pressure after fluid begins to
flow out of the container. Value for the pressure p2 can
be observed as zero because fluid flows freely to the
recovery container. By this assumption the pressure
drop over the orifice, p, is directly the value of the
pressure p1.

Volume flow through the orifice, Q, is solved from the
pressure drop by Eq.(19) either in turbulent or in
laminar area depending on the current pressure and the
defined boundary condition.

Be, V0, p0

p1

Q

p2

p=p1- p2
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3.2 Differential equilibrium of the pressure

)()( pQtp V
Be ∆−=&   p(0) = p0          (27)

, where Q is the volume flow out of orifice [1]

By integration of Eq.(27) value for the pressure p can
be solved as noticed in chapter 3.1. In this case p=p1.
In initial state the volume flow, Q, is calculated by
Eq.(19).

Due to assumption made in chapter 3.1 when p1(0) =
p0 also pressure drop p(0) = p0  in initial state. Hence
the  volume  flow,  Q,  solved  from  the  square  root  of
pressure drop gets non-zero value.

In the first time step Q in Eq.(27) is substituted by its
initial value mentioned above. Hence Eq.(27) gets
value of non-zero which enables the integration and
simulation to continue and correspond to real-life
system.

3.3 Matlab/Simulink model created

In Fig.7 is shown the principle of working with the
fluid power circuit in Matlab/Simulink. Initial values
and all supportive calculation formulas are formed in
M-File editor. This script controls the simulation run.
During the simulation run all values are updated to
Matlab Workspace where they are available for the
Simulink model. Simulink model uses these initial
values from Workspace and returns user-defined
results to the Workspace. Results are also returned to
the script which post-processes i.e. makes the
comparison between different pressure vectors and
plots graphs to illustrate the results.

The system in Fig. 7 prepares the way to test values of
transition pressure and integration time step with
minimum efforts. After vectors of range are defined
the simulation can be started by the script which also
controls all operations needed in fluid power
simulation. User sees these operations only as one.

Fig. 7 Illustration of used tools and their
interoperability

3.4 Influence of the cubic spline function

The cubic spline function produces error to the
volume flow in comparison with conventional orifice

flow model. This issue can not be avoided because the
conventional model has the characteristics that are
mentioned above.  And on the other hand it is
intended to get those characteristics out of its system.
Hence the influence of cubic spline function is
studied.

In Fig. 8 cubic spline and conventional formula
separated by transition pressure is represented.
Volume is calculated by conventional formula until
current pressure meets the transition pressure
threshold (spot in Fig. 8). When current pressure is
lower than transition pressure the laminar and
transition areas are calculated by cubic spline
function.

Fig. 8 Behavior of the two-regime orifice flow model
compared to the conventional orifice flow model

Fig. 8 also illustrates the behavior of the two-regime
orifice flow model compared to the conventional
orifice flow model. The difference between models
comes fully from the behavior in laminar and
transition areas. Two-regime model differs advisedly
from conventional in order to get volume flow
continuous near zero pressures.

4. Post-processing

The post-processing perceives the management of
overtaken results. Separate simulation runs are driven
with various time step lengths and transition pressure
threshold values.

Length of time step varies from 0.1ms up to 2ms at
intervals of 0.1ms. Transition pressure threshold
value, p0, varies from theoretical transition pressure

p0_theor, see Eq.(25), up to 2.5 times p0_theor at
intervals of 0.1 times p0_theor.

Example includes 20 different time steps and 31
different transition pressure threshold values. Together
these forms 20 times 31 different pressure vectors. In
terms of accuracy the theoretical transition pressure is
taken as reference point because it is physically
justified. As reference point the shortest (0.1ms) time

conventional flow model

two-regime flow model
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step is selected. It can be assumed to be most accurate
of varied time step because integrator naturally makes
the most integration steps.

The reference pressure vector contains data overtaken
by these reference point values and all following
pressure vectors are compared to it. Because of
dissimilar lengths of compared vectors the
interpolation is made to get vectors comparable.

The difference between compared discrete pairs is
integrated numerically by using the midpoint rule [6].
By means of this integration the area that describes
error in comparison to reference graph is attained.
After every discrete pair is compared and integrated
the sum of attained values is stored into the separate
array. Absolute value of difference is taken to avoid
the possible negative areas from deducting the total
area.

The array mentioned above is filled by results of
different pairs corresponding varied time step lengths
and transition pressure thresholds. Finally this array is
plotted as shown in Fig. 12.

Similarly the maximum difference between compared
vectors is treated. As from Fig. 9 and 10 can be seen
the maximum difference between compared vectors
lies in the cubic spline interval. At the end of
simulation run both vectors compared aspires the zero.
By this notice it is assumed that also the maximum
difference tells something about the influence of tested
variables. The less difference the near vector is to the
reference.

The array is also formed of maximum difference
values as described above. Plotted array is shown in
Fig. 13.

In Fig. 9 lower curve illustrates the reference pressure
graph and the upper illustrates the pressure graph
reached by using the maximum time step length
defined. Value for transition pressure drop has been
kept constant.

Fig. 9 Illustration of the effect of elongation of time
step length (orifice diameter 9mm)

In Fig. 10 reference pressure graph illustrates the
reference pressure graph and the pressure graph of
comparison illustrates the pressure graph reached by
using the maximum value for transition pressure
defined. Time step length has been kept constant.

Fig. 10 Illustration of the effect of enlarging the value
of transition pressure threshold (orifice diameter

9mm)

5. Results

In this study 10 different orifice diameters from 1 to
10 mm are studied. Each of them is treated as
described in chapter 4.

First reference pressure vector is formed by simulation
run whose simulation time is based on desired
duration of laminar and transition areas i.e. time that
cubic spline function is in use. Desired duration is
defined by test runs whom show that end pressure
settles low enough i.e. practically zero.

After duration of laminar and transition areas is
defined the simulation time (run time) is transmitted to
be constant in every simulation run concerning current
diameter.

Tab. 1 illustrates difference of pressures at the end of
simulation run between reference pressure vector and
the pressure vector attained by longest time step.
Value of transition pressure drop has been kept
constant.

Theoretical transition pressure threshold, p0_theor , is
calculated by Eq.(25). Tab. 1 shows that end pressures
are clearly under calculated threshold i.e. defined
simulation time is sufficient.

The margin originates from the dissimilar amount of
calculated points. The longer time step the less
integration steps are made. For this reason the
compared end data points may diverse.

pressure graph of comparison

reference pressure graph

pressure graph of comparison

reference pressure graph

Max. difference
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Tab. 1 The influence of elongation of time step length

Ø Run
time

p0_theor
[Pa]

Reference
end

pressure
[Pa]

End pressure
[Pa]

Margin
[Pa]

10 0.1275 11 249.7 18.0 0 -18

9 0.1338 13 888.5 30.6 0 -30.6

8 0.1426 17 577.7 55.3 55.2 -0.1

7 0.1553 22 958.6 108.2 108.3 0.1

6 0.1746 31 249.2 235.6 237.1 1.5

5 0.2062 44 998.8 592.9 594.2 1.3

4 0.2630 70 310.7 1 847.4 1 867.0 19.6

3 0.3809 124 996.8 8 103.1 8 180.9 76.8

2 0.6923 281 242.8 63 782.4 63 967.7 185.3

1 1.9921 1 124 971.1 898 283.8 898 494.8 211.0

Tab. 2 (consists of parts 2a and 2b) illustrates
difference of pressures at the end of simulation run
between reference pressure vector and the pressure
vector attained by maximum transition pressure drop.
Time step length has been kept constant.

Theoretical transition pressure drop, p0_theor , is
calculated by Eq.(25). Maximum value is selected to
be 2.5 times theoretical transition pressure drop. For
this reason the margin develops bigger as the orifice
diameter gets smaller while also transition pressure
drop gets bigger values.

The margin originates from variation of transition
pressure drop. Volume flow is calculated by cubic
spline function starting from different value of current
pressure i.e. Fig. 10 illustrates. While simulation time
(run time) is the same in both cases the varied curve
does not attain the reference curve.

Tab. 2a The influence of enlarging the value of
transition pressure drop

Ø

[mm]

Run time p0_theor [Pa] Reference end
pressure

10 0.1275 11 249.7 18.0

9 0.1338 13 888.5 30.6

8 0.1426 17 577.7 55.3

7 0.1553 22 958.6 108.2

6 0.1746 31 249.2 235.6

5 0.2062 44 998.8 592.9

4 0.2630 70 310.7 1 847.4

3 0.3809 124 996.8 8 103.1

2 0.6923 281 242.8 63 782.4

1 1.9921 1 124 971.1 898 283.8

Tab. 2b The influence of enlarging the value of
transition pressure drop

Ø

[mm]

Max. p0 [Pa] End pressure [Pa] Margin [Pa]

10 28 124.3 71.0 53.0

9 34 721.3 120.4 89.8

8 43 944.3 217.1 161.9

7 57 396.5 423.6 315.4

6 78 123.0 915.9 680.3

5 112 497.0 2 271.1 1 678.2

4 175 776.8 6 825.5 4 978.1

3 312 492.0 26 938.5 18 835.4

2 703 107.0 149 076.3 85 293.9

1 2 812 427.8 1 136 274.2 237 990.4

Examples shown in Fig. 11, 12 and 13 are attained by
using the orifice diameter of 9 mm.

As  from  Fig.  11  can  be  seen  behaviour  of  graphs  is
continuous  as  expected.  Graphs  draw on smoothly  to
zero without numerical noise i.e. they are not vibrating
in zero pressure surrounds.

Fig. 11 Example of attained results

Fig. 12 shows integrated error between compared
pairs in relation to time step length and transition
pressure  drop.  In  terms  of  accuracy  and  speed  of
calculation the optimum must be the best combination
of time step length and transition pressure drop. In this
case it seems to be located in the near of T=1 ms and

p0=0.2 bar.

Fig. 13 shows maximum difference of compared
vectors in relation to time step length and transition
pressure drop. This result supports the implication
made in chapter 4.
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Fig. 12 Integrated error

Fig. 13 Maximum difference

6. Conclusions

A numerically efficient, physically justified two-
regime orifice model is proposed. The laminar and
transition region in the orifice model are described by
a cubic spline function that gives continuous second
derivative of flow with respect to pressure drop. The
traditional turbulent orifice model is used in
describing the turbulent region.

The model can be used in semi-empirical modelling of
fluid power components because it does not require
any geometrical information of the orifice type. If it is
desired to use physically adequate values for boundary
pressure drops the equation for Reynolds number can
be used in calculating their values. Then the transition
value for Reynolds number and turbulent region value
for the discharge coefficient should be given. It is
shown that the model gives quite good approximation
of discharge coefficient as a function of derivative of
Reynolds number.

The dependency of calculation error on the integrator
time step and selected boundary pressure drop is also
investigated by simulating a simple hydraulic circuit.

The physically justified transition pressure is used as
the reference response. Maximum errors and
integrated errors are illustrated.
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