
DEADLOCK DETECTION IN HIGH LEVEL
ARCHITECTURE FEDERATIONS USING

AXIOMATIC DESIGN THEORY

Cengiz Togay1, Veli Bicer2, Ali H. Dogru1

1 Middle East Technical University,
Department of Computer Engineering,

Ankara, Turkey
2Tepe Technology,

R&D Department, Turkey, Ankara

ctogay@ceng.metu.edu.tr (Cengiz Togay)

Abstract

In this study, we propose a method to translate the design matrices to Communicating
Sequential Processes (CSP) codes in order to detect deadlocks in federations. Deadlock is an
important problem to consider during the integration of systems. Both simulation and
Component Oriented Software Engineering communities are considering the easier
development of complex systems by integrating existing federates (components). Interfaces
are the most important part of federate searching and standard interfaces do not include
sufficient information about the internal behaviors of federates. Since interfaces should
consist of design concepts, they should be created during design of federates. Axiomatic
Design Theory (ADT) is a general design methodology that guides developers to decompose
systems utilizing independence and information axioms. The Design matrix, which is a tool of
axiomatic design, includes functional requirements, solutions, and dependencies among them.
Since design matrices includes the internal behaviors of federates and it is a product of design,
we applied the ADT to design Component Oriented Simulation systems. In our previous
study, we proposed a method to find deadlocks using the design matrix. However, detection
was left to the developer utilizing design matrices and it is very difficult to detect such
deadlocks in complex systems. Deadlocks in federations can be figured out by utilizing
Communicating Sequential Processes (CSP) formalism. We have used a CSP tool namely
Failures-Divergence-Refinement (FDR2).

Keywords: Component Oriented, HLA, Deadlock Detection, and Communication
Sequence Processes.

Presenting Author’s biography

Cengiz Togay. He is doctoral candidate in the Middle East Technical University’s
Computer Engineering Department. He has worked on component-oriented simulations
techniques, software engineering, Web Services, Semantic Web issues, and distributed
systems. He obtained his MS in computer engineering from the Canakkale Onsekiz
Mart University.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction
Both simulation and Component Oriented Software
Engineering (COSE) [1] communities try to easily
build complex systems by combining existing
components (federates) [2-4]. COSE approach is
based on the integration of components through
connection of their interfaces. Interfaces of federates
are defined using one of the specific representations of
the Object Model Template (OMT) [5] namely
Simple Object Model (SOM). In our previous study,
we represented SOMs as component interfaces [3].
Component interfaces do not have sufficient
information to guide developers for ascertaining
congruent components to build systems. The only
published information about components is described
in their interfaces (i.e. the signature). Their internal
details and implementation mechanisms are not
revealed. Therefore, developers have access only to
interface of the components, some text documents
describing the usage of components, and definitions
such as the developer name, version number, etc.
Component developer firms do not want to publish
design artifacts because of confidentiality. Locating
congruent components is one of the big problems of
COSE and it requires machine readable design
artifacts. The design artifacts should be prepared
during design. Otherwise, developers can refrain to
prepare them because of time and cost considerations.
If the design artifacts are prepared after the
implementation, information loss appears. Therefore,
interfaces should be enriched with the required
information in a machine readable form by
considering confidentiality. In addition, this
enrichment should be part of the design process.

Axiomatic Design Theory (ADT) [6] provides a broad
and systematic approach to design systems through
top-down decomposition. It proposes four domains,
two design axioms, hierarchies, and zigzagging. These
concepts are applied to the design matrix that is
produced during the design process. The design
matrix includes Functional Requirements (FRs) and
Design Parameters (DPs) that represent the problem
and solution spaces respectively and relationships
among them. Axioms are used to define “Good
Design”. Components, their interface items (methods,
events, and attributes), definition reasons for each of
item, abstract definitions such as packages, data,
function representations and connections among them
can be represented in a design matrix in terms of
COSE elements [7]. Therefore, components in COSE
require an interface enrichment that design matrices
provide. Also ADT provides guidance for
decomposition. Based in ADT, if axioms of ADT
applied, maintainable, cost effective, and modular
design can be produced. The design matrix is a
product of component oriented simulation
development framework based on ADT [4]. COSE
approaches are more efficient in mature domains.

Congruent components are ascertained during the
design of a system in mature domains. We proposed a
method to ascertain components with evaluating their
congruency in terms of interface conformance while
considering dependency among interface items [4] and
the information axiom [8]. COTS components
(federates) often do not offer the exact functionality
requisite by the system [9]. They integrate several
services. Some services when selected, will require the
incorporation of further other services due to
dependencies. Since DMs provide dependency
relations, DMs are helpful tools to locate components
and component parts. Providing input-output
dependency among component interfaces is also
consistent with the “proof obligations” introduced in
[10] for discovering interface and compositional
inconsistencies.

When congruent federates are integrated, they should
also be checked in terms of deadlock anomalies.
Concurrently executing components can cause the
unexpected run-time anomalies such as race
conditions and deadlocks[11]. The undetected faults
(dormant) during the formation a federation may lead
to subsequent service failures [12]. Coupling is a sign
of potential deadlocks and it can be extracted from the
Design Structure Matrices (DSM) [13, 14].
Dependencies among federates can be represented
using DSM. However, a DSM does not have the
capability to describe the content of dependencies
[15]. If federates are designed using COSE and ADT,
design matrices of the federates can be used to check
for potential deadlocks as figured out from the DSM
and the design matrix [16]. We did not develop a
specific technique for deadlock detection in our
previous work [16], which is a very difficult task for
complex systems.

A number of architecture description languages have
been developed to describe concurrent systems such as
WRIGHT [17], Rapide [18], and UniCon [19]. In
Rapide developed system is checked in terms of user
defined traces. Rapide does not verify all executions in
the corresponding software system. We are proposing
a method to check for deadlocks by referring to the
design matrices and Communicating Sequential
Processes (CSP) [20] representation. CSP is a process
algebra and is supported by the Failures-Divergence-
Refinement (FDR2) [21] tool. WRIGHT describes the
system but the connector concept that defines the
behaviors in WRIGHT is characterized using CSP
[22]. Federates and their behaviors in design matrices
are represented in CSP in terms of processes.
Federations can be evaluated for formal checking for
deadlock while utilizing FDR2 automatically. It
should be noted that a deadlock in a system can also
be a sign of a missing part. Each subscribed OMT
item in a federate should be satisfied by a publisher
federate otherwise a deadlock occurs with respect to
CSP. Efficiency of decomposing system can have
significant impact on decreasing resources for

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

verification [10, 23]. ADT guides with the
hierarchically decomposition of designs that are not
coupled. Therefore, ADT can be helpful to decrease
the resources needed for verification of the system. In
this study, we are proposing a method to translate
design matrices of federates to CSP codes in order to
detect deadlocks in federations and compatibilities
among federates in terms of system requirements.

The rest of the paper is structured as follows. Section
2 provides a brief introduction to Axiomatic Design
Theory, Section 3 describes CSP. Section 3 details the
proposed method to translate design matrices to CSP
representation with a case study.

2 Background
2.1 Axiomatic Design Theory

In order to design different types of systems such as
machines, organizations or software, Axiomatic
Design Theory (ADT) provides a framework in which
the system is defined as an assembly of the
subsystems, hardware, software, or people [6, 24].
These components mainly aim to operate together to
accomplish a set of tasks. In the design process, a
system is represented by different architectural
elements such as the domains, hierarchies, or modules.

The design process is divided into four stages, namely
customer domain, functional domain, physical
domain, and process domain. The customer domain
specifies the needs of the customers to be achieved by
the system. These needs are then converted to the
functional requirements (FRs) and the constraints (Cs)
in the functional domain. By considering the FRs and
the Cs, the design parameters (DPs) are provided in
the physical domain. To realize the system by using
the DPs, the process domain includes the process
variables (PVs). Relations between these domains are
expressed as “What” and “How” questions (e.g. what
the customer wants (CN) is addressed by how it is
accomplished (FR)).

In addition to specifying FRs and the corresponding
DPs and PVs, the system design process continues
further by hierarchical decompositions. By
constructing FR, DP and PV hierarchies, the
complexity of the system design process is divided
into smaller components which can then be handled
by different modules after the design is completed.
However, the FRs and DPs cannot be decomposed
independently by remaining in one domain. On the
contrary, this process is done by zigzagging between
the domains. The zigzagging is an important part of
the axiomatic design to create hierarchies by enabling
the parallel decomposition in all four domains. For
example, once a FR1 is defined, the designer “zigs” to
the physical domain to define its corresponding DP1.
Then, the designer “zags” to the functional domain to
decompose the FR1 into smaller FRs. This process
continues until all the leaves of FRs are satisfied with
the actual DPs.

Two important axioms, Independence Axiom and
Information Axiom, are introduced by ADT in order
to obtain an effective design. The Independence
Axiom states that the functional requirements should
be independent from each other for an ideal design. In
addition, Information Axiom states that the aim of a
good design should be to minimize the information in
the content. Through a design matrix, we can show
how a set of FRs fulfills the set of CNs, how a set of
DPs fulfill the set of FRs, and how the set of PV
accomplish the set of DPs. According to the design
matrix, a design can be in one of the following forms:

§ Uncoupled Design: The design is in the ideal
case. Each FR is satisfied by one DP so that a
diagonal design matrix is produced.

§ Decoupled Design: This is the most common
form of the design. The design matrix is
triangular in which the relationships are
placed at only one of the sides of the diagonal
in the design matrix.

§ Coupled Design: The relationships are
distributed on the design matrix, indicating a
highly interdependent design.

Information axiom can also be applied to measure
congruency among components in terms of probability
of success [8]. ADT has been applied to software
systems in various studies [6, 25-29], to COSE [7, 16]
and to High Level Architecture (HLA) based
simulation with provided enrichment in interfaces [3,
4]. Collaboration diagrams are applied to ADT to
specify dependencies among components, methods, or
attributes [7].

2.2 Communicating Sequential Processes

Communicating Sequential Processes (CSP) is a
process algebra introduced by Hoare [20]. CSP is a
language and is supported by the tools: Failures-
Divergence-Refinement (FDR2) [21] for model
checking and Process Behavior Explorer (ProBE) [30]
for state machine based models . Wright [31, 32] an
architecture description language uses CSP like
notation to describe components’ ports and roles. For
instance, HLA Runtime Infrastructure (RTI) [33] is
formalized using Wright to detect deadlocks and race
conditions [11]. It should be noted that developed
tools translate the Wright representation to CSP for
utilizing the FDR tool. CSP can also be used for
modeling complex service choreography for checking
for deadlock among integrated services [34, 35]. In
CSP, processes defined statically include a set of
events. Events are atomic and provide synchronization
among processes. They are used to define the behavior
of processes. More than one process can be executed
in a time in concurrent systems. This causes well
known problems such as deadlocks. CSP theory and
FDR2 are used for checking defined processes in
terms of traces, stable failures, and failure-divergence
models. In this article, we will concentrate on the

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

traces to check for the deadlock situation in the
composed system using the FDR2 tool. CSP
expressions that will be used in this article are listed in
Tab. 1.

Tab. 1 CSP expressions used in this article

CSP Expression Explanation

P[| A |] Q P and Q processes are partial
interleaved parallel composition. A
is the set of the events . If A is
empty then composition of P and Q
behaves interleaved parallel.

P ||| Q P and Q are interleaved parallel

e-> P Event e performed first and then
Process P is executed after an
external trigger occurred.

SKIP Successfully termination

STOP Deadlock

Datatype x = a |
b | c

Defines x datatype with a set of
alternatives

Channel e Defines event e

Channel e:x Defines event e with x datatype

e ? a Defines input on event e of an item
defined during channel definition.
As defined in datatype, instead of
an item, b or c items can be used.

e ! a Defines output on event e of an
item. After this expression is
performed, e?a expression in
another process in waiting situation
can be performed. Input and output
expressions are used to provide
synchronization.

Union Unions the sets.

3 Translation from Design Matrix to
CSP
In our previous studies [3, 7], we preferred to use
COSEML notation [1, 36] as shown in Fig. 2 which is
very similar to CORBA Component Model [37] to
represent component interfaces in design matrices.
Interfaces define the connection points to integrate
components. During the integration only methods and
component events are shared among components. In
this study, a process concept in CSP corresponds to a
partial or a whole component. Methods and
component events are defined as events in terms of
CSP and they are represented in a process. In
COSEML notation, published interactions are located
within “Method in”, published events are found in
“Event in”, subscribed interactions are located within

“Method out”, and lastly subscribed events are placed
within “Event out” as shown in Figures 1 and 2. Input
and output definitions in COSEML notation are
represented in CSP as shown in Tab. 2.

Tab. 2 COSEML and CSP representations

COSEML representation CSP representation

Component Process

Published method Output event (e ! a)

Subscribed method Input event (e ? a)

Published event Output event (e ! a)

Subscribed event Input event (e ? a)

As an example, composition of Federate 1 and
Federate 2 are represented in a federation design
matrix as depicted in Fig. 1. Corresponding COSEML
representation is shown in Fig. 2. There are two
federates namely Federate 1 and Federate 2 in this
example federation. There are two interactions and
four events of the Federate 1. They are organized
based on the publish-subscribe mechanism. ‘X’s in
design matrix represents the dependencies among FRs
and DPs. Each FR is satisfied with at least one DP that
is located in diagonal line. For instance, definition of
interaction 1 is represented in FR1.1.1 and it is
satisfied with DP1.1.1. Other ‘X’s in the same line
represent the dependency of Interaction 2 with others.
Such as, to publish Interaction 2, DPs Interaction 1
and Event 1 are required as shown in Fig. 1.
Dependency between federates are also depicted in the
design matrix. For instance, Interaction 1 in Federate
1 has subscribed to Federate 2 through Interaction 1 in
Federate 2. Similarly, Federate 2 has two interactions
and two events. Interaction 1 in Federate 2 is
published if event 1 is provided by another federate
(Federate 1). It can be figured out that Event 1 is
published by the federate 1 without any dependency.
Therefore there is no cycle between Federate 1 and
Federate 2 in terms of Interaction 1 and Event 1.
Although for small designs cycles among OMT items
can be figured out with human eye, we need tools. The
design matrix tool provides us with such a capability.
Our ADT tool can detect couplings that are signs of
deadlocks that are represented in Fig. 1 as black
boxes. Federates 1 and 2 are coupled in terms of DSM
since they are sharing events and interactions to
publish an item that other federate requires. Although
ADT does not propose coupled designs based on the
independence axiom, couplings can occur during
integration especially between federates observable in
the DSM. Coupling does necessarily cause deadlocks,
it is only an indication [16]. In our example, the
federation includes two decoupled federates and the
federation is coupled. Although composition of
federates are coupled, the federation is deadlock free.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

Fig. 1 A Federation consists of Federates 1 and 2

Federate interfaces are translated to CSP codes based
on the following rules:

§ Only published interactions and events are
defined as processes. Each publisher must
have at least one subscriber. If there is no
subscriber of an OMT item then related
process can be omitted.

§ Input and output definitions are specified
based on dependence relationships of
published interactions or events. For instance,
Interaction 1 requires Event 1 in Federate 2
and is represented as “Event1? e1 ->
Interaction1! m1.”

§ A Federate is represented as a process that
consists of one or more sub processes as
shown in Tab. 3.

§ A federation is also represented as a process
and it is formed from one or more federate
processes.

§ Processes are composed based on shared
methods or events among processes. If there
is no shared item(s) than the “|||” term is used
to connect processes. If there are, then “[| |]”
is used.

§ Shared items among processes are looked up
from the design matrix.

§ If there are events defined as input events
(subscribe) and required output events
(publish) from other federates, they must be
considered during the federation process is
forming.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

Event1
Event2
Event4

Federate 1 Interface

Controller Interface Federate 1

Federate 1 Interface

Interaction1

Interaction2

Example
Domain

Method In

Event In
Event Out

Component
Name Interface Name Properties

Method Out

 Interface Name

Legends

Event3

Federate 2 Interface

Controller Interface Federate 2

Federate 2 Interface

Interaction2

Interaction1

Event1

Event3

Package
Name

Fig. 2 COSEML representation of Federate 1 and

Federate 2

CSP codes of Federate 1 and Federate 2 are listed in
Tab. 3. Federate 1 has four published items therefore
there are four sub processes. Only Interaction 2 is
shared between FEDERATE1_SUB1 and
FEDERATE1_SUB2. Processes FEDERATE1_SUB3
and FEDERATE1_SUB4 can be executed
asynchronously. FEDERATE1_SUB4 is omitted since
there is no subscriber process. The Federate 2 has two
published items therefore there are two sub processes.
Only Interaction 1 is shared between
FEDERATE2_SUB1 and FEDERATE2_SUB2. When
we try to execute one of these federates, FDR2 tool
will notify us about the deadlock. We can conclude
from this message that some interaction or events are
not satisfied in the processes. Composition of the
Federate 1 and Federate 2 forms a federation that is
represented as FEDERATION in Tab. 3. Interaction1,
Interaction 2, Event 1, and Event 3 are shared between
federates as listed in Tab. 3.

We tested the executable CSP codes in Tab. 3 and
obtained a deadlock free federation. Although,
coupling is available between the Federate 1 and the
Federate 2 as shown in the design matrix, we can
conclude that all OMT items which are required by a
federate, are satisfied by a federate in the federation,
and dependency relations between OMT items are not
allowed to form cycles.

Tab. 3 CSP representations of Federate 1 and Federate
2 in a federation

datatype D_i1= i1, D_i2= i2, D_e1= e1, D_e2= e2,
D_e3= e3, D_e4= e4

channel Interaction1:D_i1, Interaction2:D_i2,
Event1:D_e1, Event2:D_e2, Event3:D_e3,
Event4:D_e4

--------------------------Federate 1--------------------------

FEDERATE1_SUB1 = Event1?e1 -> Interaction1?i1
-> Interaction2!i2 -> FEDERATE1_SUB1

FEDERATE1_SUB2 = Interaction2?i2 -> Event3?e3
-> Event4!e4 -> FEDERATE1_SUB2

FEDERATE1_SUB3 = Event1!e1 ->
FEDERATE1_SUB3

--FEDERATE1_SUB4 = Event2!e2 ->
--FEDERATE1_SUB4 there is no subscriber

FEDERATE1 = (FEDERATE1_SUB1
[|{|Interaction2|}|] FEDERATE1_SUB2) ||
FEDERATE1_SUB3 --||| FEDERATE1_SUB4

------------------------Federate 2----------------------------

FEDERATE2_SUB1 = Event1?e1 -> Interaction1!i1
->FEDERATE2_SUB1

FEDERATE2_SUB2 = Interaction1?i1 ->
Interaction2?i2 -> Event3!e3 -> FEDERATE2_SUB2

FEDERATE2 = (FEDERATE2_SUB1
[|{|Interaction1|}|] FEDERATE2_SUB2)

-----------------------Federation----------------------------

FEDERATION=(FEDERATE1[| union(union(union
({|Event1|}, {|Interaction1|}), {|Interaction2|}),
{|Event3|})|] FEDERATE2)

4 Conclusion
In federations, deadlocks can appear because of shared
OMT objects among federates. Dependency
relationships among objects can be used to detect
deadlocks. Design matrices include the definition
reasons of the OMT objects, and their dependencies
with other OMT objects. The design matrices are the
product of a framework based on Axiomatic Design
Theory. In our previous study [16], we proposed a
method to find deadlocks utilizing design matrices for
small problem sets. This framework is used to design
federates and federations. During design, coupling in
the design matrix is an indication for possible
deadlock situations; however, deadlock will not
necessarily occur. CSP and supporting tools are used
to check defined processes in terms of traces, stable
failures, and failure -divergences models . Since human
does not detect deadlocks in complex systems, we
propose a method to translate design matrices to CSP
for utilizing FDR2 tool to automatically check for
deadlocks, in this article.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

5 References
[1] A. H. Dogru and M. M. Tanik, "A Process

Model for Component-Oriented Software
Engineering," in IEEE Software, vol. 20,
2003, pp. 34-41.

[2] R. G. Bartholet, D. C. Brogan, P. F.
Reynolds, and J. C. Carnahan, "In Search of
the Philosopher's Stone: Simulation
Composability versus Component-Based
Software Design," in Proceedings of the
2004 Fall Simulation Interoperability
Workshop. Orlando, FL, 2004.

[3] C. Togay, A. H. Dogru, U. J. Tanik, and G. J.
Grimes, "Component Oriented Simulation
Development With Axiomatic Design,"
presented at The Ninth World Conference on
Integrated Design and Process Technology,
San Diego, CA, 2006.

[4] C. Togay and A. H. Dogru, "A Framework
for Component Integration Using Axiomatic
Design and Object Model Template for
Simulation Applications," Department of
Electrical and Computer Engineering
University of Alabama, Birmingham,
Alabama, Technical Report 2005-11-ECE-
001, 2005.

[5] IEEE Std. 1516.2-2000, "IEEE Standard for
Modeling and Simulation (M&S) High Level
Architecture (HLA)-Object Model Template
(OMT) Specification," 2000.

[6] N. P. Suh, Axiomatic Design: Advantages
and Applications. New York: Oxford
University Press, 2001.

[7] C. Togay and A. H. Dogru, "Component
Oriented Design Based on Axiomatic Design
Theory and COSEML," Proceedings of
ISCIS, Lecture Notes in Computer Science,
vol. 4263/2006, pp. 1072-1079, 2006.

[8] C. Togay, O. Aktunc, M. M. Tanik, and A.
H. Dogru, "Measurement of Component
Congruity for Composition Based on
Axiomatic Design," presented at The Ninth
World Conference on Integrated Design and
Process Technology, San Diego, CA, 2006.

[9] L. Iribarne, J. M. Troya, and A. Vallecillo, "
Selecting software components with multiple
interfaces," presented at Euromicro
Conference, 2002.

[10] M. Rangarajan, P. Alexander, and N. B. Abu-
Ghazaleh, "Using automatable proof
obligations for component-based design
checking," presented at IEEE Conference and
Workshop on Engineering of Computer-
Based Systems, 1999.

[11] R. J. Allen, D. Garlan, and J. Ivers, "Formal
modeling and analysis of the HLA
component integration standard," presented
at 6th ACM SIGSOFT international
symposium on Foundations of software
engineering, 1998.

[12] A. Avizienis, B. Randell, and C. Lanwehr,
"Basic concepts and taxonomy of dependable
and secure comp uting," IEEE Transactions
on Dependable and Secure Computing, vol.
1, pp. 11-33, 2004.

[13] D. Steward, System Analysis and
Management: Structure, Strategy and
Design. New York: Petrocelli Books, 1981.

[14] T. R. Browning, "Applying the design
structure matrix to system decomposition and
integration problems: a review and new
directions," IEEE Transactions on
Engineering Management, vol. 48, pp. 292-
306, 2001.

[15] Q. Dong and D. E. Whitney, "Designing A
Requirement Driven Product Development
Process," pres ented at 13th International
Conference on Design Theory and
Methodology, Pittsburgh, PA, 2001.

[16] C. Togay, G. Sundar, and A. H. Dogru,
"Detection of Component Composition
Mismatch with Axiomatic Design," presented
at IEEE Southern Conference, Memphis, TN,
2006.

[17] R. Alan and D. Garlan, "The WRIGHT
architectural specification language,"
Carnegie Mellon University, School of
Computer Science, Technical Report CMU-
CS-96-TBD, 1996.

[18] D. C. Luckham, J. J. Kenney, L. M.
Augustin, J. Vera, D. Bryan, and W. Mann,
"Specification analysis of system architecture
using rapide," IEEE Transactions on Sofware
Engineering, vol. 21, pp. 336-355, 1995.

[19] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross,
D. M. Young, and G. Zelesnik, "Abstractions
for Software Architecture and Tools to
Support Them," EEE Transactions on
Software Engineering, vol. 21, pp. 314 - 335
1995.

[20] C. A. R. Hoare, "Communicating Sequential
Processes," Communication of the ACM, vol.
21, pp. 666-677, 1978.

[21] Formal Systems Ltd., "Failures-Divergence-
Refinement: FDR2 User Manual," 2003.

[22] R. Allen and D. Garlan, "Formalizing
architectural connection," in Proceedings of
the 16th International Conference on
Software Engineering, 1994, pp. 71-80.

[23] J. M. Cobleigh, G. S. Avrunin, and L. A.
Clarke, "Breaking up is hard to do: an
investigation of decomposition for assume-
guarantee reasoning," presented at
Proceedings of the 2006 international
symposium on Software testing and analysis,
2006.

[24] N. P. Suh, "Axiomatic Design Theory for
Systems," Research in Engineering Design,
vol. 10, pp. 189-209, 1998.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

[25] S. H. Do and G. J. Park, "Application of
Design Axioms for Glass-Bulb Design and
Software Development for Design
Automation," presented at Third CIRP
Workshop on Design and Implementation of
Intelligent Manufacturing, Tokyo, Japan,
1996.

[26] P. J. Clapis and J. D. Hintersteiner,
"Enhancing Object Oriented Software
Development through Axiomatic Design," in
First International Conference on Axiomatic
Design. Cambridge, MA, 2000.

[27] S. H. Do and N. P. Suh, "Object Oriented
Software Design with Axiomatic Design,"
presented at Proceedings of ICAD2000 First
International Conference on Axiomatic
Design, Cambridge, June 2000.

[28] S. H. Do and N. P. Suh, "Systematic OO
Programming with Axiomatic Design," in
IEEE Computer, vol. 32, October 1999, pp.
121-124.

[29] B. Gumus and A. Ertas, "Requirement
Management and Axiomatic Design,"
presented at Integrated Design and Process
Technology Symposium, 2004.

[30] Formal Systems Ltd., "Process Behavior
Explorer: Probe User Manual," 2003.

[31] R. J. Allen and D. Garlen, "A Formal
Approach to Software Architecture,"
Carnegie Mellon University, Ph.D. Thesis
CMU-CS-97-144, 1997.

[32] R. Allen and D. Garlen, "A formal basis for
architectural connection," ACM Transactions
on Software Engineering and Methodology,
vol. 6, pp. 213-249, 1997.

[33] IEEE Std. 1516.1-2000, "IEEE Standard for
Modeling and Simulation (M&S) High Level
Architecture (HLA)- Federate Interface
Specification," 2000.

[34] W. L. Yeung, J. Wang, and W. Dong,
"Verifying Choreographic Descriptions of
Web Services Based on CSP," presented at
The IEEE Services Computing Workshops,
2006.

[35] W. L. Yeung, " Mapping WS-CDL and
BPEL into CSP for Behavioral Specification
and Verification of Web Services," presented
at Web Services ECOWS '06, 2006.

[36] A. H. Dogru, "Component Oriented Software
Engineering Modeling Language:
COSEML," presented at Computer
Engineering Department, Middle East
Technical University, Turkey, TR 99-3,
1999.

[37] CORBA, "CORBA Components
Specification 3.0," 2002.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

