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Abstract

The problem of modelling and control for autonomous vehicles is considered. Mutual inter-
actions among vehicle motion dynamics are evaluated. It is proposed the mathematical model
suitable for describing and simulating the whole motion of autonomous passenger vehicles. The
passenger vehicles are evaluated from many points of views, such as riding comfort, vehicle po-
sition, stability, manipulability and so on. The performance of vehicle control in technically is
seperated into several control items and considered to each item independently. The mathemat-
ical model for steering control of an autonomous vehicle has usually two degrees of freedom,
which consider the lateral motion and the yawing motion. The model for suspension dynamics,
which is deeply related to riding comfort, has also two degrees of freedom, which consider the
bouncing motion and the pitching motion. The above mentioned models are not enough to treat
the problem of total motion control of autonomous vehicles. The specifications of tires must
also be considered in the whole motion control of vehicles and they have strong nonlinearity.
There are, furthermore, mutual interactions among them, which are inevitably considered when
the problem of the whole motion control of autonomous passenger vehicles.

Keywords: Autonomous vehicle, Motion dynamics, Navigation, Guidance control, Robust
control.
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1 Introduction

The passenger vehicles are evaluated from many points
of views, such as riding comfort, vehicle position, sta-
bility, manipulability and so on(Fig. 1). In the recent
year, the electric control systems of chassis functions –
suspension, steering, drivetrain and brake – have been
developed rapidly. These systems have been developed
for the purpose of obtaining the maximum performance
independently[1].

Fig. 1 Integrated vehicle control[1]

The performance of vehicle control in technically is
seperated into several control items and considered
to each item independently, too. The mathematical
model for steering control of an autonomous vehicle
has usually two degrees of freedom, which consider
the lateral motion and the yawing motion[2, 3]. The
model for suspension dynamics, which is deeply related
to riding comfort, has also two degrees of freedom,
which consider the bouncing motion and the pitching
motion[4, 5]. The above mentioned models are not
enough to treat the problem of total motion control for
autonomous vehicles. The specifications of tires must
also be considered in the whole motion control of vehi-
cles and they have strong nonlinearity[6]. There are,
furthermore, mutual interactions among them, which
are inevitably to be taken into account in the problem
of the whole motion control for autonomous passenger
vehicles(Fig. 2).

2 Modelling of an autonomous vehicles

2.1 Steering model of an autonomous vehicle

The features of car steering dynamics in a horizontal
plane are described by Fig. 3 [3, 4, 5, 6, 7]. In Fig. 3,
the angle Æ is the front steering angle and the angles
���� ���� ���� ��� are the sideslip angles of front tires
and rear tires, respectively.

The angle � between the vehicle center line and the ve-
locity vector � is called “vehicle sideslip angle”. The
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Fig. 2 Rigid-body model of four wheel vehicles

cornering forces ���� ���� ���� ��� are the forces trans-
mitted from the road surface via the wheels to the car
chassis. The distance between the center of gravity (P)
and the front axle (resp. rear axle) is �� (resp. �� ) and
together � � �� � �� is the wheel base. In the horizon-
tal plane of Fig. 3 an inertially fixed coordinate system
���� � is shown together with a vehicle fixed coordi-
nate system ��� 	� that is rotated by a“yaw angle” 
. In
the dynamic equations the yaw rate � �� �
 will appear
as a state variable.

Assuming that �� � ��� � ��� � Æ��������� �� �
��� � ��� � �� � ������ and ��� � � �� ���� �
�� �Æ� � �� then the“two wheel model”[8] (Fig. 4) can
be regarded as the equivalent model to the four wheel
model (Fig. 3).

The side forces � �� ��� � � �� ��� are projected
through the steering angle into chassis coodinate ��� 	�,
where they appear as forces �� � and the torque ��

around a �-axis which is pointing upward from the cen-
ter of gravity (P).

�
�
�
��

�
�

�
� 	
� Æ �
�	 Æ �
�� �	 Æ ���

� �
�
�

�
(1)

Via the dynamics model the forces cause state variables
�� �� �. The equations of motions for three degrees of
freedom in the horizontal plane are

1. longitudinal motion

��� � �� � �� 	
�� �� �� �	� � � (2)
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Fig. 3 Four wheel model for car steering

Fig. 4 Two wheel model for car steering

2. lateral motion

�� � �� � �� �	� �� �� 	
�� � � (3)

3. yaw motion

� �� � �� (4)

It is obtaind that from Eq.(2) to Eq.(4)

�
� �� � �� � ��

� ��
� ��

�
� �

�
� 	
�� �	� �
�	� 	
�� �
� � �

�

�

�
�
�
��

�
(5)

The side force � is known to be the nonlinear function
of the tire sideslip angles �� � ��, i.e.,

� � � ��� � � ����� (6)

Two wheel model (5) and (6) is nonlinear and we will
introduce the additional assumptions[3] as follows.

(A1) The sideslip angle � is assumed to be small. Then,
Eq.(5) becomes

�
� �� � �� � ��

� ��
� ��

�
� �

�
�� � �
� � �
� � �

� �
�
�
��

�
(7)

(A2) The velocity is constant, �� � �. Then, the second
row of Eq.(7) yields � � ��� and with �� � �, then
we have

�
�� � �� � ��

� ��

�
�

�
� �
� �

��
�
��

�
(8)

The velocity � is treated as an uncertain constant pa-
rameter.

(A3) The nonlinear characteristic of Eq.(6) is approxi-
mated by the nominal value of the tangent at �� � �� �
� and small nonlinear functions, i.e.,

� ��� � � ������ ������ ���

����� � ������ ������ ���
(9)

where ����� ��� �� � �� �� is �� nonlinear function
and ������� ���� � � [8, 9]. The constant coefficients
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�� � �� are called “cornering stiffness”, and � is the ad-
hesion factor (treated here as a disturbance) between
road surface and tire. Typical experimental values of
� [3] are

� � � dry road
� � ��� wet road
� � ���� ice.

The steering model follows from Eq.(7) to Eq.(9) and
using Eq.(1) as

�
�� � �� � ��

� ��

�
�

�
� �
�� ���

�

�

�
����Æ � � � ����� ������ ���
������ � ����� ������ ���

�
(10)

The uncertain parameters in this model are mass �,
moment of inertia � , velocity � and road friction factor
�. Solving Eq.(10) for �� and �� and rearranging terms
yields the nonlinear state space model

�
��
��

�
�

�
��� ���
��� ���

� �
�
�

�
�

�
��
��

�
Æ

�

�
����� ��
����� ��

�
� (11)

where

��� � �
�����
��	

� ��� � �� �
��
���� 
�

��	 �

��� �
��
���� 
�

��
� ��� � �

�� 

�

����

�

�

��	

�� �
��
��	

� �� �
�� 
�
��

�� �� �
�
� �� �� �

�

and

����� �� � ������� �� � ������� �� �

����� �� � �� ������� �� � ��������� ��

2.2 Geometric model of steering motion for �� � �
�.

The steering motion of autonomous vehicles with low
velocity (�� � � �) can not be described by Eq.(11),
because some coefficients of Eq.(11) include � in their
denominators. In this case there can be assumed to be
no sideslip angle (� � �) and the velocity vector of P
is given by ��� �� in a vehicle fixed coordinate system
��� 	� with the yaw rate :

P

reference path

Y

X

V

y
M ySzM

Fig. 5 Scheme of automatic vehicle steering

� �
�

�
��� Æ (12)

2.3 Suspension model of an autonomous vehicle

The features of car vertical dynamics in (�-�)-plane
are described by Fig. 6[4, 5, 6] with active suspen-
sion system in which the external control forces is used
to suppress the uncomfortable bounceing motion and
pitching motion.

Fig. 6 Active suspension control[5]

The equations of motions for two degrees of freedom in
(�-�)-plane with the constant velocity � are
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i. bouncing motion

��� � �� � �� (13)

ii. pitching motion

�� �� � ����� � ���� (14)

where � is the vertical displacement of the center of
gravity (CG) of a car(Fig. 6), � is the pitching angle
of the center of gravity (CG) of a car and the external
forces acting on a front wheel and the rear wheel from
the road surface are written by �� and ��, respectively.
The state space model of the vertical dynamics is de-
rived from Eqs.(13), (14) as follows[5].
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�
(15)

where � �� �� � � �� �� and

���� � �
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�
� � �� � �
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� �� � �
� 
�
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� ���� � �
�
��

!� � stiffness coefficient for front suspension
!� � stiffness coefficient for rear suspension
�� � damping coefficient for front suspension
�� � damping coefficient for rear suspension

In Equation (15), the external input ��� � ��� are as-
sumed to be the random variations at the front tire
and the rear tire, respectively, which are induced by
the steering motion. According to Eqs. (9) and (11),
��� � ��� are assumed to be induced as the form

��� � "�� ��� �
��� � "������

(16)

where "� � "� are unknown coefficients. Using sensors
for the height of CG of the car and the pitching angle of
CG of the car, it can be assumed that the output equation
for Eq. (15) is given by

�
�
�

�
�

�
� � � �
� � � �

��	�
�
�
�
�

�

� (17)

3 Extended Model for Automatic Vehicle
Control

3.1 Extended state space model for vehicle steering

In order to consider the problem of automatic car steer-
ing, the extended model of vehicle is introduced. The
extended model must include not only velocities, but
also the vehicle heading and the lateral position of the
sensor with respect to the reference path. This extended
model is derived using a nonlinear model that is valid
for deviations from a stationary path. It is assumed
that the reference path is given as an arc with radius
#ref and center$ (See Fig. 5)[3]. For a straight path
segment the radius is #ref � �. It is more conve-
nient to introduce the curvature %ref �� ��#ref as in-
put that the generates the reference path. The curva-
ture is defined positive for left cornering and negative
for right cornering. The radial line from the center$
passing through the center of gravity (P) of the vehi-
cle intersects a unique point �� on the desired path. It
is assumed that there is a small deviation from the ref-
erence point �� to the center of gravity which is the
deviation 	p and that a vehicle fixed coordinate sys-
tem ��� 	� is rotated from the inertially fixed coordi-
nate system ���� � by the yaw angle 
. The tangent to
the reference path at �� is rotated by a reference yaw
angle 
� with respect to � . Thus, the rate of change
of 	p is given by � 	
��� � �
� where � is the ve-
hicle sideslip angle and �
 �� 
 � 
� is the angle
between the tangent to the reference path at �� and
the center line of the vehicle. With the linearization
	
��� ��
� � � ��
 the deviation 	p changes ac-
cording to

�	p � � �� ��
� (18)

If the sensor S is mounted in a distance �� in front of the
center of gravity with �� � #ref, the measured devi-
ation 	s from the reference path changes both with �	p
and under the influence of the yaw rate � � �
. Taking
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this into account, the rate of change of the measured
deviation is

�	s � � �� ��
� � �s� (19)

Determination of �	s requires knowledge of three vari-
ables �� � and�
. The variables � and � are given by
Eq.(11). The angle�
 will be obtained by

� �
 � � � � %ref (20)

Combining Eqs.(11), (19) and (20), the extended state
space model is obtained as [2, 3, 9, 10].

�
		�

��
��

� �

�	s

�


� �

�
	�

��� ��� � �
��� ��� � �
� � � �
� �s � �

�

�
�
	�

�
�
�

	s

�

�

�

�
	�

��
��
�
�

�

� Æ �

�
	�

�
�
��
�

�

� %ref

�

�
	�

����� ��
����� ��

�
�

�

�� (21)

Using sensors for the yaw rate � (ex. a gyro) and the
deviation 	s (ex. a GPS), it can be assumed that the
output equation for Eq.(21) is given by

�
�

	s

�
�

�
� � � �
� � � �

��	�
�
�
�

	s

�

� (22)

The system (21), (22) with the control input Æ, the refer-
ence input %ref, the disturbance input � and the output
�
� 	s is shown to be controllable and observable w.r.t.
Æ.

3.2 State space model for the case : �� � � � � � �� � �
�

In this case, the automatic vehicle steering can be de-
scribed by Eqs.(19) and (20)

�
� �

�	s

�
�

�
� �
� �

��
�

	s

�
�

�
�
��

�
�

�

�
��
�

�
%ref (23)

Substituting Eq.(12) into Eq.(23) with the approxima-
tion ��� Æ � Æ���Æ�, in which��Æ� is small nonlinear
function (	 ��), we have

�
� �

�	s

�
�

�
� �
� �

��
�

	s

�
�
�

�

�
�
��

�
Æ

�

�
��
�

�
%ref �

�

�

�
�
��

�
��Æ� (24)

Using sensors for the yaw rate � (ex. a gyro) and the
deviation 	s (ex. a GPS), it can be assumed that the
state variables of Eq.(24) is directly obtained. The sys-
tem (24) with the control input Æ and the reference input
%ref is shown to be controllable.

4 Optimized Servo-Controllers for Auto-
matic Vehicle Traveling

4.1 Nonlinear state feedback &� optimal con-
troller

It is considered to design the &� optimal controller so
that the output ��
� � 	�s �

� can be driven to zero as
' 
 � [2]. In this paper, the problem of &� optimal
control is considered so that the output ��
� � 	�s �

� can
be driven to zero as ' 
 � with the output ��� � �� ��

can be driven to zero as '
� , which are related with
the riding comfort. From the steering system (21), (22)
with the suspension system (15), (17) and the steering
system (23), (24) with the suspension system(15), (17),
the vehicle system is able to be rewritten as the same
form

����'� � (����'� �)�*��'� �+�%ref�'�

�,����-��'�

	�'� � �����'� � �� � �� ��

(25)

where

�� �� ��� �� �
� 	�s � �
� �� �� �� �� �

�for the case : �� � . � � � �� � � ��

�� �� ��
� 	�s � �
� �� �� �� �� �

�for the case : �� � � � � � �� � � ��

*� �� � Æ� � ��
� ��

� �� � �� � �� ��

and

-� �� � �for the case : � �� � . � � � �� � � ��
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-� �� ��Æ� �for the case : � �� � � � � � �� � � ��

Each coefficeint matrix is as follows.

(� � diag�

�
	�
��� ��� � �
��� ��� � �
� � � �
� �s � �

�

� �

�
	�

� � � �
� � � �
���� ���� ���� ����
���� ���� ���� ����

�

��

(� � diag�

�
� �
� �

�
�

�
	�

� � � �
� � � �
���� ���� ���� ����
���� ���� ���� ����

�

��

)� � diag�

�
	�

��
��
�
�

�

� �

�
		�

� �
� �
���� ����
���� ����

�


��

)� � diag�
�

�

�
�
��

�
�

�
		�

� �
� �
���� ����
���� ����

�


� �

+� � diag�

�
	�

�
�
��
�

�

� �

�
	�

�
�
�
�

�

� �

+� � diag�

�
��
�

�
�

�
	�

�
�
�
�

�

� �

and

,���� � diag�

�
	�

����� ��
����� ��

�
�

�

� �

�
	�

�
�

 ���� ��
 ���� ��

�

� �

,���� � diag�
�

�

�
�
��

�
�

�
�

� ���� ��
 ���� ��

�
�

where

 ���� �� � � ��"� �� �� ������ ���

�� ��"����� ������ ��� �

 ���� �� � � ��"� �� �� ������ ���

�� ��"����� ������ ���

Now consider the problem of nonlinear state feedback
&� optimal control for Eq.(25), in which it is to find,
if existing, the smallest value /�  � such that for any
/ . /� there exists a state feedback

* � ���� (26)

such that 0�- gain from - to � 	� � *� �� is less than or
equal to /, where the system (25) is said to have 0� -
gain less than or equal to / if

� �

�

� 	 �� -' � /�
� �

�

� * �� -' (27)

for all 1  � and all * 	 0��� � 1 �. For this problem
formulation, we can apply the themorem proposed by
A.J. van der Schaft[10, 11, 12]. Then, we obtain the
following theorem.

[Theorem 1] Consider the nonlinear system with dis-
turbances Eq.(25). Let / . �. Suppose there exists a
�� solution �  � to the Hamilton-Jacobi equation

2� ���

2�
(��

�

�

2� ���

2�
�
�

/�
,���,� ��� �))� �

� �
2� ���

2�
�� �

�

�
������ � � � � ���� � � (28)

or to the Hamilton-Jacobi inequality [13]

2� ���

2�
(��

�

�

2� ���

2�
�
�

/�
,���,� ��� �))� �

� �
2� ���

2�
�� �

�

�
������ � � � � ���� � � (29)

then the closed-loop system for the feedback

* � �)� �
2� ���

2�
�� (30)

has 0� - gain (from - to � 	� � *� �� ) less than or equal
to /.

(Proof) Abbreviated.

The subscript � �� � � �� in Eq.(25) is abbreviated in the
Theorem 1.
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4.2 Suboptimal solution of Hamilton-Jacobi equa-
tion (inequality)

We consider the following linearized system derived
from Eq.(25).

����'� � (����'� �)�*�'�
�+�%ref�'� �3�-��'�

	�'� � �����'� � �� � �� ��

(31)

where 3� � �� � �� �� is the first-order approximation
of ,���� � �� � �� ��. Then, we obtain the following
corollary from Theorem 1.

(Corollary 2) Consider the linearized system (31) de-
rived from the nonlinear steering system (25) and as-
sume (� is asymptotically stable. The 0� - gain of the
linearized system (31) is less than or equal to / if and
only if there exists a solution 4�  � of the algebraic
Riccati equation

(�
� 4� � 4�(� � ��

� ��

�4��
�

/�
3�3

�
� �)�)

�
� �4� � � � �� � �� �� (32)

The&� optimal controller for Eq.(31), is given by [10,
11].

*�'� � �)�
� 4����'� � �� � �� ��� (33)

(Proof) Abbreviated.

We suppose an approximate solution of the Hamilton-
Jacobi equation (28), ((29)) as

� ��� �
�

�
��4�� ����� (34)

where 4 is a solution of the Riccati equation (32) and
����� is satisfied the following higher order equation
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where (� �� ( � ))�4 � �
��
33�4 and ,����

is the higher term of �
��
,���,� ��� � ))� in

Eq.(28), (Eq.(29)). The �-th order terms � ��	��� of
� ��� � � � �� �� � � � � can be computed inductively
starting from � ��	��� � �

��
�4� by using the approxi-

mation scheme[12].

5 Numerical Simulations
In this section, we consider the numerical examples for
the linearized system (31). The specification data of a
typical passenger car is given in Table 1.

(1) The case 1: � � �����sec� � � �� � � �

The extended state space model for steering is obtained
as follows.
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�� (36)

according to Eq.(21). The steering system (36) is un-
stable under no control. The bode diagram and impulse
response of the steering system without any controller
are shown by Figs. 7 and 8, respectively.
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Fig. 7 Bode diagram of steering system without control
(Case 1)

The&� optimal control input for Eq.(36) with Eq.(22)
is given by

Æ�'� � �� ���� ���� ���� ����

�
	�

��'�
��'�
�
�'�
	s�'�

�

� (37)
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The bode diagram and impulse response of the steering
system with the controller (37) are shown by Figs. 9 and
10, respectively.
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Fig. 9 Bode diagram of steering system with the pro-
posed controller (Case 1)

For the vehicle automatic steering model (36) with the
measurement system (22) and the controller (37). The
proposed controller is tested in a simulation where the
measurement output data are assumed to be obtained
from a gyro (w.r.t. the yaw rate � ) and a GPS (w.r.t.
the deviation 	s derived from the curvature %ref of the
prescribed reference path) each 2 seconds and the con-
troller decides the steering angle Æ so that the deviation
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Fig. 10 Impulse response of steering system with the
proposed controller (Case 1)

	s is driven to zero and the yaw rate � follows � %ref.
The sumulation result is shown in Fig. 11, which shows
a good response on automatic steering control. Fig-
ure 11 shows responses of the linearized steering sys-
tem (36) using an &� optimal controller (37), where
the output ��
� � 	�s �

� is driven to zero as ' 
 �
using the steering input Æ and the reference trajectory
%ref, under the recurrent disturbance.

Tab. 1 Data for a passenger car

� = 2.54 [m]
�� = 0.97 [m]
�� = 1.57 [m]
�� = 1.83 [m]
�� = 25,000 [N/rad]
�� = 25,000 [N/rad]
!� = 20,000 [N/m]
!� = 18,000 [N/m]
�� = 1,500 [N�sec/m]
�� = 2,000 [N�sec/m]
� = 15 , ( or 0.05 ) [m/sec]
� = 1,170 [kg]
� = 0.7
�� = 1.341 [m�]

The state space model for the suspension system of a
vehicle is obtained as follows.
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Fig. 11 State response and control sequence with auto-
matic steering control (Case 1)
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according to Eq.(15). The suspension system (38) is
stable. The &� optimal control input for Eq.(38) with
Eq.(17) is given by
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The bode diagram and impulse response of the sus-
pension system with the controller (39) are shown by
Figs. 12 and 13, respectively.

The numerical simulations with several kinds of active
suspension systems are shown in Fig. 14[5].
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Fig. 12 Bode diagram of suspension system with the
proposed controller (Case 1)

6 Conclusions

It has been considered the problem of automatic driv-
ing control of autonomous vehicles which includes the
automatic steering control and the induced active sus-
pension control. The extended model including small
nonlinear factors of the steering motion, the induced
bounceing motion and the induced pitching motion is
derived. The &� optimal controller for the extended
driving system is introduced so that the autonomous ve-
hicle can be driven along the reference path with riding
stability.

The proposed controller is supposed to be considered
for autonomous vehicles in which no passengers ride.
For the autonomous vehicles with passengers, the pro-
posed controller does not seem to give them a comfort-
able ride because there are many problems (oscillation
and yawing, etc.) to be remained unsolved for a com-
fortable ride. Recently, the integrated control of each
chassis control system such as active 4WS system, ac-
tive 4WD system, anti-lock brake system and traction
contorl system[1, 14, 15] is confirmed to have possed
higher potential of vehicle dynamic performance and
these control systems are applicable to the control of
autonomous vehicles.
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