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Abstract  

Ranked linear models can be designed on the basis of time-dependent data with inexact timing. 

Such data has the form of a sequence of multivariate feature vectors representing subsequent 

states of dynamical objects or development of events in time. The ordering relation between 

selected pairs of feature vectors (e.g. "a given feature vector appeared later than another one") is 

defined on the basis of an observed sequence. The same relation can be designated for a variety 

of observed sequences,  even when the moment of appearance of a given vector is not defined 

precisely. A set of ordering relations between selected feature vectors allows for designing a 

ranked linear model. The ranked model has the form of linear transformation of multidimensional 

feature vectors into points on a line which preserves a set of ordering relations in the best 

possible manner. The ranked regression models can be designed by means of minimization of the 

convex and piecewise linear (CPL) criterion functions defined on differences of such feature 

vectors that are related by an ordering relation. The linear ranked model reflects all ranking 

relations between feature vectors if and only if two sets of the positive and negative differences 

between these vectors are linearly separable. This way the problem of ranked modeling can be 

transferred into the problem of linear separability of two sets of feature vectors. Ranked 

regression models can have many applications. Among others, the problem of different 

dynamical systems comparison can be addressed in this way. 
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1. Introduction 

  
Properties of dynamical objects or events can be 

explored, among others, using methods of multivariate 

statistical analysis [1] or pattern recognition [2]. Such 

properties can be examined on the basis of a sequence 

of multidimensional feature vectors, representing 

results of measurements of a given object or event. A 

feature vector can be treated as a "picture" of the 

explored object or event in a given time. But in some 

cases the exact timing of such a picture is unknown. 

Instead it is only possible to know that a given feature 

vector had appeared earlier than another one. The 

ordering relations inside pairs of the feature vectors can 

be defined on the basis of that.              

 

A set of ordering relations between selected feature 

vectors allows for designing a ranked linear model. A 

ranked model has the form of a linear transformation of 

multidimensional feature vectors on points on a line 

which preserves a given set of ordering relations in the 

best possible manner.     

 

Designing ranked linear transformations can be carried 

out through minimizing the convex and piecewise 

linear (CPL) criterion functions [3]. These CPL 

criterion functions are defined by differences of such 

feature vectors which are related by an ordering 

relation.  

 

The linear ranked model reflects all ranking relations 

between feature vectors if and only if two sets of the 

positive and negative differences between these vectors 

are linearly separable. This way the problem of ranked 

modelling has been transformed into the problem of 

linear separability of two sets of feature vectors. 

 

 

Exploration of the linear separability also allows to 

address the feature selection problem and the problem 

of enlarging linear model with nonlinear components. 

In this paper particular attention is paid to the 

assessment of systems’ linearity on the basis of time 

dependent data with inexact timing.        

 

2. Time dependent data with inexact timing 

 
Let us take into consideration a dynamical object or 

event O(t), where symbol O(t) means that properties of 

this object can change during the time t. The state of the  

object O(t) at the time tj (picture time) is represented as 

the n-dimensional feature vector x(tj): 

 

 

(∀j∈{1,…., m})  

                    x(tj) = xj = [xj1,......,xjn]
T

  

(1) 

 

The i-th component xji of the vector xj is the numerical 

result of the i-th measurement or observation of the 

explored object O(t) at the time tj. We assume here that 

the indexing j of the feature vectors xj is consistent with 

the observation time tj:        

 

(∀j∈{1,….,m-1})   j <  k  ⇒   tj ≤  tk  (2) 

 

The feature vectors xj are ordered in accordance with 

the below ranked relation ”�” on the basis of picture 

times tj  and the margins δj  (δj  > 0):   

 

(∀j∈{1,…., m-1})  

                      tj + δj  ≤  tk  ⇒ xj � xk 

(3) 

 

We have assumed here that the relation ”�” was 

defined at the beginning despite the fact that the times tj  

are not exactly known. For example inexact timing tj 

occurs when particular measurements xji which are a 

part of the j-th picture of the explored object O(t) were 

made at slightly different times tj. The margin δ has 

been introduced  in order to exclude times tj  and tk 

which are too close to each other and could result in a 

false relation ”�”.    

 

The ranked relation "is older than" is fulfilled inside 

pairs of the feature vectors xj and xk with the indices    

(j, k) from the set Jp:  

 

(∀(j, k) ∈ Jp)   j <   k     and  

   (xj � xk) ⇔ (xk  is older than xj) 

(4) 

 

Let us remark that the set Jp can contain only a part of 

the indices (j, k) fulfilling the relation  tj + δ  ≤  tk  (3). 

The problem is how to design a linear transformation  y 

= w
T
x which preserves the relation “�” (3) for all or 

almost all pairs of indices (j,k) from the set Jp (4). 

Similar problem has been analysed in the paper [3]. 

 

The set C of differential vectors rjk = (xk - xj) is built 

from the feature vectors xj and xk with the indices (j, k) 

from the set Jp (4):  

 

C = {rjk = (xk - xj): (j,k) ∈ Jp} (5) 

 

Definition 1: The line y(w) = w
T
x, where                        

w = [w1,.....,wn]
T
,  is ranked in respect to the set Jp if 

and only if     

  

(∀(j, k) ∈ Jp)  w
T
xj < w

T
xk (6) 
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Let us consider a hyperplane H(w) in the feature space 

that passes through the point 0: 

    

H(w) =  {x: w
T
x   = 0} (7) 

 

Definition 2: The differential set C (5) can  be situated 

on the positive side of the hyperplane H(w) (7) if and 

only if the below inequalities hold 

 

(∃w)   (∀ (j,k) ∈ Jp)    w
T
 rjk > 0  (8) 

 

Remark 1: The line y(w) = w
T
x is ranked (6) in 

accordance with all the ordering relations ”�” from the 

set Jp (4) if and only if the differential set C (5) is 

situated on the positive side of the hyperplane H(w) (7)    

 

The above Remark results directly from the Definition 1 

and the Definition 2.   

 

3. Convex and piecewise linear (CPL) 

criterion function Φ(w) 
 

The ranked line y(w) = w
T
x can be designed on the 

basis of differential vectors rjk = (xk- xj) from the set C 

(5) through minimisation of the convex and piecewise 

linear (CPL) criterion function Φ(w) [3]: 

  

Φ(w) = Σ γjk ϕjk(w)  
                 (j,k)∈Jp           

(9) 

where γjk (γjk > 0) is a positive parameter (price) related 

to the pair {xj,xk} (j < k) and ϕjk(w) is the below penalty 

function: 

   

(∀(j, k) ∈ Jp) 

 

                    1- (rjk)
T 

w   if  (rjk)
T 

w< 1 

ϕ jk(w)  =                                                                                                              

                  0         if  (rjk) 
T
w  ≥ 1 

 

 

(10) 

 

The basis exchange algorithms, similar to the linear 

programming, allow to find the minimum of the 

function Φ(w) (9) efficiently, even in the case of large 

data set C (5) [4], [5]:  

 

Φ*
 = Φ(w

*
)  = min Φ(w)  ≥  0 

                                       w 

(11) 

 
The optimal parameter vector w

*
 and the minimal value 

Φ*
 of the criterion function Φ(w) (9) can be applied to a 

variety of ranking modelling problems. In particular, 

the best ranked line y = (w
*
)

T
x  can be found in this 

way. The below Lemma can be proved:  

 

Lemma 1: The minimal value Φ(w
*
) (11) is equal to 

zero if and only all the inequalities (8) are fulfilled on 

the line y(w
*
) = (w

*
)

T
x. 

 

As a consequence (Remark 1), the line  y(w
*
) = (w

*
)
T
x. 

is fully ranked (6) in accordance with all the ordering 

relations ”�” from the set Jp (4) if and only if          

Φ(w
*
) = 0. 

 

Let us consider an affine transformation of the feature 

vectors xj: 

 

(∀xj )      yj = A xj + b (12) 

 

where A is a non-singular matrix of dimension n x n  

(A
-1

 exists) an b is a vector. 

 

Lemma 2 (affine invariance): The minimal value Φ*
 

(11) of the criterion function Φ(w) (9) does not depend 

on non-singular, affine transformations (12): 

 

Φy
*
 =  Φx

* (13) 

 

where Φy
*
 is the minimal value of the criterion function 

Φ(w) (9) defined on the differential vectors rjk′ = (yk - 

yj) (12), where ((j,k) ∈ Jp).     
 

Lemma 3 (monotonocity property): The minimal value 

ΦF2
*
 (11) of the criterion function ΦF2(w) (9) defined 

on features xi from a subset F2 cannot decrease as a 

result of adding  of some features xi.  

 

if  F1 ⊃ F2,  then   ΦF1
*
 ≤  ΦF2

* (14) 

 

where ΦF1
*
 is the minimal value of the criterion 

function ΦF2(w) (14) defined on the features xi from the 

futures’ subset F1.  

 

The above Lemmas describe the most important 

properties of the minimal value Φ*
 (11). These 

properties justify using  Φ*  
(11) as the measure of 

linearity of given set Jp of ordering relations (4). 

 

An arbitrary set CB (CB ⊂ C (5)) of  n linearly 

independent vectors rii′ = (xi′ - ri) ((i,i′)∈JB) can 

constitute the basis of the n-dimensional feature space 

X[n] (xj[n] ∈ X[n]), and: 

 

(∀rjk∈C)      rjk  = Σ  αii′ rii′ 
                                          (i,i′)∈ J

B 
          

(15) 

 

where αii′ are the combination′ parameters   (αii′ ∈ R
1
)  

 

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM



In accordance with the equality (15) each  vector rjk 

from the set C (5) can be expressed as a linear 

combination of the vectors rii′ from the base set CB 

((i,i′)∈JB). The equality (15) describes non-negative 

linear combination if and only if all the parameters αii′ 

are non-negative: 

 

(∀rjk∈C (15))  (∀(i,i′)∈JB)  αii′ ≥ 0 (16) 

 

Lemma 4 (non-negative linear combination): If each 

vector rjk from the set C (5) can be expressed as a non-

negative linear combination (15), (16) of the vectors rii′ 

from some base set CB ((i,i′)∈JB), then all the 

inequalities (8) are fulfilled on the line y(w
*
) = (w

*
)
T
x 

defined by the optimal parameter vector w
*
 (11). 

 

In particular, the thesis of the Lemma 4 is fulfilled if the 

set C (5) is built from n linearly independent vectors   

rjk = (xk - xj) (∀(j,k)∈Jp).   

 

The Lemma 4 specifies a sufficient condition that 

allows to design the fully ranked line   y(w) = w
T
x (6).  

 

4. Cost sensitive criterion function Ψλ(w)  
 

The criterion function Φ(w) (9) can be modified by 

introducing the cost function  φi(w) for each feature xi   

(i = 1,..., n) in order to search for the best feature 

subspace Fl
∗
 [3]. 

   

(∀(i ∈ {1,….,n}) 

 

                   (ei)
 T

w        if   (ei)
T
w < 0 

φi(w)   =                                                                                                              

         -(ei)
T
w       if   (ei)

T
w  ≥  0 

 

 

(17) 

 

where ei = [0,...,0,1,0,...,0]
T are the unit vectors             

(i = 1,....., n). 

 

The modified criterion function Ψλ(w) can be given in 

the following form: 

 

Ψλ(w) =  Φ(w)  + λ Σγi φi(w)
         

                               i∈I
    

(18) 

 

where Φ(w) is given  by (9), λ ≥ 0, γi  > 0, and I = 

{1,....,n}.   

 

The criterion function Ψλ(w) (18) is the convex and 

piecewise linear (CPL) as the sum of the CPL functions 

Φ(w) (9) and λ γi φi(w) (18). Like previously (11), we 

are taking into account the point wλ
∗ 

constituting the  

minimal value of the criterion function Ψλ(w):   

 

 (∃wλ
∗
)  (∀w)   Ψλ(w) ≥ Ψλ(wλ

∗
)

                                             (19) 

 

Let us introduce the below hyperplanes hjk defined in 

the parameter space by difference vectors  rjk = (xk - xj) 

((j,k)∈Jp (4)).   

 

(∀(j,k)∈Jp)  hjk = {w: (rjk)
T
 w =  1}                                                              (20) 

 

Similarly, the unit vectors ei define the below 

hyperplanes h
0

i (∀i∈ Ι = {1,.....,n}): 

 

(∀i∈ Ι )      h0
i = {w: (ei)

T
w =  0}                                                              (21) 

 

The vertex wm is defined as the point of intersection of 

n hyperplanes hjk (20) or h
0

i (21) in the n-dimensional 

parameter space:  

 

(∀(j,k)∈J(wm))     (rjk)
T
 wm =  1                                                              (22) 

 

and 

 

(∀i∈I(wm))           (ei)
T
 wm =  0                                                              (23) 

 

where J(wm) is a subset of indices (j,k) of such 

hyperplanes hjk (20) that pass through the point wm 

(J(wm) ⊂ Jp (4)). Similarly, I(wm) is a subset of indices i 

of such hyperplanes h
0

i (21) which pass through the 

point wm (I(wm) ⊂ I). 

 

It can be proved, that the criterion function Ψλ(w) (13) 

has the minimal value in one of the vertices wm:  

 

 (∃wm
∗
)  (∀w)   Ψλ(w) ≥ Ψλ(wm

∗
)

                                             (24) 

 

Definition 3: The optimal vertex wm
∗
 has the rank equal 

to r if and only if the set J(wm
∗
) (22) contains r pairs of 

the indices (j,k). 

 

The indices (j,k) from the set J(wm
∗
) (22) define those 

hyperplanes hjk (20) which pass through the vertex wm
∗
. 

The set I(wm
∗
) (23) contains n - r indices i which define 

hyperplanes h
0

i (21) which pass through the optimal 

vertex wm
∗ 
of the rank r.  

  

The equations (22) and (23) can be presented in the 

below matrix for the optimal vertex wm
∗
 of the rank r:  

 

 Bm
T
wm

∗
 = 1m                                                              (25) 

 

where 

 

 Bm = [rj(1),k(1),…., rj(r),k(r),ei(f+1) ,….,ei(n)] (26) 

 

and 
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1m
T
  = [1,…., 1, 0,……,0 ] (27) 

 
Bm is a nonsingular matrix (the optimal basis) with r 

first columns built from the vectors rjk ((j,k)∈J(wm
∗
)) 

and the last n - r columns built from the unit vectors ei 

(i∈I(wm
∗
) (23)).       

 

Remark 2:  If the optimal vertex wm
∗
 (24) has  the rank 

equal to r, then the  n – r features xi (i∈I(wm
∗
) (23)) can 

be neglected in the feature vectors xj without changing 

the ordering relation (6) on the optimal line                           

y(wm
∗
) = (wm

∗
)
T
x.    

 

We can also remark that the rank r of the optimal vertex 

wm
∗ (24) can be decreased by increasing of the value of 

the parameter λ (18). An increase of the value of the 

parameter λ (18) results in an increase of the costs of  

features xi. 

 

Example:  Let us consider K learning sets Ck composed 

of  the feature vectors xj: 

 

(∀k∈{1,…., K}) (∀j ∈ Ik)     Ck =  {xj}    (28) 

 

where Ik is the set of indices j of the feature vectors xj 

belonging to the set C k. 

 

We assume the following relation (4) between the 

elements xj  of the learning sets Ck:  

 

(∀xj∈ Ck)  (∀xj′ ∈ Ck′)    

    k <  k′  ⇒  xj � xj′  (xj′ is older than xj ) 

(29) 

 

In accordance with the above relation, each element xj′ 

of the set Ck′ is older than an arbitrary element xj′ of the 

set Ck, if  k <  k′. 
 

For some learning sets Ck (28) there exists such an 

unknown parameter vector a = [a1,......,an]
T and such 

unknown scalars τk (k = 1,.....,K} that each feature 

vector xj fulfils the below conditions:  

 

(∃a∈R
n
) (∀k∈{1,.....,K}) (∃τk∈ R

1
)  

               (∃xj∈Ck)  τk   <  aT 
xj  <  τk+1 

(30) 

 

In accordance with the above conditions, all the feature 

vectors xj from one learning set Ck (28) are contained in 

the layer (slice) L(a,τk,τk+1) in the feature space X[n], 

where:  

 

L(a,τk,τk+1) = {x: τk   <  aT 
x  <  τk+1} (31) 

 
Learning sets Ck (28) consistent with the conditions 

(30) can represent a dynamical event, when successive 

layers describe a temporal development of this event. 

An unknown vector a can be interpreted as a trend of 

this event (Fig. 1). 

 
Fig 1: The layers L(a,τk,τk+1) (31) of the four learning 

sets Ck (28).  
 

The conditions (30) can describe a generation of the 

feature vectors xj from successive "slices" in the feature 

space X[n]. For example, the development of the cancer 

can be characterized by a temporal sequence of images 

with the relations (30). The Cox model used in the 

survival analysis also leads to similar relations [6].     

 

It can be proved that in the case of the feature vectors xj 

consistent with the conditions (30) and the ranked 

relation (29), the minimal value Φ(w
*
) (11) of the 

criterion function Φ(w) (9) defined on the vectors        

rjj′  = (xj′ - xj)  (where xj � xj′) is equal to zero. As a 

result, all the ordering relations (29) are preserved on 

the line y(w
∗
) = (w

∗
)
T 

x, defined by the optimal 

parameters vector w
∗
 (11).  

 

The vector w
∗
 (11) can be also used in estimating  

unknown trend vector a (30) which determines an 

evolution of the feature vectors xj.     

 

 5. Concluding remarks 

 

The ranked regression models y(w
∗
) = (w

∗
)
T 

x (4) can 

be designed through minimisation (11) of the convex 

and piecewise linear (CPL) criterion function Φ(w) (9) 

or Ψλ(w) (18). Such criterion functions can be defined 

on the basis of time dependent data with inexact timing.  

 

Ranked regression models have a variety of interesting 

applications, for example in survival analysis [7]. In 

general, ranked regression models can be used for the  

purpose of prognosis when forecasting future 
development of dynamical events or systems. The 

minimization of the cost sensitive criterion function 

Ψλ(w) (18) also allows to identify such features xi, that 

X1 

X2 

a 

C1 C2 C3 C4 
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will be most influential in the future behaviour of a 

given system. 

 

An evaluation of linearity of a given dynamical system 

can be also based on the minimization of the CPL 

criterion functions. 
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