
PERFORMANCE ANALYSIS OF SYSTEM MODELS
WITH UML AND GENERALIZED NETS

Evelina Koycheva1, Klaus Janschek1

1Institutе of Automation, Technische Universitaet Dresden,

Mommsenstrasse 13, 01062 Dresden, Germany
 klaus.janschek@tu-dresden.de(Klaus Janschek)

Abstract

Functional correctness and verified performances of automation solutions are mandatory
system requirements to guarantee a certain quality of service. Performance verification in the
early design phases can reduce considerably the project costs. The current paper presents a
new approach for performance evaluation of automation systems using UML for system
modeling and performance specification and applying Generalized Nets (a variant of timed
Petri Nets) for a simulation based performance evaluation. Standard UML modeling
techniques are used to specify the basic automation system functions, their hardware/software
allocation and the interaction with the technical process. Specific performance parameters and
the interaction with the human operators are incorporated in the UML models through the
standardized Profile for Schedulability, Performance and Time (SPT-profile). The resulting
annotated UML models are automatically transformed to Generalized Nets via XML style
sheets. Monte Carlo type time simulations can be performed with the Generalized Nets
system models to derive representative performance measures. The paper gives an overview
on the used UML and SPT-profile properties for performance modeling and specification, it
introduces briefly the Generalized Nets concept and it describes thoroughly the transformation
approach and the implementation in an XML-based framework. Results from a case study
show the practical potentials of the proposed approach.

Keywords: system design, performance analysis, UML, Petri nets

Presenting Author’s biography

Klaus Janschek is managing director of the Institute of Automation and holds
the chair of Automation Engineering in the Department of Electrical
Engineering and Information Technology at Technische Universität Dresden.
Main research topics: automation systems design, tele-automation, mobile
robotics, navigation, optical data processing.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction

Automation systems design requires an integrated
view on abstract and heterogeneous system models
which are describing different system properties
(physics, hardware, software, human operation)
and system behavior (continuous/discrete time,
discrete event). Moreover increased system
complexity makes these models even less
transparent and in consequence more subject to
design and specification errors. Beside functional
consistency and integrity also the guarantee of
performance characteristics such as response times,
throughput and utilization is mandatory. It is well
known, that recognizing performance deficits in the
early design phases, in particular before the
implementation and the procurement of the
necessary hardware, is of highest importance to
avoid cost and schedule overruns. Key issues for
modern systems engineering are therefore
• appropriate modeling and specification

methods for complex heterogeneous systems;
• automated tools and frameworks for practical

engineering work;
• representative methods for performance

evaluation.
The current paper presents a new approach for an
automated simulation based methodology for
performance evaluation using standardized UML
system models realized within a XML-based
automated framework.
The paper is organized as follows. Chapter 2
introduces the application of UML for automation
systems modeling. Chapter 3 discusses state-of-the-
art methodologies for performance evaluation and
introduces the Generalized Nets as a very
promising and appropriate concept for the
verification task in question. The detailed
performance modeling approach is described in
Chapter 4 and its implementation in a XML-based
automated framework is outlined in Chapter 5. A
case study including performance related
annotations is presented in Chapter 6.

2 UML based automation system
modeling
In the early phases of product development only
abstract models of the anticipated system are
available. To accomplish a representative
performance analysis, the entire automation system
model must incorporate at least the following
subsystems and environment components:

• system and application software;
• hardware platform, on which the modeled

software runs;
• behavior of the human operators

(“actors”);

• properties of the technical process
(including attached sensors, actuators,
etc.).

All enumerated components including their
performance characteristics form the system
performance model (Figure 1).

Figure 1. Automation system decomposition and
mutual relations between components

2.1 Software model

Object oriented software development has been
established today as the standard approach for
automation solutions. In this context UML - Unified
Modeling Language has proved to be one of the
most powerful and meanwhile most popular
modeling languages for object oriented
specification and design of software systems [1].
The big success of UML is based on its broad pallet
of modeling possibilities, the consistency of the
approach, the excellent tool support as well as the
intuitive clarity of its graphic models, which makes
them usable also for specialists from different non-
software application areas. Software properties,
which are relevant for the desired goals of the
performance analysis, are modeled in UML most
frequently with activity / sequence / communication
diagrams and state charts [1].

2.2 Hardware model

A unified model, which contains all necessary
component and subsystem models and which is
based on a uniform modeling techniques, offers a
set of advantages. The first advantage is that the
system designers have to be familiar with only one
single modeling technique. Moreover unified
models are more comprehensive and they help
reducing the probability of design and specification
errors. As today the software design is commonly
specified in UML notation, it is straightforward
using UML as hardware modeling language as well.
Hardware nodes and their relations and properties
can be covered conveniently by the UML
deployment diagram.

2.3 Performance model

Pure UML notation does not allow a specification
of comprehensive performance properties. With the
adoption of the recently introduced UML extension

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

Profile for Schedulability, Performance and Time
(SPT-profile, January 2005, [2]), it is more easily
possible to include performance relevant system
properties and requirements directly into the UML
design model.

2.4 Environment model

The SPT-profile also provides stereotypes and
tagged values for modeling of open and closed
workloads, which can be used for illustrating the
number and the behavior of the system operators
and other interacting entities (see Fig. 1).
On the other hand UML contains specific model
elements like external signals, which allow the
modeling of the behavior of the underlying
technical process and its different entities.
Additional external parameters, which are related to
the automation process, can be modeled by OCL-
expressions, a further standardized UML extension.

3 Introduction to Generalized Nets

Although UML offers a large variety of modeling
possibilities, the lack of a seamless simulation or
performance analysis of the annotated UML models
remains an open problem. Two reasons can be
identified as main problem sources: UML models
do not represent executable models UML is
actually not a strict formal specification, which
makes the analysis extremely difficult. To
overcome these hurdles, a transformation of
already existing UML design models into another
model domain, which permits a strict model
verification of the model, is a promising approach.

The most common methods for performance
analysis can be divided into two large groups:
analytical methods and simulation based methods.
The most frequently used analytical methods are
based on Markov Chains [3], Execution Graphs [4,
5] and Queuing Networks (QN, [3, 6]) and their
extensions Layered QN (LQN, [7, 8, 9]) or
Extended QN (EQN, [10, 11, 12]). In addition there
are available well-known approaches on basis of
Process Algebras [13, 14] and Stochastic Petri Nets
[15, 16]. The simulation based methods use
normally Execution Graphs, Hi-Level Petri Nets or
proprietary tool-based approaches [17, 18].
Although analytical methods are preferable to get
most reliable performance measures with highest
validity, their practical applicability is limited to
more or less simplified and standardized
performance properties. A more general approach,
allowing the specification of arbitrary performance
properties, is given by simulation. Due to the

inherent discrete event nature of automation
solutions, Petri Nets [19] have been successfully
used for the modeling, simulation and analysis tasks
since many years in the automation community.
However the application of the classical Petri Nets
shows considerable weaknesses like fast growing
size and associated vagueness of the model. In
order to overcome these disadvantages, numerous
modifications of the Petri nets have been developed
in the past years. Various pilot investigations [20,
21] have shown, that so called Generalized Nets
(GN), a special kind of the Hi-level Petri nets, are
very well suited and powerful for systems
engineering and performance analysis tasks.
Therefore we have adopted the Generalized Nets

Figure 2. Generalized Nets modeling capabilities

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

[22] as methodological baseline for performance
modeling and performance evaluation.
Generalized Nets are a generalization of several
modifications of Timed Petri Nets [19]. Among the
most important differences between Generalized
Nets and other classes of Petri Nets should be
mentioned the definition of a generalized transition
object, which includes the transition symbol, all
appertaining input and output places as well as
several index matrices (see Fig. 2). One index
matrix defines the capacities of the binding arcs for
each transition, another index matrix represents the
transition predicates. The evaluation values of the
latter index matrix elements determine the direction
of the token flow from the input to the output
places. The tokens of a GN are in general
distinguishable instances, which enter the net with
particular initial characteristics. During their travel
through the net, these tokens are acquiring further
properties, representing historical information.
Furthermore the time step for the token movements
in a Generalized Net can be selected at any time
scale. Generalized Nets incorporate also numerous
operators (e.g. hierarchies, reduction). Some other
differences are for instance dedicated capacities for
edges, places and tokens as well as priorities for
transitions, places and tokens.
In the illustrating example in Figure 2 the
Generalized Net owns two transitions – pcs and
modb. Transition pcs contains three input places –
start, visualize data and send data – and
three output places – get data, visualize
data and end. Every place has always only one
input and one output arc, which connects the place
with the corresponding transition. The places
start and end are at the same time also input and
output for the whole net. In the input start tokens
are generated and the output place end collects the
tokens, which already finished their movement in

the net (if the conditions for the appropriate
movements are fulfilled as required). The index
matrix shown in Fig. 2 outlines the predicates,
which control the movement from the input places
to the output places of the transition modb. For
every input place one row is built in the index
matrix and equivalently for every output place one
column is built. The elements in the matrix
determine the movement between certain places. A
predicate can be any arbitrary logical expression,
for simplifying reasons here we have shown simple
true and false expressions. The evaluation of the
predicates takes place always when the appropriate
transition is activated. For the illustrating example
each transition is activated at each operation time
step of the net and the activation duration is one
step. Thereby all tokens, which are in input places
can move to the output places of the same transition
as soon as a connection exists and the appropriate
predicate for this movement is evaluated equal
true. Anytime when a token arrives at a new place,
its characteristics are complemented. This can be
defined accordingly in any form.
As a simple example for the represented net it is
assumed, that one token should be generated in the
net input at time step 0. This token will move in
each step to another place in the net in the
following sequence: start – get data –
proceed request – send data (see predicates
in the index matrix) - visualize data – end.
If the net runs more steps as required for these
movements, the generated token will remain in the
output place end for the rest of the time. At each
move of the token the actual time step and the
actual place can be added to the characteristics of
the token, e.g. „...On time step 1 in place get
data…“. So the whole history of the token
movements is collected and can be analyzed
subsequently.

Figure 3. Annotated activity diagram and corresponding Generalized Net

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

4 Performance modeling approach

The proposed approach for system performance
modeling and evaluation is starting with the
establishment of an UML system model. As
outlined in chapter 3, the distribution of software
components on hardware nodes can be modeled
with UML by deployment diagrams. The software-
hardware-design has to be extended by specifying
explicit performance parameters. This can be done
by annotating the UML model with elements from
the SPT-profile in accordance with the specified
assignment rules.
The annotation of the UML model refers to both
diagram types - the software and the hardware
relevant diagrams. After the annotation with all
desired and necessary performance parameters, the
resulting complete design model can be
transformed into a set of Generalized Nets. Usually
the number of the Generated Nets is equal to the
number of existing UML-diagrams. General
transformation rules for the UML sequence diagram
(in the earlier version 1.4, without SPT-profile
annotation) are presented in [23].
Figure 3 shows a simple example of an annotated
UML activity diagram and the equivalent
Generalized Net, resulting from the transformation.
The most important transformation rules applied for
the shown activity diagram are as follows:
• A transition in the Generalized Net is generated

for each partition (swim lane) of the activity
diagram.

• One output place for the corresponding
transition and its binding arcs are created for
each action in the partition.

• One input place for the start node and one
output place for the final node and their
binding arcs are generated for the relevant
transition.

• Index matrices are generated for all transitions.
On each position in the matrix, which
represents a possible path (direct connection
between the actions in the activity diagram),
"true" is registered. If additional conditions
are present, they are registered to the respective
place in the matrix instead of "true".
Remaining elements are set to "false".

• The UML-tag PApopulation determines the
amount of generated tokens.

• If the tag PAdemand for the stereotype
“PAstep” is defined, the predicate of the
corresponding place takes into account the
indicated delay (see annotated text in Fig. 3).

• After PAextDelay steps a new iteration, i.e. a
new execution cycle of the net, is initiated.

• Altogether PArep repetitions of the action are
realized (in the current case 1000 repetitions of
the action GetProcessData).

The transformation of the UML design model can
be performed in one or two steps. With the 1-step-
transformation the UML elements and the SPT-
annotation are regarded as one whole entity. The 2-
step-transformation splits the transformation
process into two sequential steps. First a
transformation of the standard UML elements
(without any annotation) into Generalized Net
elements is performed and the resulting GN-model
is augmented in a second step in accordance to the
SPT-annotation.
The second method offers much better
opportunities for modularization of the
transformation rules as well as the option of
replacing the Performance Subprofile with other
UML-specified profiles, for example the
Schedulability Subprofile (also part of the SPT-
profile) or the UML Testing profile (see [24]).
These properties make the 2-step-transformation
much more attractive from the systems engineering
point of view and it is therefore used as the
preferred approach for our research, despite of the
much higher complexity of the transformation
rules.
Unfortunately the SPT-annotation does not specify
all necessary system parameters required for an
executable model. To close this gap, the following
enhanced specifications have to be added to gain a
complete set of transformation rules:
• Completion of the generated GN-model by

defining a suitable elementary time step for the
simulation, as well as the definition of place
capacities or token priorities;

• Restrictions according to the modeling freedom
offered by UML, in order to get an
unambiguously interpretable GN-model - the
transformation rule specifies clearly the only
one, namely the most probable, implementation
variant;

• GN-Simulation parameters, e.g. external
signals from the technical process or internal
variables, which affect the evaluations during
the simulation.

After augmentation of the system model the
simulation experiments with the GN model can be
accomplished. Sufficiently many statistics can be
collected by Monte Carlo simulation, so that a
representative analysis of the system behavior is
possible. Following the evaluation of performance
properties, the assessment of demanded response
times or the desired range for utilization or
throughput for used resources can be performed.
Furthermore the behavior of the system with a
certain frequency of externally produced events can
be analyzed and bottlenecks in the modeled system
behavior can be located.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

5 Automated UML-GN framework

The outlined UML-GN system performance
analysis approach has been implemented in an
automated XML (eXtensible Markup Language,
[25]) based framework (see Fig. 4). It interconnects
standard UML-Toolsets with a proprietary GN-
simulator via specific XML meta-models. For the
UML model the format XMI (XML for Metadata
Interchange [26]) is used, which is prescribed by
the OMG (Object Management Group). The GN-
model is represented by a proprietary XML-format,
called XGN (XML for Generalized Nets). The
transformation of XMI into XGN takes place
through XML style sheets (XSL, [27]).
The GN-based simulation is accomplished with the
powerful GNTICKER simulator for Generalized Nets
[28], which was developed in co-operation with the

Figure 4. UML-GN framework architecture

Bulgarian Academy of Sciences. The simulation
experiment results can be used twofold. Once they
can be forwarded to a postprocessor to evaluate the
experiment statistics and visualize further
performance metrics for the user (outer loop in Fig.
4). It is also possible to encode some of the
experiment results into the SPT-format and feed
them back directly to the primary UML-model.
This feedback path allows checking directly and
automatically the fulfillment of the performance
requirements (inner loop in Fig. 4)

6 Case study results

A case study shall illustrate the complete procedure
of the presented approach including the
transformation rules. The case study represents a
distributed web-based automation application. A
conventional browser without additional plug-ins
communicates via internet with a web service,
which implements the OPC-XML-DA specification
[29]. The web service gets current process data
from a ModbusTCP server, which is attached as
auxiliary module of a PLC. Figure 5 illustrates the
software components, their distribution on
hardware nodes and some performance specific
parameters in SPT-format, which are necessary for
the further performance analysis. The essential
communication between the software components
takes place in two cycles. In the first cycle the
OPC-XML-DA service polls the ModbusTCP
server for current process data and stores it in its
cache. In a second cycle the operator behind the
internet browser receives selected data from the
cache of the web service. The obtained data are
visualized appropriately and changes in the process
get animated if necessary.

UML-Tool + SPT-
Profile-Support XMI

Simulator for
Generalized nets

Visualization
Analysis

Evaluation

XML

Simulation
results

transformation rules

XGN

XSL

annotated UML

verified annotated UML

Figure 5. Case study system architecture

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

The representative functionality for this scenario is
modeled by a UML activity diagram including
swim lanes (roles). The particular steps in the
activity diagram are augmented by SPT-annotation
in an equivalent manner as shown in the
deployment diagram (Fig. 5). An additional
requirement for the excess of a time interval
between two consecutive visualizations is set.
From this annotated UML model a Generalized Net
has been automatically generated and simulated by
the GNTICKER simulator for Generalized Nets. The
obtained results are compared with the measured
values from a prototype implementation. The
fulfillment of the requirement is examined and the
detailed reasons for an eventual non-fulfillment are
analyzed.
Fig. 6 represents the explained scenario as UML
activity diagram. The numerical parameter values
are predominantly based on measurements of
different prototypes. The case study demands, that
two successive visualizations, i.e. two successive
executions of the action VisualizeProcessData
take place within 30 ms in at least 90% of the cases.
This requirement serves in the following as
reference parameter for the comparison of the
measurements of the real solution and the
simulation results.
The measurements with the real prototype solution
led to the following summarized result:

• 67% of the measured intervals were below
30 ms – mean value for the interval 16 ms;

• 33% of the measured intervals were over
30 ms – mean value for these intervals 32
ms.

The simulation of the automatically generated
Generalized Net on the other side can be
summarized as follows:

• the repetition interval between two
visualizations in 86% of the cases was

below 30 ms with mean value for the
interval 17 ms;

• in 14% of the cases the measured intervals
were over 30 ms – mean value for these
intervals 38 ms.

With the real solution a very small variance was
remarkable. This is due to the measuring accuracy
of the timer in the program. The same small
variance has been found with the simulation
experiments, which gives evidence of a successful
and representative simulation of the discrete
behavior.
The simulation results reveal that the candidate
system design does not accomplish the requirement
for 30 ms intervals between two visualizations -
only 86% of the intervals lie below the limit of 30
ms and not as required – at least 90%. With the real
solution only 67% of the intervals were below the
30 ms barrier and the required limit from 90%
could not be achieved as well. Thus a general
agreement of the results from measurement and
simulation can be found, with some more optimistic
performance estimates from the simulation model.
The detailed analysis of the simulation results
revealed, that the essence of the intervals form
transportation delays by the internet and the
operating time constitutes а fairly negligible
contribution. This led to the conclusion that even
the possible purchase of a more efficient hardware
could not assure to the fulfilment of the given
requirement. As long as the internet reflects the
given behavior (exponential distribution, mean
value 10 ms) the resulting repeat intervals are only
rarely below the requested limit from 30 ms and the
requirement does not seem to be realistic. Therefore
the importance of the requirement to the solution
would be reconceived and probably a lower
percentage limit (<90%) or higher time limit (>30
ms) should be set.

Figure 6. Behavior of the case study, modeled by an activity diagram

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

7 Conclusions

The presented approach supports an efficient and
comprehensive performance analysis of system
models in the early design phases. This offers
potentials for substantially lowering of project
costs. The underlying system performance model is
based on an annotated UML model, which has to be
augmented for a proper and complete performance
specification. The augmented performance model
can be transformed automatically into an executable
Generalized Nets model. The modular
transformation rules have been realized by means
of XML style sheets and they can be easily adapted
and modified to other annotation profiles.
An open challenge is the enormous variety of
available UML elements. This variety as well as the
nearly unrestricted possibility to interconnect the
elements calls for a reduction to appropriately
limited set of UML elements, relevant for
automation solutions. In addition it should be
mentioned that the SPT-profile is relatively young
and not yet well-engineered and specification errors
have to be removed. This will require further
adaptation of the transformation rules. A third open
item is due to the lack of standards for XMI, which
results at present in proprietary solutions from
different UML tool providers and no universal
solutions are existing yet.

Acknowledgement

The authors are indebted to HERBERT-QUANDT-
Foundation for financial support and to Tr.
Triffonov and. K. Nikolov, Bulgarian Academy of
Sciences, for the provision of and cooperation on
the GNTICKER simulator.

8 References

[1] Oestereich, Bernd: Analyse und Design mit
der UML 2.1 - Objektorientierte Software-
entwicklung, Oldenbourg Wissenschaftsver-
lag, 2006.

[2] SPT-Profile:

http://www.omg.org/technology/documents/
formal/schedulability.htm

[3] Daniel A. Menasce, Virgilio A.F. Almeida,

and Lawrence W. Dowdy. Performance by
Design. Prentice Hall, 2004.

[4] C.U. Smith. Performance Engineering of

Software Systems. Addision-Wesley, 1990.

[5] Connie U. Smith. Performance Solutions: A

Practical Guide To Creating Responsive,
Scalable Software. Addison-Wesley, 2002.

[6] Simonetta Balsamo, Antinisca Di Marco,

Paola Inverardi, and Marta Simeoni. Model-
based performance prediction in software
development: A survey. IEEE Transactions
on Software Engineering, 30(5):295–310,
May 2004.

[7] C.M. Woodside, J.E. Neilson, D.C. Petriu,

and S. Majumdar. The stochastic rendezvous
network model for performance of
synchronous client-server-like distributed
software. IEEE Transactions on Computers,
44(1):20–34, January 1995.

[8] J.A. Rolia and K.C. Sevcik. The method of

layers. IEEE Transactions on Software
Engineering, 21(8):682–688, 1995.

[9] G. Gu and D.C. Petriu. Xslt transformations

– from uml models to lqn performance
models. In ACM Proceedings of the
International Workshop on Software an
Performance, 2002.

[10] E. D. Lazowska, J. Zahorjan, G. Scott

Graham, and K.C. Sevcik. Quantitative
System Performance: Computer System
Analysis Using Queueing Network Models.
Prentice-Hall, 1984.

[11] K. Kant. Introduction to Computer System

Performance Evaluation. McGraw-Hill,
1992.

[12] P. Kähkipuro. Uml-based performance

modeling framework for component-based
distributed systems. Lecture Notes in
Computer Science 2047, 2001.

[13] P.G. Harrison and J. Hillston. Exploiting

quasi-reversible structures in markovian
process algeba models. Computer Journal,
38(7):510–520, 1995.

[14] H. Hermanns, U. Herzog, and J.P. Katoen.

Process algebra for performance evaluation.
Theoretical Computer Science, 274(1-2):43–
87, 2002.

[15] M.K. Molloy. Performance analysis using

stochastic petri nets. IEEE Transactions on
Computers, 1982.

[16] M. Ajmone Marsan. Stochastic petri nets:

An elementary introduction. In Advances in
Petri Nets, volume 424 of Lecture Notes in
Computer Science, pages 1–29. Springer
Verlag, 1990.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

[17] Moreno Marzolla. Simulation-Based
Performance Modeling of UML Software
Architectures. PhD thesis, Universit‘a Ca
Foscari di Venezia, 2004.

[18] A. Hennig, D. Revill, and M. Ponitsch.

From uml to performance measures –
simulativeperformance predictions of it-
systems using the jboss application server
with omnet++. In Proc. of ESM ’03, the
17th European Simulation Multiconference,
2003.

[19] Cassandras, Chr.G., Lafortune, St.: Introdu-

ction to Discrete Event Systems. Kluwer
Academic Publishers, 1999.

[20] Dimitrov, E; Schmietendorf, A.; Atanassov,

K.: Netzbasierte Modelle für die Performan-
ce Analyse von multi-tier Client/Server Sys-
temen, In Proc. zum 2. Workshop Perfor-
mance Engineering in der Softwareentwick-
lung (PE2001) S.21-32, Universität der
Bundeswehr München, 26. April, 2001

[21] Schmietendorf, A.; Dimitrov, E.; Atanassov,

K.: The use of generalized nets within tasks
of software performance engineering, In
Proc. of the Second International Workshop
on Generalized Nets S. 1-12, Sofia,
Bulgaria, June 2001

[22] Atanassov, Krassimir: Generalized nets;

World Scientific Publ. Co., 1991, ISBN 981-
02-0598-8.

[23] Koycheva, E.N., Trifonov, T.A., Aladjov,

H.T.: Modelling of UML sequence diagrams
with generalized nets; First International
IEEE Symposium Intelligent Systems,
Varna 2002, pages: 79-84, ISBN: 0-7803-
7134-8

[24] UML Testing Profile:

http://www.omg.org/technology/documents/
formal/test_profile.htm

[25] Simon St. Laurent & Michael Fitzgerald:

XML Pocket Reference; O’Reilly, Third
Edition September 2005, ISBN 978-0-596-
10050-6

[26] XMI:

http://www.omg.org/technology/documents/
formal/xmi.htm

[27] Frank Bongers: XSLT 2.0 Grundlagen,

Anwendung und Referenz; Galileo Compu-
ting, 2004, ISBN 978-3-89842-361-8

[28] Centre of Biomedical Engineering,

Bulgarian Academy of Sciences:
http://www.clbme.bas.bg;
http://generalised.net

[29] Frank Iwanitz and Jürgen Lange: OPC -
Fundamentals, Implementation, and
Application / Hüthig, 2005; ISBN-13: 978-
3778529041

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM

http://www.galileocomputing.de/katalog/buecher/titel/autoren/gp/titelID-592?GalileoSession=94081031A3FV2UAzE5o#716
http://www.clbme.bas.bg/

	2.1 Software model
	2.2 Hardware model

