
MODELLING AND SIMULATION OF THE CMS
TIER0 INPUT BUFFER WITH YASPER

L.H.J.M. Wijnant 1,2, A.T.M. Aerts1,2, N. Sinanis1, I.M. Willers 1

1CERN, Geneva, Switzerland
2Eindhoven University of Technology, Eindhoven, The Netherlands

wijnant@gmail.com (Arnaud Wijnant)

Abstract

The CMS (Compact Muon Solenoid) experiment at CERN will produce large amounts of data
in short periods of time. Because the data buffers at the experiment are not large enough, the
data needs to be transferred from the experimental area to the multi-tier computing system for
storage and processing. The first tier is the CMS Tier0, an enormous job processing and
storage facility at the CERN site. One part of this Tier0, called the Tier0 input buffer, will
have the task to readout the experimental data buffers. It has to make sure that no data is lost.
This paper describes the modelling and simulation of the Tier0 input buffer to compare
different scenarios involving a set of disk servers that can accomplish the Tier0 input buffer
tasks. To increase the performance per disk server, write and read actions on the same disk
server take place in separate phases. A critical issue then is to determine when a disk server
should change from accepting and writing items to supplying items to other tasks. The
combination of various parameters, such as the usage of a particular queuing discipline (like
FIFO, LIFO, LPTF and SPTF) and the state of the disk server has been studied. We have used
Yasper for modelling and simulation of the various scenarios. Yasper uses Petri Net models
as its input. We find an LPTF (Largest Processing Time First) based queuing discipline to
give the best performance.

Keywords: Read/Write buffer system, time extended Classical Petri Net, modeling,
simulation

Presenting Author’s biography

Dr. Ad Aerts holds a doctorate in Mathematics and Science from the
University of Nijmegen, the Netherlands (June 1979). After working as
postdoctoral researcher at the international laboratories in Los Alamos,
and Brookhaven, USA and as a senior fellow at CERN, Geneva,
Switzerland, he joined the Department of Mathematics and Computing
Science of the Eindhoven University of Technology in 1985. His
research interests include methods, tools and techniques for engineering
information systems. Recent research activities focus on performance of
information systems, adaptive Web-based systems and Semantic Web
technology. He is (co) author of more than 100 scientific publications.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction

The CMS (Compact Muon Solenoid) experiment is
one of the experiments that will be run at the Large
Hadron Collider (LHC) facility at CERN, Geneva.
Once the CMS experiment is running, it will produce
data in several streams with a total throughput of 225
MB/second. To store, distribute and analyse the data
from the CMS detector, the LHC Computing Grid
(LCG, [1]) is used. The LCG is a distributed
computing system built to support the physics
community. The LCG consists of a number of
cooperating computer farms located at computer
centres spread around the world. While some centres
are more directly connected to the experiment’s data
source than others (and mostly offer more system
resources to the LCG), the proposed service
architecture of the LCG is hierarchical. At the top of
this LCG service architecture is the computer farm
that is directly connected to the experiment’s
computer farm, named the Tier0. The Tier0 is
connected through high-speed connections to several
Tier1-centers that are part of the second layer of
computing farms in the LCG. These Tier1 centres are
connected again to other elements in the LCG network
of equal or smaller size than the Tier1 centres
themselves, and so on. Every TierN element in the
CMS LCG structure has its own responsibility in the
global CMS-data physics analysis tasks. A Tier5
element, for example, is just a desktop computer
running physics analysis software.

The Tier0 input buffer system has to read out the
detector data buffers and to supply this data as input
for the other Tier0 processes such as the
reconstruction software. It has the structure described
in Figure 1.

The data in Figure 1 flows in different streams of 2GB
files from the CMS on-line computing farm (the
computing farm located directly at the experimental

site) to the Tier0 input buffer with a total volume of
on average 225 MB/s [2]. This means that the Tier0
input buffer must be able to write data coming from
different streams with at least a total write speed of
225 MB/s. At the same time that data must be read as
well. It was decided to study a buffer implementation
with RAID5 disk servers (a particular kind of
Redundant Array of Inexpensive Disks that is resilient
against crashes of single disks). The writing procedure
uses a FIFO scheduler to decide which file will be
written first. The reading procedure uses a First
Available Item First Out scheduler (a FIFO scheduler
that skips items that are not available for reading at the
moment they were supposed to be read). This paper
reports on a project that was set up to uncover the
issues involved in using disk servers to implement the
Tier0 buffer system and compares several possible
solutions.

2 Possible Tier0 input buffer disk
server scenarios

2.1 The modelling problem

The first task of the Tier0 input buffer is to accept all
data from the on-line computing farm and to store this
data. A second task is to transfer the experimental data
to the other processes. For the first task, a disk server
setup that gives the highest priority to writing is most
suitable. This means that the write speed is much
higher than the read speed when both actions take
place at the same time. The proposed disk server has
this property [3]. In the same benchmark [3] it was
also concluded that the maximum disk write and read
speed of the proposed disk server configuration are
not sufficient to meet the Tier0 input buffer
requirements. For this reason more than one disk
server is needed for the Tier0 input buffer. We will
consider situations in which there are several disk
servers available, which may be reading, or writing
data, or both.

Figure 1: Tier0 input buffer dataflow. The number of read and write actions and data streams is an example
in this model. The Tier0 processes are jobs in the Tier0 job processing machines. The bits on the left (input)

are reconstructed to physics events on the right (output).

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

The number of simultaneous write actions influences
the total write speed of a disk server (according to
[3]). But the number of read actions on a disk also has
an influence on the total write speed. Disk servers
perform better when they exclusively read for an
extended period of time, followed by a period of
exclusively writing, and so on. The question then is
what the length of these periods should be. Write
operations to a full disk will lose data, which is not
acceptable. And reading from an empty disk waists
time that could better be spent writing. Therefore, the
alternation of reading and writing periods has to be
chosen carefully. We studied 3 different types of
triggers to start the alternation of these periods. These
are the OnEmpty trigger, which changes a reading
period to a writing period, when all items on a disk
server have been read out, the OnNItemsAccepted
trigger, which ends a writing period after N items have
been written to one disk server, and the Fixed Time

Change trigger, which alternates after N seconds.

It is not sufficient to change the I/O mode of one disk
server, since one has to make sure that on average as
much data will be read as is written. Another server
will have to change mode to compensate. To select
this disk server, any of a number of queuing
disciplines can be used. Literature (like [4]) provides
some possibilities to apply to this situation. The
expectation is that different queuing disciplines will
result in different properties of the Tier0 input buffer.

A first queuing model of this situation is given in
Figure 2. Data coming from different streams is
queued to be written on one of the disk servers after
which it is queued to be read. This model immediately
raises the question how many servers there should be
at the minimum. The number of disk servers in this
model is 6. At most three write streams are served,
and ten read streams.

Figure 2: A queuing network representing the naïve Tier0 input buffer problem

Figure 3: The queuing network of the Meta scheduler for an onEmpty, or a Fixed Time Change trigger
scenario

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

The naïve model in Figure 2 describes the fact that
each data item that is written is queued for reading. It
does not show how the disk server that will be written
to next is chosen, and it allows intermingling of read
and write actions on a particular server. A Meta
scheduler is needed to assign the read and write
modes. This means that particular “Disk read actions”
and “Disk write actions” services in Figure 2 are

disabled or enabled according to the discipline
enforced by this Meta scheduler. Since different disk
server mode change conditions have been used, two
different Meta schedulers have been used. These are
presented in Figure 3 and Figure 4.

The service time distribution S* in the “Future servers
to read/write queue” is not a regular distribution. In
order to let the number of disk servers in write and
read mode stay constant, synchronization between the
two services has to be performed. This means that as
soon as the “Processing read/write actions” services
processed their queued item, the “Future servers to
read/write queue” service has to process an item as
well. For this reason, the notation S* for the service
time distribution abbreviation has been used.

This special service time distribution combined with
the usage of the two layers (the normal naïve layer and
the Meta layer) of queuing network to represent the
problem makes the Tier0 input buffer problem
complicated. The mutual dependence of a lot of the
parts increases the overall complexity. We did not find
much queuing theory literature about this kind of
situation. This led to the decision to use simulation as
the research method over an analytical queuing theory
method. A third alternative, to build a prototype buffer
system, has been rejected because it is too expensive
in this preliminary stage of the research.

2.2 Overview of different scenarios

There are many scenarios one can make by combining
one of the three triggers with a discipline for changing
a pair of servers from reading to writing and vice
versa. In a first exploration we limited ourselves to:
FIFO, LIFO, LPTF (Largest Processing Time First),
SPTF (Smallest Processing Time First), and Random.
In combination with the OnEmpty trigger (all items on
a server have been read), FIFO means that the next
disk to be in read mode is the one that went into write
mode the longest time ago. The empty disk server then
goes to write mode. LIFO selects as next disk server

Figure 4: The queuing network of the Meta scheduler for an NItemsAccepted change trigger scenario

Figure 5: Flowchart of the OnNItems-
Accepted scenario

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

in read mode the one that went into write mode the
shortest time ago. LPTF selects the server that has the
largest number of items stored, since all items are of
roughly an equal size, whereas SPTF selects the server
with the smallest number of items stored. The random
discipline selects a server at random, and is included
to see what improvement the use of knowledge for the
selection of a disk server gives, if any. The disciplines
are given a matching interpretation for the other
triggers. Besides the scenarios mentioned above,
where reading and writing is controlled, a scenario
where the disk server reads and writes on demand,
mixing read and write mode, has been studied to
investigate how large the impact of controlling the I/O
mode of a disk server is, if any.

 The diagram in Figure 5 illustrates the
implementation of a scenario for a server for the case
where the trigger is fired after X items have been
accepted.

3 Simulation of the Tier0 buffer
problem with Yasper

The method of choice to perform an initial
investigation of the behaviour of the Tier0 input buffer
system and identify the important issues is simulation.
The behaviour of the different parts and their
dependencies is modelled and the result is fed into a
simulation engine. The outcome of these simulations
gives information about the influence on the overall

Tier0 input buffer performance of different set-ups in
the Tier0 input buffer.

The tool selected to do this simulation is Yasper [5].
Yasper is a tool for both modelling and simulating
stepwise processes, developed at the Computer
Science Department of the Eindhoven University of
Technology. The technique used to model these
processes is a time extended Classical Petri Net. This
modelling technique is suitable for our purpose
because the dataflow in the Tier0 can be modelled as a
workflow process. Yasper can run manually or
automatically. In the former mode, one can follow the
files (workflow cases) step by step through the
network and so gain insight in the dynamics of the
network. This answers questions such as “are there
any bottlenecks or pile-ups of items?”, and “what is
the effect of the particular trigger or queuing
discipline on the processing speed?”. The run mode is
meant for gathering statistics.

The results from the Yasper simulations are
interpreted in two ways. First, one can interpret the
results according to the case-view. This means only
properties of individual cases are used to draw
conclusions about the simulated dataflow scenario.
This interpretation provides statistics about running
times of items in the system, and about tracking
information of items in the system.

The second possibility to interpret the simulation
results focuses on the number of items present in the

Figure 6: The connections between the different components of the Petri Net models used

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

simulated system over time. To use this interpretation
the Yasper simulation results have to be parsed to a
new format. The results of this interpretation method
provide us with statistics about disk buffer usage in
the simulated situation. Also congestions in the
systems are easy to detect with this method of
interpretation.

3.1 The construction of the models for the
different scenarios

As mentioned before, the Yasper tool is used to run
the simulations. This tool uses Petri Net models as an
input to specify the simulated situations. For this
reason the selected scenarios need to be specified in
Petri Net models. A representative network is show in
Figure 6.

The network in Figure 6 also demonstrates the
modularity of the models. Parts of a network that
occur more than once can be captured in a component,
which is a Petri Net model in its own right, and which
can be reused (instantiated) more than once in the
same global model. Components are represented by
boxes with a magnifying glass. The modularity arises
because all of the selected scenarios have many
elements in common, and the Petri Net models of
these elements can be reused for different scenarios.

Once one has designed the components, only the
connections needed for coordination need to be added
to obtain a model for a particular scenario, in addition
to the boxes that produce (labelled with an E) and
consume (labelled with a C) items.

3.1.1 A Petri-net component representing a
RND scheduler

Figure 7 shows a Petri Net model for the random
scheduler component. The RND scheduler model
receives an item in the “request to select disk server to
read” place whenever a change of state is imminent in

one of the servers. 11 tokens from one place can be
consumed (this changes the mode of the disk server
that is connected to this place from write mode to read
mode), and any of the places can get 11 new tokens
(and change the mode of the disk server that is
connected to this place from read mode to write
mode), even the ones that already contain some. The
last action is non-deterministic. The last category is
sorted out with the help of boxes that detect the
appearance of more than 11 tokens in one place.

In reference [6] a detailed description of the other
Petri Net components used is given. A model for each
of these components is presented as well as a table
that gives an overview of the inclusion of the various
components in the different scenarios.

3.2 Comparison criteria and model parameters

To compare the different results to each other, criteria
are needed. Criteria that are interesting from the point
of view of implementation of a high performance
buffer system are:

[reqprop1] : number of disk servers used

[reqprop2] : total capacity of the disks used

[reqprop3] : total throughput of the system

[reqprop4] : sojourn-times of items in the system

In Yasper, a disk server is modelled as a structural
component of the net and cannot be changed
dynamically (see Figure 6, where one can see 6
servers in write mode and 6 servers in read mode).
The throughput of the system is a design parameter of
the experiment, and therefore should be kept fixed.
Therefore, [reqprop1] and [reqprop3] are input
parameters of the simulation models, and have been
chosen the same for all models. Only [reqprop2] and
[reqprop4] have been used to compare the different
simulation results from the simulations. Since

Figure 7: A model of an RND scheduler

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

[reqprop1] and [reqprop3] are constant factors for the
compared scenarios, these parameters have no
influence on the overall performance figures in this
section.

A question that needs to be answered before running
the simulations is what the appropriate number of
items to be simulated per scenario is. Because Yasper
has been designed to run simple process models
instead of the complicated Petri Net models needed
here, the simulations require much processing time per
item. This makes it necessary to keep the number of
simulated items as small as possible. On the other
hand too small a number may not be sufficient to see
the specific behaviour of the different scenarios. The
number of items should be such that every disk server
in every scenario is switched from read to write state
and back again at least once. Tests with different
scenarios showed that 6000 completed items was a
reasonable number to run the simulations with.

Also the amount and properties of the hardware need
to be defined before running the simulations. The
number of disk servers has been chosen so that it is
minimal. Given the required throughput, and the
favouring of writing over reading, this number turns
out to be 6: 2 servers for writing and 4 for reading at
one time. Because of the latter choice, the number of
data input streams is also chosen to be 4. However this
does not imply that every disk server in read state will
receive data from exactly 1 input stream during a
period of time.

The total rate that items will come into the system is
225 MB/s. This means that the 4 data input streams
also need to create data items at this rate. Because

every item in the simulation represents a file of the
size 2048 MB, the average item creation time for
every stream is 2048/225*4 = 36.4 seconds.

4 Outcome of the simulation

As indicated above, the simulations produce two kinds
of output: total disk usage over time, and the sojourn
time distributions of the simulated data items. Figure
8, as an example of the first kind of output, shows the
number of items that are present in the simulated
system as a function of time. Because the generation
of new items stops after 6000 cases have been
completed, more than 6000 items will have been
generated to achieve this. The incomplete cases will
get an end-time that does not correspond to the time
they will be read from the system, but to the time they
reach the last-reached place.

Because of this the number of items in the system is
only representing a real system until the time the
6000th item completes. In the graph this 6000th item
has been marked by a red, vertical line. The graph to
the right side of this line is not representing the
behaviour of the simulated scenario.

Figure 8 shows the influence of the disk server state
change trigger on the number of items in the system
(reqprop2) for a FIFO based scenario. It shows that
the OnEmpty trigger outperforms the other two
triggers that are less sensitive to the state of the
system. As explained above, the simulation is only
realistic on the left hand side of the vertical line.

Figure 9 shows a graph for the number of completed
items with a sojourn time in a given interval. The

Number of items in system with different Triggers

(FIFO)

0
100
200
300
400
500
600
700
800
900

1000

0

31
30

62
60

93
90

12
52

0

15
65

0

18
78

0

21
91

0

25
04

0

28
17

0

31
30

0

34
43

0

37
56

0

40
69

0

43
82

0

46
95

0

50
08

0

53
21

0

56
34

0

59
47

0

Time (s)

N
u

m
b

er
 o

f i
te

m
s

OnEmpty

OnNItemsAccepted

FixedTime

Figure 8: Example of a graph that shows the number of items in system over time

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

values for a particular scheduling discipline have been
connected by a line to ease comparison between the
disciplines. Figure 9 illustrates the influence of the
different schedulers on the performance of a scenario.
The graph shows the sojourn-times of items in
systems using different schedulers in combination
with an OnEmpty trigger. It is clear that the
uncontrolled random choice leads to a very wide
spread of sojourn times.

Note that Yasper produces output in a textual form
that has to be processed further to produce the graphs.
To provide support for systematic simulation and
analysis of simulation data a shell for Yasper, Yassim
has been used. The procedures to do this are described
in [6].

5 Comparison

This section relates the results to the problem
definition. The possible scenarios have been grouped
to compare the different schedulers, the different
read/write modes and the different disk server state
change triggers we compared. Also a comparison with
the expectations of the different scenarios will be
made.

5.1 FIFO scheduling

This type of scheduling is vulnerable to (temporary)
fluctuations in the input streams. If one server receives
more data than it can handle, sojourn times will be
penalized with at least 1 cycle time (the time it takes
for a server to go from read state to write state and
back to read state).

An exception to the last mentioned cycle time
penalization is if an OnEmpty trigger has been used in
the scenario. This causes huge difference between the

sojourn times of the different trigger scenarios used.
The results are shown in Table 1.

One of the expectations of a FIFO scheduler is that
there is not much variance in the sojourn times of the
files in the system. This is partly true, the graphs of
the simulated sojourn times show patterns that make it
possible to predict the new sojourn times. But the
variance on the items themselves can be high, because
there are more influences on these sojourn times than
just the scheduling discipline.

Table 1: Performance parameters for the FIFO
scheduled simulations

number of disk servers used: > 6

total size of the disks used: OnEmpty: > 280 GB

OnNItemsAccepted:
> 1320 GB

Fixed time change: >
1800 GB

total throughput of the
system (with 6 disk servers
for the first 6000 simulated
files):

OnEmpty: 227 MB/s

OnNItemsAccepted:
< 200 MB/s

Fixed time change:
261 MB/s

sojourn-times of items in the
system:

OnEmpty: > 870
seconds

OnNItemsAccepted:
> 5490 seconds

Fixed time change: >
6765 seconds

For example for the FIFO OnEmpty scenario there is

Figure 9: Sojourn times of items in OnEmpty trigger scenarios for different schedulers

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

the choice of which disk server in read mode will
receive the item from a data stream. If this is the
server that will be the next server in read mode, the
sojourn time will be shorter than if it was sent to a
disk server in write mode which will be the 4th disk
server that will go to read mode.

Another expectation was that the disk usage is
minimized if the OnEmpty trigger is used. This is
confirmed by the simulation results. An expected
disadvantage of this scenario is that there will not be
any items in the system with short sojourn times. This
was also true according to the simulation results.

5.2 LIFO Scheduling

This discipline was only simulated at a high-level. It is
very vulnerable to variations in input streams since
servers that receive the highest load get the shortest
time to read out their buffers. Better performance will
be achieved if time outs are possible on items [7]
(since every data item has to be processed, this is not
possible for the Tier0 dataflow scenario)

This was also confirmed by the simulation. The only
advantage that was mentioned for this scenario [8]is
that there will be a high percentage of jobs with short
sojourn times. The simulation will give a bias in this
case, since there will be many jobs that have
apparently an acceptable sojourn time because they
did not finish during the simulation.

5.3 LPTF Scheduling

The shortest average sojourn times are achieved with
LPTF scheduling, especially if the system runs for a
long period of time. In addition, the slope of the
regression function is rather flat. This discipline has
some interesting features:

The number of items in the system is already stable
with a small number of files on disk.

This scheduler performs best in combination with the
OnEmpty change trigger. If some disk servers receive
more files than others, comparatively more time will
be allowed to these servers to read out their buffers
(because the chances that these disk servers contain
the highest number of items are larger). The OnEmpty
LPTF scheduling scenario thus reduces the number of
disk server state changes. This is beneficial because a
disk server state change incurs some overhead,
because ongoing work has to be finished.

In combination with the OnNItemsAccepted trigger
also reasonable performance can be obtained. The
number of items that have to be sent before a change
is accomplished has to be reasonably high to get the
best performance. This increases the risk of idle disk
servers that are supposed to be read, and the disk
buffer sizes need to be larger, because write periods
on one disk will be longer according to the number of
items sent before changing the disk server mode. The
optimal number of accepted items before a trigger is

sent out lies, according to the simulation results,
between 200 and 400.

Table 2: Performance parameters for the LPTF
scheduled simulations

number of disk servers
used:

> 6 (or 6 if mixed
read/write will be used)

total size of the disks
used:

OnEmpty: > 360 GB

OnEmpty with mixed
r/w: 270 GB

OnNItemsAccepted: >
2000 GB

total throughput of the
system (with 6 disk
servers for the first 6000
simulated files):

OnEmpty: 259 MB/s

OnEmpty with mixed
r/w: 224 MB/s

OnNItemsAccepted: <
231 MB/s

sojourn-times of items in
the system:

OnEmpty: > 615
seconds

OnEmpty: 740 seconds

OnNItemsAccepted: >
7300 seconds

The prediction for the scheduler is that less disk space
was needed. This is confirmed by simulation results.
The LPTF scheduler needs the smallest amount of
disk space of any disk server change trigger
combination. The same holds for the variation on the
sojourn times. These are the lowest for the scenarios
which use a LPTF scheduler.

5.4 SPTF Scheduling

This discipline is characterized by a large variation of
the sojourn times. This arises because a part of the
files get very long sojourn times, whereas another part
of the files have very short sojourn times.

This discipline suffers from the frequent changes
between read and write modes. The number of items
in the system is therefore rising more over time than in
case of the other scenarios. The idle time of disks in
read mode is moreover high when using an
OnNItemsAccepted trigger scenario.

One of the expectations for this scenario is that there
will be a high percentage of the jobs that get very
short sojourn times. This only holds when the trigger
is not the OnNItemsAccepted disk server change
trigger. When this trigger is used, the percentage of
jobs with short sojourn times is not that big. This is
caused by the disk servers that host the files with the
shortest sojourn times, frequently are idle because
there are no items to be read anymore on their disks
(the reading of items with short sojourn times is
replaced in this scenario by being idle).

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM

Table 3: Performance parameters for the SPTF
scheduled simulations

number of disk servers
used:

> 6

the total size of the disks
used:

OnEmpty: > 320 GB

OnNItemsAccepted: >
5000 GB

total throughput of the
system (with 6 disk
servers for the first 6000
simulated files):

OnEmpty: 232 MB/s

OnNItemsAccepted: <
315 MB/s

sojourn-times of items in
the system:

OnEmpty: > 980
seconds

OnNItemsAccepted: >
22642 seconds

5.5 OnEmpty change

The OnEmpty change trigger has the nice
characteristic that for disk servers that contain many
items, the relative share of disk server read/write time
is increased by postponing disk server state changes.

The best performance of the OnEmpty change trigger
scenario is achieved in combination with the LPTF
queuing discipline. In this case, the LPTF scheduler
picks the disk to be read with the largest amount of
available files and the OnEmpty change trigger keeps
this disk in read mode until no items are left to be read
anymore.

The expectation is that the sojourn times of items in a
scenario with an OnEmpty disk server state change
trigger have more deviation. This has been confirmed
in the simulations.

5.6 OnNItemsAccepted change

Although the number of items in the system is higher
than in the case of the OnEmpty change trigger
scenario, the regression function of the results of an
OnNItemsAccepted trigger scenario is not showing
significantly worse results. This can be explained by
the fact that disk servers that store fewer items are not
distinguished from the ones that store (too) many
items. This results in disk servers getting more
resources per accepted item to buffer than other
servers. The result of this uneven distribution is that
there will be a lot of files that have relatively small
sojourn times in the system and complete, and a set of
files that do not have such a small sojourn time and do
not complete during the simulation run. The last group
does not contribute in the sojourn time regression
function and causes this regression function to be too
optimistic.

Although the expectation is that disk servers get equal
loads, this is not borne out by the simulation results.
The cause of these inequalities is that the input

streams did not send items to the different disk servers
in an equal way (variations in the arrival process). The
expectation of the long sojourn times if items that are
left on a disk server, even after a read phase has been
ended can also been seen in the simulation results.

5.7 Fixed time change

Because the server state change moments are more
predictable, the number of items in the system is rising
more evenly over time (with less unexpected
fluctuations).

Sojourn times get easily penalized with multiples of
the cycle time (the time it takes for a disk server to go
from the read state via the write state back to the read
state). This is caused by the lack of synchronization
between the disk state controller and the disk servers.

The predicted low variance of the sojourn time of the
items in a system with fixed time disk server state
change triggers was higher than expected. This was
because of the penalized items mentioned before that
stayed on a disk server, (even after a readout phase has
ended), which have remarkably higher sojourn times
compared to other items.

5.8 Mixed read and write mode

Although having simultaneous read and write actions
on the same disk server in general increases read and
write times, a special variant of mixed read and write
modes surprisingly has the best performance. This
better performance, in case of the OnEmpty trigger
LPTF discipline combination, can be achieved by
allowing read actions on disk servers in write mode.
To protect the write performance, the write actions are
given top priority so that the write actions take place
without any influence from simultaneous read actions.
The performance of the read actions on these disk
servers, of course, is low, but it enhances the overall
performance of the read actions, because the actions
on the disk servers in read mode are limited
exclusively to read actions. This behaviour is also
according to the expectations.

6 Conclusion

The best performance with the 6 disk server setup is
obtained by using an LPTF scheduler, an OnEmpty
change trigger and a mixed read/write mode. It best
takes into account that the read/write characteristics of
disk servers by maximizing the bulk operation periods
on the disk servers. This setup thus is recommended
for the Tier0 input buffer system.

In the simulation this setup (with 6 disk servers, each
with a total capacity of 1.9 TB) was sufficient to
buffer the data coming from 4 different input streams
with a total input of 225 MB/s. The dominant issue
here was not the storage capacity but the reading and
writing speed. The simulations, however, deal with the
simplified situation that the read actions are pushed
from the input buffer disk servers to the other parts of

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 10 Copyright © 2007 EUROSIM / SLOSIM

the Tier0. In the real Tier0 system, it is conceivable
that there will be a pull from the downstream parts on
the Tier0. Such high priority read requests for specific
data will trigger the read actions on the input buffer
disk servers. For this action a scheduler must be
capable of stopping a write phase on a disk server in
order to read on that disk server at a high speed. Since
4 disk servers can be in a write phase at the same time,
there must be 4 extra disk servers that can replace the
acceptation of the write actions of the disk servers
mentioned before.

This makes the final proposed Tier0 input buffer
system a 10 disk server systems controlled with an
LPTF scheduler, an OnEmpty change trigger and a
mixed read/write mode.

This paper has presented the results of a first analysis
of the Tier0 input buffer system and has been focused
on the modelling of the problem in order to discover
which questions are the relevant ones to ask. The
modelling phase was followed by simulation to
improve insight into the behaviour of the various
models. To be more certain that the models represent
the real situation, some model parts have been
remodelled in a tool called GPSS. This tool uses
queuing models described in a GPSS specific
language. The results have been found to be consistent
within the error margins.

The modelling effort also reconfirmed the fact that
classical Petri nets become large very quickly. This
tendency can in part be counteracted by using
hierarchy in the form of subsystems, but this does not
reduce the intrinsic size of the models that has an
impact on the duration of the simulation. More
powerful tools such as CNP tools [9] will be required
to allow the extension of the description, for instance
to accommodate high priority read requests.

Another interesting direction in which to continue the
work of this paper is to investigate the more general
aspects of the modelling problem from a queuing
model point of view, as discussed in section 2.1. It is
an open question whether one can formalize the
concept of a meta-scheduler in a queuing framework.
This would allow one to construct and analyse two
level queuing models in which the queuing network at
the lower level can be changed dynamically by a
scheduler at the higher level. In our case we looked at
a pair of servers that changed role in a compensating
way specified at the higher level. A related example
from the transportation domain would be a train
operator that has a number of trains and carriages in
active service, transporting people, and another
number in maintenance or repair. The maintenance
can be scheduled, the repair is incident based. Both
involve changing the role of the equipment from ‘in
service’ to ‘out of service’ and back again.

7 References

[1] J. Knobloch et al., “LHC Computing Grid
Technical Design Report”, CERN/LHCC 2005-024.

[2] “The computing project: Technical Design
Report”, Ed. L. Taylor, CERN/LHCC 2005-023

[3] B. Panzer-Steindel, "Disk server benchmarks V2,
CERN/IT Report 10.03.2006

[4] Leonard Kleinrock, “Queueing Systems. Volume
II: Computer Applications”

[5] Yasper: “Yet Another Smart Process Editor”,
http://www.yasper.org/ (Jan 2007)

[6] LHJM Wijnant, “A comparison of CMS Tier0-
dataflow scenarios using the Yasper simulation tool”,
Master thesis, Eindhoven University of Technology,
Jan 2007.

[7] Naresh Singhmar, Vipul Mathur, Varsha Apte and
D. Manjunath: "A Combined LIFO-Priority Scheme
for Overload Control of E-commerce Web Servers",
Proceedings of the International Infrastructure
Survivability Workshop (affiliated with the 25th IEEE
International Real-Time Systems Symposium),
Lisbon, Portugal, 2004.

[8] I. Adan and J. Resing. “Queueing Theory”,
Lecture Notes, Department of Mathematics and
Computing Science Eindhoven University of
Technology, Feb 2002.

[9] CPN Tools:
http://wiki.daimi.au.dk/cpntools/cpntools.wiki (June
2007)

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 11 Copyright © 2007 EUROSIM / SLOSIM

