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Abstract  

The CMS (Compact Muon Solenoid) experiment at CERN will produce large amounts of data 
in short periods of time. Because the data buffers at the experiment are not large enough, the 
data needs to be transferred from the experimental area to the multi-tier computing system for 
storage and processing. The first tier is the CMS Tier0, an enormous job processing and 
storage facility at the CERN site. One part of this Tier0, called the Tier0 input buffer, will 
have the task to readout the experimental data buffers. It has to make sure that no data is lost. 
This paper describes the modelling and simulation of the Tier0 input buffer to compare 
different scenarios involving a set of disk servers that can accomplish the Tier0 input buffer 
tasks. To increase the performance per disk server, write and read actions on the same disk 
server take place in separate phases. A critical issue then is to determine when a disk server 
should change from accepting and writing items to supplying items to other tasks. The 
combination of various parameters, such as the usage of a particular queuing discipline (like 
FIFO, LIFO, LPTF and SPTF) and the state of the disk server has been studied. We have used 
Yasper for modelling and simulation of the various scenarios. Yasper uses Petri Net models 
as its input. We find an LPTF (Largest Processing Time First) based queuing discipline to 
give the best performance. 

Keywords: Read/Write buffer system, time extended Classical Petri Net, modeling, 
simulation 
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1 Introduction 

The CMS (Compact Muon Solenoid) experiment is 
one of the experiments that will be run at the Large 
Hadron Collider (LHC) facility at CERN, Geneva. 
Once the CMS experiment is running, it will produce 
data in several streams with a total throughput of 225 
MB/second. To store, distribute and analyse the data 
from the CMS detector, the LHC Computing Grid 
(LCG, [1]) is used. The LCG is a distributed 
computing system built to support the physics 
community. The LCG consists of a number of 
cooperating computer farms located at computer 
centres spread around the world. While some centres 
are more directly connected to the experiment’s data 
source than others (and mostly offer more system 
resources to the LCG), the proposed service 
architecture of the LCG is hierarchical. At the top of 
this LCG service architecture is the computer farm 
that is directly connected to the experiment’s 
computer farm, named the Tier0. The Tier0 is 
connected through high-speed connections to several 
Tier1-centers that are part of the second layer of 
computing farms in the LCG. These Tier1 centres are 
connected again to other elements in the LCG network 
of equal or smaller size than the Tier1 centres 
themselves, and so on. Every TierN element in the 
CMS LCG structure has its own responsibility in the 
global CMS-data physics analysis tasks. A Tier5 
element, for example, is just a desktop computer 
running physics analysis software. 

The Tier0 input buffer system has to read out the 
detector data buffers and to supply this data as input 
for the other Tier0 processes such as the 
reconstruction software. It has the structure described 
in Figure 1. 

The data in Figure 1 flows in different streams of 2GB 
files from the CMS on-line computing farm (the 
computing farm located directly at the experimental 

site) to the Tier0 input buffer with a total volume of 
on average 225 MB/s [2]. This means that the Tier0 
input buffer must be able to write data coming from 
different streams with at least a total write speed of 
225 MB/s. At the same time that data must be read as 
well. It was decided to study a buffer implementation 
with RAID5 disk servers (a particular kind of 
Redundant Array of Inexpensive Disks that is resilient 
against crashes of single disks). The writing procedure 
uses a FIFO scheduler to decide which file will be 
written first. The reading procedure uses a First 
Available Item First Out scheduler (a FIFO scheduler 
that skips items that are not available for reading at the 
moment they were supposed to be read). This paper 
reports on a project that was set up to uncover the 
issues involved in using disk servers to implement the 
Tier0 buffer system and compares several possible 
solutions.  

2 Possible Tier0 input buffer disk 
server scenarios 

2.1 The modelling problem 

The first task of the Tier0 input buffer is to accept all 
data from the on-line computing farm and to store this 
data. A second task is to transfer the experimental data 
to the other processes. For the first task, a disk server 
setup that gives the highest priority to writing is most 
suitable. This means that the write speed is much 
higher than the read speed when both actions take 
place at the same time. The proposed disk server has 
this property [3]. In the same benchmark [3] it was 
also concluded that the maximum disk write and read 
speed of the proposed disk server configuration are 
not sufficient to meet the Tier0 input buffer 
requirements. For this reason more than one disk 
server is needed for the Tier0 input buffer. We will 
consider situations in which there are several disk 
servers available, which may be reading, or writing 
data, or both.  

 

Figure 1: Tier0 input buffer dataflow. The number of read and write actions and data streams is an example 
in this model. The Tier0 processes are jobs in the Tier0 job processing machines. The bits on the left (input) 

are reconstructed to physics events on the right (output). 
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The number of simultaneous write actions influences 
the total write speed of a disk server (according to 
[3]). But the number of read actions on a disk also has 
an influence on the total write speed. Disk servers 
perform better when they exclusively read for an 
extended period of time, followed by a period of 
exclusively writing, and so on. The question then is 
what the length of these periods should be. Write 
operations to a full disk will lose data, which is not 
acceptable. And reading from an empty disk waists 
time that could better be spent writing. Therefore, the 
alternation of reading and writing periods has to be 
chosen carefully. We studied 3 different types of 
triggers to start the alternation of these periods. These 
are the OnEmpty trigger, which changes a reading 
period to a writing period, when all items on a disk 
server have been read out, the OnNItemsAccepted 
trigger, which ends a writing period after N items have 
been written to one disk server, and the Fixed Time 

Change trigger, which alternates after N seconds.  

It is not sufficient to change the I/O mode of one disk 
server, since one has to make sure that on average as 
much data will be read as is written. Another server 
will have to change mode to compensate. To select 
this disk server, any of a number of queuing 
disciplines can be used. Literature (like [4]) provides 
some possibilities to apply to this situation. The 
expectation is that different queuing disciplines will 
result in different properties of the Tier0 input buffer.  

A first queuing model of this situation is given in 
Figure 2. Data coming from different streams is 
queued to be written on one of the disk servers after 
which it is queued to be read. This model immediately 
raises the question how many servers there should be 
at the minimum. The number of disk servers in this 
model is 6. At most three write streams are served, 
and ten read streams.  

 

Figure 2: A queuing network representing the naïve Tier0 input buffer problem 

 

Figure 3: The queuing network of the Meta scheduler for an onEmpty, or a Fixed Time Change trigger 
scenario 
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The naïve model in Figure 2 describes the fact that 
each data item that is written is queued for reading. It 
does not show how the disk server that will be written 
to next is chosen, and it allows intermingling of read 
and write actions on a particular server. A Meta 
scheduler is needed to assign the read and write 
modes. This means that particular “Disk read actions” 
and “Disk write actions” services in Figure 2 are 

disabled or enabled according to the discipline 
enforced by this Meta scheduler. Since different disk 
server mode change conditions have been used, two 
different Meta schedulers have been used. These are 
presented in Figure 3 and Figure 4. 

The service time distribution S* in the “Future servers 
to read/write queue” is not a regular distribution. In 
order to let the number of disk servers in write and 
read mode stay constant, synchronization between the 
two services has to be performed. This means that as 
soon as the “Processing read/write actions” services 
processed their queued item, the “Future servers to 
read/write queue” service has to process an item as 
well. For this reason, the notation S* for the service 
time distribution abbreviation has been used. 

This special service time distribution combined with 
the usage of the two layers (the normal naïve layer and 
the Meta layer) of queuing network to represent the 
problem makes the Tier0 input buffer problem 
complicated. The mutual dependence of a lot of the 
parts increases the overall complexity. We did not find 
much queuing theory literature about this kind of 
situation. This led to the decision to use simulation as 
the research method over an analytical queuing theory 
method. A third alternative, to build a prototype buffer 
system, has been rejected because it is too expensive 
in this preliminary stage of the research. 

2.2 Overview of different scenarios 

There are many scenarios one can make by combining 
one of the three triggers with a discipline for changing 
a pair of servers from reading to writing and vice 
versa.  In a first exploration we limited ourselves to: 
FIFO, LIFO, LPTF (Largest Processing Time First), 
SPTF (Smallest Processing Time First), and Random. 
In combination with the OnEmpty trigger (all items on 
a server have been read), FIFO means that the next 
disk to be in read mode is the one that went into write 
mode the longest time ago. The empty disk server then 
goes to write mode. LIFO selects as next disk server 

 

Figure 4: The queuing network of the Meta scheduler for an NItemsAccepted change trigger scenario  

 

Figure 5: Flowchart of the OnNItems-
Accepted scenario 
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in read mode the one that went into write mode the 
shortest time ago. LPTF selects the server that has the 
largest number of items stored, since all items are of 
roughly an equal size, whereas SPTF selects the server 
with the smallest number of items stored. The random 
discipline selects a server at random, and is included 
to see what improvement the use of knowledge for the 
selection of a disk server gives, if any. The disciplines 
are given a matching interpretation for the other 
triggers. Besides the scenarios mentioned above, 
where reading and writing is controlled, a scenario 
where the disk server reads and writes on demand, 
mixing read and write mode, has been studied to 
investigate how large the impact of controlling the I/O 
mode of a disk server is, if any. 

 The diagram in Figure 5 illustrates the 
implementation of a scenario for a server for the case 
where the trigger is fired after X items have been 
accepted. 

3 Simulation of the Tier0 buffer 
problem with Yasper 

The method of choice to perform an initial 
investigation of the behaviour of the Tier0 input buffer 
system and identify the important issues is simulation. 
The behaviour of the different parts and their 
dependencies is modelled and the result is fed into a 
simulation engine. The outcome of these simulations 
gives information about the influence on the overall 

Tier0 input buffer performance of different set-ups in 
the Tier0 input buffer.  

The tool selected to do this simulation is Yasper [5]. 
Yasper is a tool for both modelling and simulating 
stepwise processes, developed at the Computer 
Science Department of the Eindhoven University of 
Technology. The technique used to model these 
processes is a time extended Classical Petri Net. This 
modelling technique is suitable for our purpose 
because the dataflow in the Tier0 can be modelled as a 
workflow process. Yasper can run manually or 
automatically. In the former mode, one can follow the 
files (workflow cases) step by step through the 
network and so gain insight in the dynamics of the 
network. This answers questions such as “are there 
any bottlenecks or pile-ups of items?”, and “what is 
the effect of the particular trigger or queuing 
discipline on the processing speed?”. The run mode is 
meant for gathering statistics.  

The results from the Yasper simulations are 
interpreted in two ways. First, one can interpret the 
results according to the case-view. This means only 
properties of individual cases are used to draw 
conclusions about the simulated dataflow scenario. 
This interpretation provides statistics about running 
times of items in the system, and about tracking 
information of items in the system.  

The second possibility to interpret the simulation 
results focuses on the number of items present in the 

 

Figure 6: The connections between the different components of the Petri Net models used 
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simulated system over time. To use this interpretation 
the Yasper simulation results have to be parsed to a 
new format. The results of this interpretation method 
provide us with statistics about disk buffer usage in 
the simulated situation. Also congestions in the 
systems are easy to detect with this method of 
interpretation. 

3.1 The construction of the models for the 
different scenarios 

As mentioned before, the Yasper tool is used to run 
the simulations. This tool uses Petri Net models as an 
input to specify the simulated situations. For this 
reason the selected scenarios need to be specified in 
Petri Net models. A representative network is show in 
Figure 6. 

The network in Figure 6 also demonstrates the 
modularity of the models. Parts of a network that 
occur more than once can be captured in a component, 
which is a Petri Net model in its own right, and which 
can be reused (instantiated) more than once in the 
same global model. Components are represented by 
boxes with a magnifying glass. The modularity arises 
because all of the selected scenarios have many 
elements in common, and the Petri Net models of 
these elements can be reused for different scenarios.  

Once one has designed the components, only the 
connections needed for coordination need to be added 
to obtain a model for a particular scenario, in addition 
to the boxes that produce (labelled with an E) and 
consume (labelled with a C) items.  

3.1.1 A Petri-net component representing a 
RND scheduler 

Figure 7 shows a Petri Net model for the random 
scheduler component. The RND scheduler model 
receives an item in the “request to select disk server to 
read” place whenever a change of state is imminent in 

one of the servers. 11 tokens from one place can be 
consumed (this changes the mode of the disk server 
that is connected to this place from write mode to read 
mode), and any of the places can get 11 new tokens 
(and change the mode of the disk server that is 
connected to this place from read mode to write 
mode), even the ones that already contain some. The 
last action is non-deterministic. The last category is 
sorted out with the help of boxes that detect the 
appearance of more than 11 tokens in one place. 

In reference [6] a detailed description of the other 
Petri Net components used is given. A model for each 
of these components is presented as well as a table 
that gives an overview of the inclusion of the various 
components in the different scenarios. 

3.2 Comparison criteria and model parameters 

To compare the different results to each other, criteria 
are needed. Criteria that are interesting from the point 
of view of implementation of a high performance 
buffer system are:  

[reqprop1] : number of disk servers used 

[reqprop2] : total capacity of the disks used  

[reqprop3] : total throughput of the system 

[reqprop4] : sojourn-times of items in the system 

In Yasper, a disk server is modelled as a structural 
component of the net and cannot be changed 
dynamically (see Figure 6, where one can see 6 
servers in write mode and 6 servers in read mode). 
The throughput of the system is a design parameter of 
the experiment, and therefore should be kept fixed. 
Therefore, [reqprop1] and [reqprop3] are input 
parameters of the simulation models, and have been 
chosen the same for all models. Only [reqprop2] and 
[reqprop4] have been used to compare the different 
simulation results from the simulations. Since 

 

Figure 7: A model of an RND scheduler 
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[reqprop1] and [reqprop3] are constant factors for the 
compared scenarios, these parameters have no 
influence on the overall performance figures in this 
section.  

A question that needs to be answered before running 
the simulations is what the appropriate number of 
items to be simulated per scenario is. Because Yasper 
has been designed to run simple process models 
instead of the complicated Petri Net models needed 
here, the simulations require much processing time per 
item. This makes it necessary to keep the number of 
simulated items as small as possible. On the other 
hand too small a number may not be sufficient to see 
the specific behaviour of the different scenarios. The 
number of items should be such that every disk server 
in every scenario is switched from read to write state 
and back again at least once. Tests with different 
scenarios showed that 6000 completed items was a 
reasonable number to run the simulations with.  

Also the amount and properties of the hardware need 
to be defined before running the simulations. The 
number of disk servers has been chosen so that it is 
minimal. Given the required throughput, and the 
favouring of writing over reading, this number turns 
out to be 6: 2 servers for writing and 4 for reading at 
one time. Because of the latter choice, the number of 
data input streams is also chosen to be 4. However this 
does not imply that every disk server in read state will 
receive data from exactly 1 input stream during a 
period of time.  

The total rate that items will come into the system is 
225 MB/s. This means that the 4 data input streams 
also need to create data items at this rate. Because 

every item in the simulation represents a file of the 
size 2048 MB, the average item creation time for 
every stream is 2048/225*4 = 36.4 seconds. 

4 Outcome of the simulation 

As indicated above, the simulations produce two kinds 
of output: total disk usage over time, and the sojourn 
time distributions of the simulated data items. Figure 
8, as an example of the first kind of output, shows the 
number of items that are present in the simulated 
system as a function of time. Because the generation 
of new items stops after 6000 cases have been 
completed, more than 6000 items will have been 
generated to achieve this. The incomplete cases will 
get an end-time that does not correspond to the time 
they will be read from the system, but to the time they 
reach the last-reached place.  

Because of this the number of items in the system is 
only representing a real system until the time the 
6000th item completes. In the graph this 6000th item 
has been marked by a red, vertical line. The graph to 
the right side of this line is not representing the 
behaviour of the simulated scenario.  

Figure 8 shows the influence of the disk server state 
change trigger on the number of items in the system 
(reqprop2) for a FIFO based scenario. It shows that 
the OnEmpty trigger outperforms the other two 
triggers that are less sensitive to the state of the 
system. As explained above, the simulation is only 
realistic on the left hand side of the vertical line.  

Figure 9 shows a graph for the number of completed 
items with a sojourn time in a given interval. The 
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Figure 8: Example of a graph that shows the number of items in system over time 
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values for a particular scheduling discipline have been 
connected by a line to ease comparison between the 
disciplines. Figure 9 illustrates the influence of the 
different schedulers on the performance of a scenario. 
The graph shows the sojourn-times of items in 
systems using different schedulers in combination 
with an OnEmpty trigger. It is clear that the 
uncontrolled random choice leads to a very wide 
spread of sojourn times.  

Note that Yasper produces output in a textual form 
that has to be processed further to produce the graphs. 
To provide support for systematic simulation and 
analysis of simulation data a shell for Yasper, Yassim 
has been used. The procedures to do this are described 
in [6].  

5 Comparison 

This section relates the results to the problem 
definition. The possible scenarios have been grouped 
to compare the different schedulers, the different 
read/write modes and the different disk server state 
change triggers we compared. Also a comparison with 
the expectations of the different scenarios will be 
made. 

5.1 FIFO scheduling 

This type of scheduling is vulnerable to (temporary) 
fluctuations in the input streams. If one server receives 
more data than it can handle, sojourn times will be 
penalized with at least 1 cycle time (the time it takes 
for a server to go from read state to write state and 
back to read state).   

An exception to the last mentioned cycle time 
penalization is if an OnEmpty trigger has been used in 
the scenario. This causes huge difference between the 

sojourn times of the different trigger scenarios used. 
The results are shown in Table 1. 

One of the expectations of a FIFO scheduler is that 
there is not much variance in the sojourn times of the 
files in the system. This is partly true, the graphs of 
the simulated sojourn times show patterns that make it 
possible to predict the new sojourn times. But the 
variance on the items themselves can be high, because 
there are more influences on these sojourn times than 
just the scheduling discipline.  

Table 1: Performance parameters for the FIFO 
scheduled simulations 

number of disk servers used: > 6 

total size of the disks used: OnEmpty: > 280 GB 

OnNItemsAccepted: 
> 1320 GB 

Fixed time change: > 
1800 GB 

total throughput of the 
system (with 6 disk servers 
for the first 6000 simulated 
files): 

OnEmpty: 227 MB/s 

OnNItemsAccepted: 
< 200 MB/s 

Fixed time change: 
261 MB/s 

sojourn-times of items in the 
system: 

OnEmpty: > 870 
seconds 

OnNItemsAccepted: 
> 5490 seconds 

Fixed time change: > 
6765 seconds 

 
For example for the FIFO OnEmpty scenario there is 

 

Figure 9: Sojourn times of items in OnEmpty trigger scenarios for different schedulers 
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the choice of which disk server in read mode will 
receive the item from a data stream. If this is the 
server that will be the next server in read mode, the 
sojourn time will be shorter than if it was sent to a 
disk server in write mode which will be the 4th disk 
server that will go to read mode. 

Another expectation was that the disk usage is 
minimized if the OnEmpty trigger is used. This is 
confirmed by the simulation results. An expected 
disadvantage of this scenario is that there will not be 
any items in the system with short sojourn times. This 
was also true according to the simulation results. 

5.2 LIFO Scheduling 

This discipline was only simulated at a high-level. It is 
very vulnerable to variations in input streams since 
servers that receive the highest load get the shortest 
time to read out their buffers. Better performance will 
be achieved if time outs are possible on items [7] 
(since every data item has to be processed, this is not 
possible for the Tier0 dataflow scenario)  

This was also confirmed by the simulation. The only 
advantage that was mentioned for this scenario [8]is 
that there will be a high percentage of jobs with short 
sojourn times. The simulation will give a bias in this 
case, since there will be many jobs that have 
apparently an acceptable sojourn time because they 
did not finish during the simulation. 

5.3 LPTF Scheduling 

The shortest average sojourn times are achieved with 
LPTF scheduling, especially if the system runs for a 
long period of time. In addition, the slope of the 
regression function is rather flat. This discipline has 
some interesting features: 

The number of items in the system is already stable 
with a small number of files on disk. 

This scheduler performs best in combination with the 
OnEmpty change trigger. If some disk servers receive 
more files than others, comparatively more time will 
be allowed to these servers to read out their buffers 
(because the chances that these disk servers contain 
the highest number of items are larger). The OnEmpty 
LPTF scheduling scenario thus reduces the number of 
disk server state changes. This is beneficial because a 
disk server state change incurs some overhead, 
because ongoing work has to be finished. 

In combination with the OnNItemsAccepted trigger 
also reasonable performance can be obtained. The 
number of items that have to be sent before a change 
is accomplished has to be reasonably high to get the 
best performance. This increases the risk of idle disk 
servers that are supposed to be read, and the disk 
buffer sizes need to be larger, because write periods 
on one disk will be longer according to the number of 
items sent before changing the disk server mode. The 
optimal number of accepted items before a trigger is 

sent out lies, according to the simulation results, 
between 200 and 400. 

Table 2: Performance parameters for the LPTF 
scheduled simulations 

number of disk servers 
used: 

> 6 (or 6 if mixed 
read/write will be used) 

total size of the disks 
used: 

OnEmpty: > 360 GB 

OnEmpty with mixed 
r/w: 270 GB 

OnNItemsAccepted: > 
2000 GB 

total throughput of the 
system (with 6 disk 
servers for the first 6000 
simulated files): 

OnEmpty: 259 MB/s 

OnEmpty with mixed 
r/w: 224 MB/s 

OnNItemsAccepted: < 
231 MB/s 

sojourn-times of items in 
the system: 

OnEmpty: > 615 
seconds 

OnEmpty: 740 seconds 

OnNItemsAccepted: > 
7300 seconds 

 
The prediction for the scheduler is that less disk space 
was needed. This is confirmed by simulation results. 
The LPTF scheduler needs the smallest amount of 
disk space of any disk server change trigger 
combination. The same holds for the variation on the 
sojourn times. These are the lowest for the scenarios 
which use a LPTF scheduler. 

5.4 SPTF Scheduling 

This discipline is characterized by a large variation of 
the sojourn times. This arises because a part of the 
files get very long sojourn times, whereas another part 
of the files have very short sojourn times. 

This discipline suffers from the frequent changes 
between read and write modes. The number of items 
in the system is therefore rising more over time than in 
case of the other scenarios. The idle time of disks in 
read mode is moreover high when using an 
OnNItemsAccepted trigger scenario. 

One of the expectations for this scenario is that there 
will be a high percentage of the jobs that get very 
short sojourn times. This only holds when the trigger 
is not the OnNItemsAccepted disk server change 
trigger. When this trigger is used, the percentage of 
jobs with short sojourn times is not that big. This is 
caused by the disk servers that host the files with the 
shortest sojourn times, frequently are idle because 
there are no items to be read anymore on their disks 
(the reading of items with short sojourn times is 
replaced in this scenario by being idle).  
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Table 3: Performance parameters for the SPTF 
scheduled simulations 

number of disk servers 
used: 

> 6 

the total size of the disks 
used:  

OnEmpty: > 320 GB 

OnNItemsAccepted: > 
5000 GB 

total throughput of the 
system (with 6 disk 
servers for the first 6000 
simulated files): 

OnEmpty: 232 MB/s 

OnNItemsAccepted: < 
315 MB/s 

sojourn-times of items in 
the system: 

OnEmpty: > 980 
seconds 

OnNItemsAccepted: > 
22642 seconds 

 

5.5 OnEmpty change 

The OnEmpty change trigger has the nice 
characteristic that for disk servers that contain many 
items, the relative share of disk server read/write time 
is increased by postponing disk server state changes.  

The best performance of the OnEmpty change trigger 
scenario is achieved in combination with the LPTF 
queuing discipline. In this case, the LPTF scheduler 
picks the disk to be read with the largest amount of 
available files and the OnEmpty change trigger keeps 
this disk in read mode until no items are left to be read 
anymore.  

The expectation is that the sojourn times of items in a 
scenario with an OnEmpty disk server state change 
trigger have more deviation. This has been confirmed 
in the simulations. 

5.6 OnNItemsAccepted change 

Although the number of items in the system is higher 
than in the case of the OnEmpty change trigger 
scenario, the regression function of the results of an 
OnNItemsAccepted trigger scenario is not showing 
significantly worse results. This can be explained by 
the fact that disk servers that store fewer items are not 
distinguished from the ones that store (too) many 
items. This results in disk servers getting more 
resources per accepted item to buffer than other 
servers. The result of this uneven distribution is that 
there will be a lot of files that have relatively small 
sojourn times in the system and complete, and a set of 
files that do not have such a small sojourn time and do 
not complete during the simulation run. The last group 
does not contribute in the sojourn time regression 
function and causes this regression function to be too 
optimistic. 

Although the expectation is that disk servers get equal 
loads, this is not borne out by the simulation results. 
The cause of these inequalities is that the input 

streams did not send items to the different disk servers 
in an equal way (variations in the arrival process). The 
expectation of the long sojourn times if items that are 
left on a disk server, even after a read phase has been 
ended can also been seen in the simulation results. 

5.7 Fixed time change 

Because the server state change moments are more 
predictable, the number of items in the system is rising 
more evenly over time (with less unexpected 
fluctuations). 

Sojourn times get easily penalized with multiples of 
the cycle time (the time it takes for a disk server to go 
from the read state via the write state back to the read 
state). This is caused by the lack of synchronization 
between the disk state controller and the disk servers. 

The predicted low variance of the sojourn time of the 
items in a system with fixed time disk server state 
change triggers was higher than expected. This was 
because of the penalized items mentioned before that 
stayed on a disk server, (even after a readout phase has 
ended), which have remarkably higher sojourn times 
compared to other items. 

5.8 Mixed read and write mode  

Although having simultaneous read and write actions 
on the same disk server in general increases read and 
write times, a special variant of mixed read and write 
modes surprisingly has the best performance. This 
better performance, in case of the OnEmpty trigger 
LPTF discipline combination, can be achieved by 
allowing read actions on disk servers in write mode. 
To protect the write performance, the write actions are 
given top priority so that the write actions take place 
without any influence from simultaneous read actions. 
The performance of the read actions on these disk 
servers, of course, is low, but it enhances the overall 
performance of the read actions, because the actions 
on the disk servers in read mode are limited 
exclusively to read actions.  This behaviour is also 
according to the expectations. 

6 Conclusion 

The best performance with the 6 disk server setup is 
obtained by using an LPTF scheduler, an OnEmpty 
change trigger and a mixed read/write mode. It best 
takes into account that the read/write characteristics of 
disk servers by maximizing the bulk operation periods 
on the disk servers. This setup thus is recommended 
for the Tier0 input buffer system.  

In the simulation this setup (with 6 disk servers, each 
with a total capacity of 1.9 TB) was sufficient to 
buffer the data coming from 4 different input streams 
with a total input of 225 MB/s. The dominant issue 
here was not the storage capacity but the reading and 
writing speed. The simulations, however, deal with the 
simplified situation that the read actions are pushed 
from the input buffer disk servers to the other parts of 
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the Tier0. In the real Tier0 system, it is conceivable 
that there will be a pull from the downstream parts on 
the Tier0. Such high priority read requests for specific 
data will trigger the read actions on the input buffer 
disk servers. For this action a scheduler must be 
capable of stopping a write phase on a disk server in 
order to read on that disk server at a high speed. Since 
4 disk servers can be in a write phase at the same time, 
there must be 4 extra disk servers that can replace the 
acceptation of the write actions of the disk servers 
mentioned before. 

This makes the final proposed Tier0 input buffer 
system a 10 disk server systems controlled with an 
LPTF scheduler, an OnEmpty change trigger and a 
mixed read/write mode. 

This paper has presented the results of a first analysis 
of the Tier0 input buffer system and has been focused 
on the modelling of the problem in order to discover 
which questions are the relevant ones to ask. The 
modelling phase was followed by simulation to 
improve insight into the behaviour of the various 
models. To be more certain that the models represent 
the real situation, some model parts have been 
remodelled in a tool called GPSS. This tool uses 
queuing models described in a GPSS specific 
language. The results have been found to be consistent 
within the error margins.  

The modelling effort also reconfirmed the fact that 
classical Petri nets become large very quickly. This 
tendency can in part be counteracted by using 
hierarchy in the form of subsystems, but this does not 
reduce the intrinsic size of the models that has an 
impact on the duration of the simulation. More 
powerful tools such as CNP tools [9] will be required 
to allow the extension of the description, for instance 
to accommodate high priority read requests.  

Another interesting direction in which to continue the 
work of this paper is to investigate the more general 
aspects of the modelling problem from a queuing 
model point of view, as discussed in section 2.1. It is 
an open question whether one can formalize the 
concept of a meta-scheduler in a queuing framework. 
This would allow one to construct and analyse two 
level queuing models in which the queuing network at 
the lower level can be changed dynamically by a 
scheduler at the higher level. In our case we looked at 
a pair of servers that changed role in a compensating 
way specified at the higher level. A related example 
from the transportation domain would be a train 
operator that has a number of trains and carriages in 
active service, transporting people, and another 
number in maintenance or repair. The maintenance 
can be scheduled, the repair is incident based. Both 
involve changing the role of the equipment from ‘in 
service’ to ‘out of service’ and back again.  
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