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Abstract

The quality of a controller is not only dependent on the design method. Rather the correspon-
dence between a model and a plant is an important criteria as well. In practice models are often
adequate or the controller is a priori robust to model errors. Usually no additional consider-
ations concerning robustness are necessary. But especially mechanical system tend to have a
very high system order. For example by replacing the distributed parameters structure by point
masses especially high order modes are missing in a model. Also models generated by finite
element methods (FEM) have a high order that makes the controller design more demanding.
In this case an order reduction is used to get a lower order than the original system. In general
the correlation between model and plant is better in the lower frequency range. But also here
the exact position of the poles is not known. Additional poles can be found in the upper fre-
quency range. Especially pole placement is difficult for such systems. The unconsidered poles
of the plant and the not exact position of the considered poles in the model can move to the right
s-domain using a model based state space controller. This article presents different methods to
deal with such reduced order and not exact models using statespace theory. All techniques ex-
cel aseasycompared to modern concepts likeH

∞
or µ-synthesis [1]. In addition the complete

design process of the controller is highly automated and could be a method to introduce state
space theory in an industrial environment. The design methods will be compared and tested by
simulations at a power train of a CNC-machine tool.

Keywords: Pole placement, Pole region assignment, Robustness, Model errors, Output
feedback control.
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1 Introduction

In many cases already the design method of creating
a model does not consider the behavior of the plant
in the higher frequency region. This results in mod-
els that have correlation to the plant only in the lower
frequency domain. Additional poles of the plant can be
found in the higher frequency range. Errors compared
to the model are mainly in the lower frequency region.

In the following some examples of reduced order mod-
els in practice are presented.

• Today computer based engineering and design
(CAD) is widely spread [2]. Already in early de-
velopment stages one can get easily exact FEM-
models of systems, e.g. mechanical. Therefore
the existence of a prototype is not necessary and
the future behavior in case of controllability of the
plant is known. The subsequent creation of a high
order state-space model, based on a FEM-model,
is state of the art, but to handle such models an
order reduction with loss of information is neces-
sary.

• Another method of modeling mechanical systems
is to fit a measured Bode-diagram to a Bode-
diagram of a multi body system (MBS). Because
auf measurement accuracy the Bode-Diagram will
be more exact in the lower frequency region.
Above a certain frequency noise is dominating and
higher modes of the plant will be invisible. Also
here the model is not as exact as the real system.

• To model mechanical systems often point masses
are used instead of a distributed parameter model.
By this some of the eigenmodes are neglected. For
example the beam of an inverse pendulum can be
such a system. It may oscillate with a high fre-
quency that is not considered in the model based
on point masses.

This paper describes different methods to design a pole
placement controller based on a faulty model. The goal
is to transfer the controller, based on the model, to the
plant. Robustness concerning the described modeling
errors is demanded.

The paper results from a cooperation of the TU-
Darmstadt andSiemens, Automation and Drives
(A&D). Therefore the desired plant is a computer nu-
merical controlled (CNC) machine tool. In section 2
such a machine is shortly presented in detail.

To compare the different model based design tech-
niques the results are tested at a plant of higher order.
The basic characteristics of model and plant are also
presented in section 2.

The control structure and the controller design will be
explained in section 3. A description of the different
robustness methods can be found in section 4. Here one
can also find simulation results. Finally a conclusion is
presented (section 5).
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Machine base

Motor MS
(Indirect MS)

Motor
Axle

Clutch

Spindle

Linear measuring unit
(Direct MS)

Tool

Workpiece
Milling table

Fig. 1 A typical construction of an CNC-machine tool
axis

2 Plant and Model

In the following sections first a CNC-Machine tool will
be described in detail. Afterwards the creation of the
model is presented. Finally plant and model are com-
pared with respect to dynamic behaviour and the re-
quirements for the closed loop system are introduced.

2.1 CNC-Maschine Tool

Modern CNC-machine tools have up to five axis to han-
dle free formed surfaces. So they are multi-input-multi-
output (MIMO) system with 5 inputs and 5 outputs. Be-
cause of the translational arrangement of the axis the
system is mechanically decoupled. So one can design
the controller of each axis separately. Thats why this ar-
ticle is focused on designing the controller for a single
axis instead of all.

In Fig. 1 the mechanical structure of one axis is dis-
played. Basically it is an electrical motor that powers an
axle. A spindle connected by a clutch transforms the ro-
tational movement to a translative movement. Besides
of this most common construction one can also think
of a linear motor. Here the motor transforms the force
directly in a translative movement.

The input of the plant is the torque of the motorMm.
The outputs depends on the used measurement systems
(MS). Fig. 1 includes two different MS

• Indirect MS

• Direct MS.

The main differences of the two different MS are illus-
trated in Tab. 1. The indirect MS is integral part of
every power train and is placed directly at the motor.
However the control variable is not the positionϕm of
the motor but the position of the workpiece respectively
the positionxmt of the milling table. High sophisticated
machine tools have an additional direct MS not for the
workpiece but the milling table. In this case the mea-
surement position is much closer to the control variable
than in the case of an indirect MS. Low end machines
have only an indirect MS. Here you have no feedback
of the desired control variablexmt as only the position
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Tab. 1 Comparison of indirect MS and direct MS (M−

torque,ϕ− angle position,ω− angular velocity,x− po-
sition,v− velocity).

Indirect MS Additional
direct MS

Input Mm Mm

Output ϕm, ωm ϕm, ωm,
xmt, vmt

Control variable ϕm xmt

Desired control xmt xmt

variable

Rotatory part
Translatory part

J1 J2

cj12

dj12

Mc Mm

mmt
FcFc mc mb

cc

dc

Jm

cb

db

cj2m

dj2m

Fig. 2 Example of a 10th order MBS-model represent-
ing a CNC-maschine tool axis (m− mass,c− stiffness,
d− damping,F− force,M− torque,J− inerta).

of the motorϕm is known. So different measurements
can be used for the controller.

2.2 Models

Fig. 2 shows an example for a 10th order MBS-system
(mc = 0 kg). The motor torque is feed in the system at
the rotatory massJm. The milling table can be thought
atmmt. As an axis can consist of a rotatory and a trans-
latory part the model is divided adequately. The two
parts has to be connected by a kinematic constraint.

The MBS-model can be described as a state space
model. Here the plant will be represented by a state
space description of ordern = 10

ẋ = A x + b u

y = C x .
(1)

The nominal model of the plant has only one instead of
three inertia (Fig. 2). Then the order will reduce by four
with a resulting state space model of ordernM = 6

ẋM = AM xM + bM u

yM = CM xM .
(2)

In practise the model will be calibrated by comparing
the frequency response of the model with the measured
one of the real system. As this procedure is always kind
of faulty and in addition parameters like the mass of the
workpiece, damping values and stiffness can vary, al-
ternatively a model family can be defined. If one put all
changing parameters in a vectorξi the resulting model

Tab. 2 Poles of model andplant I

Model Plant I
0 0
0 0

−5.53 ± 203.68i −5.76 ± 209.14i
−23.83± 443.55i −25.63± 453.40i

−87.21± 5090.14i
−1032.58± 23846.67i

Tab. 3 Pole of the modified plantsplant II andplant III

Plant II Plant III
0 0
0 0

−6.47 ± 231.68i −6.71 ± 206.05i
−21.94± 388.99i −15.44± 296.71i
−80.97± 5081.59i −71.83± 5071.76i

−1032.06± 23847.53i −1031.29± 23846.37i

family includes̺ different single models

ẋMi = AM(ξi) xMi + bM(ξi) uMi

yMi = CM(ξi) xMi (3)

i = 1, . . . , ̺ .

2.3 Analysis of Plant and Model

Plant and model have two unstable poles (s1,2 = 0).
The other poles are all complex conjugate. The poles
of the model and the plant can be found in Tab. 2. The
complex conjugate poles are poorly damped. The pole
correlation of model and plant in the lower frequency
region is high but not exact.

To analyze the robustness of the controller with respect
to errors between model and plant two additional plants
of 10th order are defined. The newplant II has greater
pole location errors compared to the model thanplant
I. Plant III has greater variations thanplant II. The pole
location of the model and the three plants is displayed
in Fig. 3 for the lower frequency region.Plant III has
significant errors at the second resonance frequency.

The model is always of lower order than the real sys-
tem. Because of that it is necessary to find a strategy
to avoid unstable or poorly damped poles in the real
system closed loop, here represented by the three plant
models.

The general requirements of an industrial used machine
tool are the following

• Stability and high dynamics

• Enough damping

• Robustness concerning model errors

• Precision in the range of some10−6 m.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM



−30 −25 −20 −15 −10 −5 0 5
−500

−400

−300

−200

−100

0

100

200

300

400

500

real

im
ag

 

 
Model
Plant I
Plant II
Plant III

pole map

Fig. 3 Poles of model and plants in the lower frequency
region
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Fig. 4 New control structure with feed forward control
(FFC) (FBC-Feedback controller, SFC-State feedback
controller)

The controller should meet all these specifications.

3 Controller Design

First the structure of the controller will be described.
Afterwards a design method is presented, that already
addresses robustness concerning model errors.

3.1 Two-Degrees-of-Freedom structure

The control structure is presented in Fig. 4. It is based
on the two-degrees-of-freedom control which consists
of two parts [3]. The feed forward control is respon-
sible for the command action and the controller is re-
sponsible for the disturbance response.

As simulations show, the feed forward control works
already very well if designed by a low order model [4].
As all states of the model are known the controllerr can
be design by pole placement. The feed forward control
can be also interpreted as a low pass. The system will
only be activate in the bandwidth, defined by the poles
of closed loop feed forward system.

AD

BD CD

DD

uyd − y

Fig. 5 Structure of a dynamic state space controller

Errors because of differences between model and plant
are kind of disturbances. So the controller does not have
to care for the command action but only for the distur-
bance response. This structure was proved of value to
handle the control requirements and all following meth-
ods are based on it.

The sophisticated part is not the design of the feed for-
ward control but the design of the feedback controller.
It must be robust concerning model errors.

3.2 Dynamic output controller

As a new approach state space theory is used for the
complete design structure of the machine tool. For the
controller FBC in Fig. 4 an output feedback controller
will be used

u = K̃(yd − y) . (4)

As the number of outputsq of a system is usually
smaller than the number of statesnM a dynamic con-
troller has to be used to place all poles. The structure of
a dynamic state space controller of orderr is shown in
Fig. 5.

To design the controller the system has to be extended
by the dynamic controller. Afterwards you get a similar
equation like (4) with [5]

K =

[

DD CD

BD AD

]

. (5)

The degrees of freedomfc of the controller is defined
by the number of independent parameters of the con-
troller matrixK and can be calculated as

fc = (p + q) r + p · q . (6)

p is the number of inputs of the used model. To place
all poles of the closed loop system exactly, the number
of degrees of freedom should be at least the number of
poles one wants to place (fc ≥ nM + r).

To assure steady-state behavior it is essential to have an
integrator in the controller. As a dynamic state-space
controller is used this can be provided by a pole of the
controller in zero (sc1 = 0). So one eigenvalue of the
AD matrix has to be zero.

To designK by pole placement only a numerical solu-
tion is possible as an analytical one is not possible [5].
So an optimization problem has to be formulated.
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Fig. 6 Closed loop pole region

3.3 Pole region assignment

In order to increase robustness instead of pole place-
ment, pole region assignment is used to design the con-
troller FBC in Fig. 4. The poles are not placed at exact
predefined positions, but one defines an area in which
all closed loop poles have to be located. As this require-
ment is less restrictive it can be interpreted as a kind of
robustness. The method is described in detail in [6, 7].
The desired pole area can be defined by a hyperbola at
the right border to guarantee a minimum speed (a) and
damping (ϕ). At the left side a circle with radiusR
minimizes the maximum eigenfrequency of the closed
loop modes (Fig. 6). Thus the user can design a com-
plex output feedback controller by choosing only three
parameters.

The optimization problem is to place all poles of the
closed loop systems

sik = δik +jωik, i = 1, . . . , ̺, k = 1, . . . , nM + r,
(7)

inside the desired pole region by the control law (4).
A penalty function evaluates each pole by its location
inside or outside the desired pole region

J =

̺
∑

i=1

nM+r
∑

k=1

(

epi·fik + eqi·gik

)

(8)

with

fik = δik +
ai

bi

√

b2
i + ω2

ik (9)

and

gik =
√

δ2
ik + ω2

ik − R . (10)

pi and qi are factors to weight the left and right bor-
der of the pole region assignment to each over. For
the presented system classpi should be greater thanqi

(pi > qi) as the open loop poles of the plant are mainly
on the right side of the pole region.

The functions (9) is defined, that poles on the right side
of the hyperbola get very high values, poles on the left
side very low ones. Function (10) delivers great values
for poles on the left side of the circle and lower ones for
poles on the right side.

To minimize the penalty function the use of a gradient
method is useful. Therefore an analytical expression
for the gradient, the partial differentiation of the penalty
function with respect to the controller elements, has to
be known.

If the elements of the controller matrixK are denoted
by klm with l = 1, . . . , p, m = 1, . . . , q the partial
differentiation of (8) yields

∂J

∂klm

=

̺
∑

i=1

nM+r
∑

k=1

(

pi

∂fik

∂klm

epi·fik + qi

∂gik

∂klm

eqi·gik

)

(11)
with

∂fik

∂klm

=
∂δik

∂klm

+
ai ·

∂ωik

∂klm

· ωik

bi ·
√

b2
i + ω2

ik

(12)

and
∂gik

∂klm

=

∂δik

∂klm

· δik + ∂ωik

∂klm

· ωik
√

δ2
ik + ω2

ik

. (13)

The partial differential equations in (12) and (13) are
the real and imaginary part of the pole sensitivity [8]

∂sik

∂klm

=
∂δik

∂klm

+
∂ωik

∂klm

.

The pole sensitivity function indicates how much a
change of the controller elementklm affects the loca-
tion of the closed loop poles. This is the main advantage
of the pole region assignment compared to a traditional
pole placement. The method will find automatically the
poles that fulfil the requirements (defined by the pole
region) as the inner dynamic is considered. The user
has not to choose exact pole locations of the closed loop
system that are perhaps difficult to reach.

The pole sensitivity function can be calculated by the
equation [8]

∂sik

∂klm

= −
wT

ikbic
T
mvik

wT
ikvik

. (14)

Herebi andcT
m are the collum vectors ofB and the

row vectors ofC respectively.vik andwT
ik are the right

eigenvectors and and left eigenvectors of the polespik.

To realize steady state behavior predefined elements of
the controller matrixklm must be zero (section 3.2). To
guarantee this the gradient of some elements must be
defined as

∂J

∂klm

= 0 .

3.4 Problem definition

Designing a controller by pole region assignment using
just one model (2) results in good results concerning
the model. But applying the model based controller to
the plant (1) of higher order and non exact correlation in
the lower frequency region results in poles of the closed
loop system outside the desired pole region or even un-
stable behavior.

In the following section different methods to get a better
robustness concerning model errors will be presented.
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4 Methods to handle model errors and
simulation results

In this section different methods of dealing with mod-
eling errors are presented. The first two techniques
change the model the controller design is based on. The
third approach analysis the influence of the number of
output variables that feed the controller. An overview
of the different methods is presented in the following
list:

• Extending the model

• Integrating a model family

• Increasing the number of outputs

• Combination of methods.

Each technique will be tested by a simulation. Next to
robustness concerning model errors also the dynamic
will be evaluated.

4.1 Extending the model

The nominal model of the plant is defined by the state
space model (2). As the order of the modelnM is lower
than the order of the real systemn (nM < n) the closed
loop can have a poor damping or can even be unstable
if the higher modes of the the real system are not con-
sidered during the development of the controller.

To increase the accuracy of the model the plant can be
extended. The easiest way to do this is to to increase
the number of inertia of the MBS-system (Fig. 2). This
results in a new model with the ordernex = nM + 2

ẋex = AM xex + bex u

yex = Cex xex .
(15)

The complex conjugate poles of the new model part
should be all faster than the known poles of the model,
as the low frequency poles are assumed to be relatively
correct. In addition it is known that the damping of
the unconsidered poles of the plant will be low, as only
such poles tend to be unstable or low damped in the
closed loop. Therefore the additional poles should be
outside a certain circle around the origin (velocity) and
with a maximum dampingdmax (Fig. 7). A controller
designed with the extended model will be more robust
concerning model errors in the higher frequency region,
because of additional poles approximately account for
the unknown plant dynamics in the higher frequency
range.

As output variables for the simulation positionxmt and
velocity vmt of the machine table are assumed. For
the controller design a model like (15) is used. To get
enough degrees of freedoms for the optimization a con-
troller of 4th order has to be used. The details of the
defined pole area are presented in Tab. 4.

In Fig. 8 the pole locations of the extended model and
the plants (plant I, plant II, plant III ) are presented for
the critical area around the origin of complex s-plane.

δ

jω

ωmin

dmax

Fig. 7 Area of the additional poles for the model exten-
sion (hatched)

Tab. 4 Control design details of the methodextension

Number of outputs q = 2
Order of controller r = 4

a = 150
Pole region b = 200

R = 600

−150 −100 −50 0
−500

−400

−300

−200

−100

0
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200

300

400
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real

im
ag

pole locations

 

 
Poles of the open loop plant
Poles of the closed loop model
Poles of the closed loop plants

Fig. 8 Poles of model and plants (Methodextension)
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Tab. 5 Control design details of the methodfamily

Number of outputs q = 2
Order of controller r = 4

a = 25
Pole region b = 70

R = 600

−150 −100 −50 0
−500

−400

−300

−200

−100

0

100

200

300

400

500

real

im
ag

 

 
Poles of the open loop plant
Pole sof the closed loop model

pole locations

Poles of the closed loop plant

Fig. 9 Poles of model and plants (Methodfamily)

Compared with the single low order model (2) this time
a stable controller design of the closed loop plants is
possible. The not considered high frequency poles of
the open loop plant do not move away from the original
position in the closed loop system. The extended model
has a positive effect to the robustness concerning model
errors. Unfortunately the poles of the closed loop plants
are much closer to the imaginary axis than the designed
closed loop model poles. In practise this can result in
an unstable system.

The method of an extended model leads to a better con-
troller design. But the effect is to small to use it in prac-
tise.

4.2 Model family

The errors of the model with regard to the plants that re-
sult in not identical pole locations (Fig. 3) can be con-
sidered by the model-family (3). It can be generated
from the MBS-model (Fig. 2). The masses are usually
known quite exact and damping values can be approxi-
mated by experience values very accurately. The main
uncertainty is the stiffness so that the used model fam-
ily is based on a variation of the stiffness parameters
cc andcb in Fig. 2. The model family approach can
be implemented by pole region assignment optimiza-
tion (section 3.3).

For the simulation a model family of the form (3) with
three models is used. The outputs are the same as in
the exampleextension. The design details can be find
in Tab. 5. The resulting pole locations are presented in
Fig. 9.

Tab. 6 Control design details of the methodoutputs

Number of outputs q = 4
Order of controller r = 2

a = 90
Pole region b = 155

R = 600

−150 −100 −50 0
−500

−400

−300

−200

−100

0

100

200

300

400

500

real

im
ag
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Poles of the open loop plant
Poles of the closed loop model
Poles of the closed loop plants

Fig. 10 Poles of model and plants (Methodoutputs)

It is not possible to place the closed loop model poles
as fast as with the methodextension. This can be ex-
plained by the optimization process. It is more difficult
to find a solution if more models are included in the
optimization.

This method is much better to predict the location of the
closed loop plant poles as all plant poles are surrounded
by closed loop model poles. So the area of the known
closed loop model poles are in the same area as the in
practise not known closed loop plant poles. The high
frequency poles of the plant stay at the same pole area.

The model family approach seems to be a useful way to
integrate robustness in the controller design process.

4.3 Increasing the number of outputs

For the design of the controller a dynamic feedback
controller is used (section 3.2). This structure offers
the possibility to integrate as many outputs as possi-
ble. More outputs result in more degrees of freedom to
design the controller. This increases the optimization
parameters.

Instead of only two all four output variablesϕm, ωm,
xmt and vmt are used. The nominal model of (2) is
used for the controller design. Because of this the order
of the controller can be reduced tor = 2 (Tab. 6). The
pole locations are plotted in Fig. 10.

The poles of model and plants can be located more left
(faster) than in the previous designs. Increasing the
number of outputsq has a more positive effect than
increasing the order of the controllerr. But as only
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Tab. 7 Control design details of the methodcombination

Number of outputs r = 4
Order of controller r = 2

a = 50
Pole region b = 100

R = 600
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Poles of the open loop plant
Poles of the closed loop model
Poles of the closed loop plants

Fig. 11 Poles of model and plants (Methodcombina-
tion)

one low order model is used the robustness concerning
model errors ist not high. The closed loop plant poles
are much closer to the imaginary axis than the closed
loop model poles.

4.4 Combination of methods

Especially thefamily andoutputsapproaches seem to
be useful to design a controller for the presented plant.
So the two methods will be combined. The same model
family is used like before (Tab. 7). The pole location
are shown in Fig. 11.

The poles of the three models surround the poles of the
three plants. So a good prediction of the closed loop
plant system can be done by the model family. The
high frequency poles of the model stay again in the
same pole area. Additionally the locations of the poles
is more left than before. This will result in a good dy-
namic of the closed loop system.

4.5 Simulation results

The command action and disturbance reaction of the fi-
nal controller design will be tested by simulation. The
benchmark system is a traditional cascade control struc-
ture, which is very common in the field of power trains
[9].

In Fig. 12 the step response of a20 mm positioning and
the reaction to5 Nm torque step is displayed. This is
done forplant I, plant II and plantplant III.

In all cases the new controller structure has advantages
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Fig. 12 Simulation results of command action and dis-
turbance reactioncombination(a) Plant I (b) Plant II
(c) Plant III
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compared to the cascade structure. The command ac-
tion has less overshooting and more damping. Espe-
cially the disturbance reaction shows significant bet-
ter behavior compared to the traditional structure. For
plant III the control parameters of the cascade structure
had to be adapted. So the new structure has a better
robustness concerning model errors than the traditional
structure.

5 Conclusion

Mathematical models of real systems are an essential
part of modern engineering. Especially in the area of
control engineering often the quality of the model influ-
ences the results more than the design method of a con-
troller. Unfortunately every model is a simplification
of the plant. Two different types of errors can be dis-
tinguished: A reduced order and general (parameter-)
uncertainties of the model. This article highlights the
problems that result from model errors with special re-
gard to the pole placement technique.

Based on the defined problem of controlling a CNC-
machine tool a method is presented to design a state
space controller using pole placement. The method
is highly automated and can be done without detailed
knowledge of state space theory.

Problems designing the controller occur as the model
has significant deviations to the plant. To prevent un-
stable or poor closed loop behavior different methods
are presented. A model extension tries to consider the
higher order of the system. With a model family pa-
rameter variations can be described. Also the number
of system-outputs that are used for feedback have an
influence on the controller design. It is shown by sim-
ulations that especially the combination of the model
family and the increasing number of outputs results in
closed loops that have more dynamic and more robust-
ness concerning model errors than traditional cascade
controllers.
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Möglichkeiten zur Nutzung von FEM-Modellen in
der Regelungstechnik.Technik & Mensch, 4:8–9,
2006.

[3] G. Kreisselmeier. Struktur mit zwei Freiheits-
graden.at - Automatisierungstechnik, pages 266–
269, 1999.

[4] U. Ahrholdt and U. Konigorski. Ein ganzheitlicher
systemtheoretischer Ansatz zur Regelung einer
Werkzeugmaschinenachse. InMechatronik 2007,
Innovative Produktentwicklung, pages 293–306.
VDI, 05 2007.

[5] U. Konigorski. Ein direktes Verfahren zum En-
twurf strukturbeschr̈ankter Zustandsr̈uckf̈uhrungen
durch Polvorgabe. PhD thesis, Universität Karl-
sruhe, 1988.

[6] U. Konigorski and S.K. Lehmann. Parameter opti-
mization methods for the design of structurally con-
strained controllers. InProceedings of the IMACS
IDAC Symposium on Modelling and Simulation for
Control of Lumped and Distributed Parameter Sys-
tems, pages 519–522, Villeneuve D’Ascq, 1986.

[7] U. Konigorski. Entwurf robuster struk-
turbeschränkter Zustandsregelungen durch
Polgebietsvorgabe mittels Straffunktionen.at-
Automatisierungstechnik, 6:250–254, 1986.

[8] L. Litz. Berechnung stabilisierender Ausgangsvek-
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